1
|
Tan J, Sun J, Ye T, Liu H, Liu J, Wang C. Bioinspired Low-Angle-Dependent Photonic Crystal Elastomer for Highly Sensitive Visual Strain Sensor. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 39074378 DOI: 10.1021/acsami.4c06292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Photonic crystals (PCs) possess unique photonic band gap properties that can be used in the field of sensors and smart displays if modulated on the micronano structure. Both nonclose-packed (NCP) structure and high refractive index (RI) contrast of PC play important roles in response sensitivity during stretching. Herein, we constructed an NCP-structured PC strain sensor with high RI by a novel coating-etching strategy. Stretch-induced changes in structural color correspond to the strength of the force, enabling the detection of the strength of the acting force by the naked eye. The flexible 3D cross-linked network constructed by poly(ethylene glycol) phenyl ether acrylate and pentaerythritol tetrakis(3-mercaptopropionate) endows the sensor with excellent elasticity and robustness. The designed PC strain sensor achieves high mechanochromic sensitivity (∼8.3 nm/%, 0.02 to 4.21 MPa) and a substantial reflection peak shift (Δλ = 249 nm). More importantly, the high RI contrast (Δn = 0.43) between CdS and polymers imparts isotropic optical properties, ensuring a broad viewing angle while avoiding misleading signals. The research provides a novel fabrication strategy to construct sensitive PC strain sensors, expanding the prospective applicability to human movement monitoring and secure message encryption.
Collapse
Affiliation(s)
- Jialing Tan
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Juanjuan Sun
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Ting Ye
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Hao Liu
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Jiayin Liu
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Chaoxia Wang
- College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
2
|
Xu B, Hou M, Xu Q, Su J, Zhang H, Lu X, Ni Z. Non-iridescent Structurally Colored Pigments Based on CB@SiO 2@TiO 2 Core-Bishell Nanospheres with Enhanced Color Stability and Excellent Photocatalytic Activity. ACS APPLIED MATERIALS & INTERFACES 2023; 15:56138-56149. [PMID: 37983553 DOI: 10.1021/acsami.3c11219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
In recent years, artificial amorphous photonic structure (APS) materials with high color saturation and angle independence have been competitively reported. However, there is a lack of research into their functionalization and application in practical environments. Here, with practical applications in mind, we prepared APS pigments based on CB@SiO2@TiO2 core-bishell nanospheres and demonstrated high color saturation, enhanced color stability, and excellent photocatalytic activity. SiO2 effectively protected the carbon black particles from ablation during the calcination process. Paints composed of ethanol, ethyl cellulose (EC), and pigments could be spray-coated on any substrate to prepare a structurally colored coating without limitation. The coatings show good mechanical stability and photothermal stability. The color of the structurally colored pigments can be easily changed by adjusting the sizes of the CB@SiO2@TiO2 nanospheres. The photocatalytic activity of the pigments on formaldehyde (HCHO) and methylene blue (MB) solution and reaction kinetics of their degradation were studied by experiment. The results showed that the photocatalytic activity of the pigments increased with the increase of the TiO2 loading, and the degradation rate of HCHO reached 96.7% for 3 h and that of MB reached 97.9% for 60 min when the TiO2 shell thickness was 40 nm. The structurally colored pigments based on CB@SiO2@TiO2 nanospheres effectively solve the environmental problems caused by the application of pigments and have a promising future in the fields of color decoration, display, and painting.
Collapse
Affiliation(s)
- Bin Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Maohua Hou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qinqin Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jieying Su
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Haitao Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiaohui Lu
- State Key Laboratory of Fluid Power Transmission and Control, Zhejiang University, Hangzhou 310027, China
| | - Zhongjin Ni
- College of Engineering, Zhejiang Agriculture and Forestry University, Linan 311300, China
| |
Collapse
|
3
|
He M, Yang J, Qiu K, Wu Y, Sun Y, Qi D. Super-assembly platform for diverse nanoparticles with tunable topological architectures and surface morphologies. J Colloid Interface Sci 2023; 651:849-860. [PMID: 37573731 DOI: 10.1016/j.jcis.2023.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 07/14/2023] [Accepted: 08/05/2023] [Indexed: 08/15/2023]
Abstract
Self-assembly leveraged by nature enables the sophisticated generation of a wide range of nanoparticles (NPs) with rich architectures and morphologies. However, existing artificial self-assembly platforms largely only allow for the fabrication of single type of NPs with limited structures, due to their inability to define interfacial interaction between seeds and growth materials, which is critically important to gain controllable growth patterns of the grown materials on the seeds' surface. Here, we report a versatile super-assembly platform that shows the capabilities to fabricate diverse NPs with tunable topological architectures and surface morphologies, e.g., molecular-like NPs, hollow asymmetric NPs, patchy NPs, etc. We unprecedentedly discovered the powerful functions of polyvinylpyrrolidone (PVP), which enable us to well define interfacial interaction between growth materials and seeds to achieve the controllable and tunable generation of various complex topological growth patterns. Moreover, the nucleation pattern (island nucleation or layered nucleation) of the patches can be thermodynamically modulated via the polarity of the solvent, while the number and size of the patches can be kinetically tuned by the ratio of polystyrene (PS), precursor, and catalyst. Interestingly, the hollow NPs can be generated by single-one processing step in our platform, unlike the multiple steps laboriously and widely employed by previously reported fabrication platforms. In addition, we demonstrate that our annealed NPs can not only selectively reflect visible light, and show well-controlled colors from gray, blue, to green, but also exhibit excellent photothermal conversion performances with a high photothermal conversion efficiency of 68.7% that are superior to currently routinely reported of 40%. This super-assembly platform can serve as a powerful toolset to sophisticatedly create varied NPs with tunable hierarchical architectures and controllable surface morphologies, which would significantly benefit the development of drug delivery, nanomaterial assembly, nano pigments, nanoreactors, and beyond.
Collapse
Affiliation(s)
- Mengyao He
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jifu Yang
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Kejun Qiu
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yue Wu
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Yangyi Sun
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| | - Dongming Qi
- Zhejiang Provincial Engineering Research Center for Green and Low-carbon Dyeing & Finishing, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China; Key Laboratory of Advanced Textile Materials and Manufacturing Technology and Engineering Research Center for Eco-Dyeing & Finishing of Textiles, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China.
| |
Collapse
|
4
|
Recent advances in photonic crystal-based sensors. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
5
|
Li M, Lyu Q, Peng B, Chen X, Zhang L, Zhu J. Bioinspired Colloidal Photonic Composites: Fabrications and Emerging Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110488. [PMID: 35263465 DOI: 10.1002/adma.202110488] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/05/2022] [Indexed: 06/14/2023]
Abstract
Organisms in nature have evolved unique structural colors and stimuli-responsive functions for camouflage, warning, and communication over millions of years, which are essential to their survival in harsh conditions. Inspired by these characteristics, colloidal photonic composites (CPCs) composed of colloidal photonic crystals embedded in the polymeric matrix are artificially prepared and show great promise in applications. This review focuses on the summary of building blocks, i.e., colloidal particles and polymeric matrices, and constructive strategies from the perspective of designing CPCs with robust performance and specific functionality. Furthermore, their state-of-the-art applications are also discussed, including colorful coatings, anti-counterfeiting, and regulation of photoluminescence, especially in the field of visualized sensing. Finally, current challenges and potential for future developments in this field are discussed. The purpose of this review is not only to clarify the design principle for artificial CPCs but also to serve as a roadmap for the exploration of next-generation photonic materials.
Collapse
Affiliation(s)
- Miaomiao Li
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Quanqian Lyu
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Bolun Peng
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Xiaodong Chen
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Lianbin Zhang
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| | - Jintao Zhu
- State Key Laboratory of Materials Processing and Die and Mould Technology and Key Lab of Material Chemistry for Energy Conversion and Storage of Ministry of Education (HUST), School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, China
| |
Collapse
|
6
|
The Fabrication of Full Chromatography SiO2@PDA Photonic Crystal Structural Colored Fabric with High Thermal Stability. COATINGS 2022. [DOI: 10.3390/coatings12081085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Traditional textile dyeing and finishing industries are two of the most important sources of high pollution, high energy consumption, and high emissions. Structural color, as a clean ecological staining method that does not require any dye or pigment, has received extreme attention from researchers. In this study, core-shell structures of SiO2@PDA microspheres were prepared by coating polydopamine (PDA) formed by rapid polymerization of dopamine (DA) on the surface of SiO2 microspheres. Moreover, the structural colors of full chromatography were successfully prepared by vertical self-assembly on silk. The morphology and chemical structure of the prepared SiO2@PDA microspheres were studied by SEM and FT-IR, and the morphology and optical properties of the structured colored fabrics were characterized by SEM and material microscope. The different structural colors of the entire visible region were obtained by controlling the particle size of SiO2@PDA microspheres and the viewing angle of the SiO2@PDA photonic crystal, which are consistent with Bragg’s diffraction law. Since the SiO2@PDA photonic crystal has thermal stability, the prepared structural color fabric could remain highly saturated in color at temperatures up to 200 °C. This has a previously unreported high thermal stability on structural colors of silk. Therefore, the research work will demonstrate a structural color fabric that can prepare full chromatography with high thermal stability.
Collapse
|
7
|
Yamanaka T, Tarutani N, Katagiri K, Inumaru K, Takeoka Y, Masui T. High Heat Resistance of the Structural Coloration of Colloidal Arrays with Inorganic Black Additives. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29324-29330. [PMID: 35726998 DOI: 10.1021/acsami.2c08649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Structurally colored materials consisting of arrays of submicrometer-sized particles have drawn a great deal of attention because of their advantages, including low cost, low impact on human health as well as the environment, and resistance to fading. However, their low thermal stability is considered to be a critical issue for their practical use as colorants. Black-colored substances that can absorb the white color are added to colloidal array-type structurally colored materials to enhance their chromaticity. The poor thermal stability of commonly used black coloring additives, carbon black and Fe3O4 nanoparticles, is a main factor that reduces the heat resistance of structural coloration. Here, we demonstrate the preparation of structurally colored materials with extraordinarily high heat resistance of coloration, up to 900 °C. Several metal oxides, i.e., calcium manganese-based oxide (CCMO), chromium-iron-cobalt-nickel oxide (CFCNO), and lanthanum manganite (LMO), are synthesized and employed as black additives for structurally colored coatings prepared by the electrophoretic deposition of spherical silica particles. When CCMO is used as a black additive, the coloration heat resistance of the film is stable up to 700 °C. On the other hand, the films maintain vivid structural colors after exposure to 900 °C temperatures when CFCNO and LMO are employed as black additives. On the basis of this finding, high heat resistance of structural colors requires both heat resistance of the black additives and nonreactivity with the components of the spherical particles used for colloidal arrays.
Collapse
Affiliation(s)
- Takahiro Yamanaka
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Naoki Tarutani
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Kiyofumi Katagiri
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Kei Inumaru
- Graduate School of Advanced Science and Engineering, Hiroshima University, 1-4-1 Kagamiyama, Higashi-Hiroshima 739-8527, Japan
| | - Yukikazu Takeoka
- Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Toshiyuki Masui
- Faculty of Engineering and Center for Research on Green Sustainable Chemistry, Tottori University, Tottori 680-8552, Japan
| |
Collapse
|
8
|
Feng L, Luo H, Wang F, Zhao T, Wei X, Zhu J, Qin Y. The Development of New Catalytic Pigments Based on SiO 2 Amorphous Photonic Crystals via Adding of Dual-Functional Black TiO 2-x Nanoparticles. ACS OMEGA 2022; 7:12089-12097. [PMID: 35449915 PMCID: PMC9016863 DOI: 10.1021/acsomega.2c00346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/17/2022] [Indexed: 06/14/2023]
Abstract
Biomimetic synthesis of amorphous photonic crystals (APCs) is an effective approach to obtaining non-iridescent structural colors. However, the structural colors of artificially prepared APCs are dim or even white due to the influence of incoherent scattering. In this paper, we present a novel method to combine APCs with black TiO2-x to construct a noniridescent structural color pigments with high visibility and photocatalytic activity. Due to the absorption of incoherently scattered light by black TiO2-x , the color saturation of structural colors has been significantly increased. In addition, the utilization rate of photogenic carriers was effectively enhanced by the slow light effect generated from the pseudoband gap of SiO2 APCs with TiO2-x absorbed full spectrum. The tone and color saturation of catalytic pigments is controlled by the diameter of SiO2 nanospheres and the ratio of TiO2-x nanoparticles, which provides a controllable application study in color-related fields as artwork, environmental coatings, and textiles.
Collapse
Affiliation(s)
- Li Feng
- Shaanxi
Key Laboratory of Green Preparation and Functionalization for Inorganic
Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xian, Shaanxi 710021, China
| | - Hongjie Luo
- Shaanxi
Key Laboratory of Green Preparation and Functionalization for Inorganic
Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xian, Shaanxi 710021, China
- School
of Materials Science and Engineering, Shanghai
University, Shanghai 200444, China
| | - Fen Wang
- Shaanxi
Key Laboratory of Green Preparation and Functionalization for Inorganic
Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xian, Shaanxi 710021, China
| | - Ting Zhao
- Shaanxi
Key Laboratory of Green Preparation and Functionalization for Inorganic
Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xian, Shaanxi 710021, China
| | - Xiaohong Wei
- Shaanxi
Key Laboratory of Green Preparation and Functionalization for Inorganic
Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xian, Shaanxi 710021, China
| | - Jianfeng Zhu
- Shaanxi
Key Laboratory of Green Preparation and Functionalization for Inorganic
Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xian, Shaanxi 710021, China
| | - Yi Qin
- Shaanxi
Key Laboratory of Green Preparation and Functionalization for Inorganic
Materials, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xian, Shaanxi 710021, China
| |
Collapse
|
9
|
Han SH, Choi YH, Kim SH. Co-Assembly of Colloids and Eumelanin Nanoparticles in Droplets for Structural Pigments with High Saturation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106048. [PMID: 34859579 DOI: 10.1002/smll.202106048] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Colloidal crystals have been used to develop structural colors. However, incoherent scattering causes the colors to turn whitish, reducing the color saturation. To overcome the problem, light-absorbing additives have been incorporated. Although various additives have been used, most of them are not compatible with a direct co-assembly with common colloids in aqueous suspensions. Here, the authors suggest eumelanin nanoparticles as a new additive to enhance the color chroma. Eumelanin nanoparticles are synthesized to have diameters of several nanometers by oxidative polymerization of precursors in basic solutions. The nanoparticles carry negative charges and do not weaken the electrostatic repulsion among same-charged polystyrene particles when they are added to aqueous suspensions. To prove the effectiveness of eumelanin as a saturation enhancer, the authors produce photonic balls through direct co-assembly of polystyrene and eumelanin using water-in-oil emulsion droplets, while varying the weight ratio of eumelanin to polystyrene. The high crystallinity of colloidal crystals is preserved for the ratio up to at least 1/50 as the eumelanin does not perturb the crystallization. The eumelanin effectively suppresses incoherent scattering while maintaining the strength of structural resonance at an optimum ratio, improving color chroma without compromising brightness.
Collapse
Affiliation(s)
- Sang Hoon Han
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Ye Hun Choi
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| |
Collapse
|
10
|
|
11
|
Jurewicz I, King AAK, Shanker R, Large MJ, Smith RJ, Maspero R, Ogilvie SP, Scheerder J, Han J, Backes C, Razal JM, Florescu M, Keddie JL, Coleman JN, Dalton AB. Mechanochromic and Thermochromic Sensors Based on Graphene Infused Polymer Opals. ADVANCED FUNCTIONAL MATERIALS 2020; 30:2002473. [PMID: 32774202 PMCID: PMC7406018 DOI: 10.1002/adfm.202002473] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 05/05/2023]
Abstract
High quality opal-like photonic crystals containing graphene are fabricated using evaporation-driven self-assembly of soft polymer colloids. A miniscule amount of pristine graphene within a colloidal crystal lattice results in the formation of colloidal crystals with a strong angle-dependent structural color and a stop band that can be reversibly shifted across the visible spectrum. The crystals can be mechanically deformed or can reversibly change color as a function of their temperature, hence their sensitive mechanochromic and thermochromic response make them attractive candidates for a wide range of visual sensing applications. In particular, it is shown that the crystals are excellent candidates for visual strain sensors or integrated time-temperature indicators which act over large temperature windows. Given the versatility of these crystals, this method represents a simple, inexpensive, and scalable approach to produce multifunctional graphene infused synthetic opals and opens up exciting applications for novel solution-processable nanomaterial based photonics.
Collapse
Affiliation(s)
- Izabela Jurewicz
- Department of PhysicsFaculty of Engineering & Physical SciencesUniversity of SurreyGuildfordGU2 7XHUK
| | | | - Ravi Shanker
- Department of PhysicsFaculty of Engineering & Physical SciencesUniversity of SurreyGuildfordGU2 7XHUK
- Laboratory of Nano‐Optics and Organic ElectronicsDepartment of Science and TechnologyLinköping UniversityNorrköpingSE‐601 74Sweden
| | | | - Ronan J. Smith
- School of PhysicsCRANN and AMBERTrinity College DublinDublin 2Ireland
| | - Ross Maspero
- Department of PhysicsFaculty of Engineering & Physical SciencesUniversity of SurreyGuildfordGU2 7XHUK
- Advanced Technology InstituteUniversity of SurreyGuildfordGU2 7XHUK
| | | | | | - Jun Han
- Chinese Academy of SciencesCN‐36220 QuanzhouCN CN‐36220QuanzhChina
| | - Claudia Backes
- Applied Physical ChemistryUniversity of HeidelbergHeidelberg69120Germany
| | - Joselito M. Razal
- Institute for Frontier MaterialsDeakin UniversityGeelongVIC3216Australia
| | - Marian Florescu
- Department of PhysicsFaculty of Engineering & Physical SciencesUniversity of SurreyGuildfordGU2 7XHUK
- Advanced Technology InstituteUniversity of SurreyGuildfordGU2 7XHUK
| | - Joseph L. Keddie
- Department of PhysicsFaculty of Engineering & Physical SciencesUniversity of SurreyGuildfordGU2 7XHUK
| | | | - Alan B. Dalton
- Department of PhysicsUniversity of SussexBrightonBN1 9RHUK
| |
Collapse
|
12
|
Li-Li Wang, Zhou YM, Li XP, Wang XF, Feng LN, Liu XX. Effect of Nano-Carbon Addition on Angle Dependence of Polystyrene Colloidal Crystal Film. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2020. [DOI: 10.1134/s0036024420050258] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
13
|
Liu T, VanSaders B, Glotzer SC, Solomon MJ. Effect of Defective Microstructure and Film Thickness on the Reflective Structural Color of Self-Assembled Colloidal Crystals. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9842-9850. [PMID: 31990514 DOI: 10.1021/acsami.9b22913] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Structural color arises from geometric diffraction; it has potential applications in optical materials because it is more resistant to environmental degradation than coloration mechanisms that are of chemical origin. Structural color can be produced from self-assembled films of colloidal size particles. While the relationship between the crystal structure and structural color reflection peak wavelength is well studied, the connection between assembly quality and the degree of reflective structural color is less understood. Here, we study this connection by investigating the structural color reflection peak intensity and width as a function of defect density and film thickness using a combined experimental and computational approach. Polystyrene microspheres are self-assembled into defective colloidal crystals via solvent evaporation. Colloidal crystal growth via sedimentation is simulated with molecular dynamics, and the reflection spectra of simulated structures are calculated by using the finite-difference time-domain algorithm. We examine the impact of commonly observed defect types (vacancies, stacking fault tetrahedra, planar faults, and microcracks) on structural color peak intensity. We find that the reduction in peak intensity scales with increased defect density. The reduction is less sensitive to the type of defect than to its volume. In addition, the reflectance of structural color increases as a function of the crystal thickness, until a plateau is reached at thicknesses greater than about 9.0 μm. The maximum reflection is 78.8 ± 0.9%; this value is significantly less than the 100% reflectivity predicted for a fully crystalline, defect-free material. Furthermore, we find that colloidal crystal films with small quantities of defects may be approximated as multilayer reflective materials. These findings can guide the design of optical materials with variable structural color intensity.
Collapse
|
14
|
Hwang V, Stephenson AB, Magkiriadou S, Park JG, Manoharan VN. Effects of multiple scattering on angle-independent structural color in disordered colloidal materials. Phys Rev E 2020; 101:012614. [PMID: 32069652 DOI: 10.1103/physreve.101.012614] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Indexed: 11/07/2022]
Abstract
Disordered packings of colloidal spheres show angle-independent structural color when the particles are on the scale of the wavelength of visible light. Previous work has shown that the positions of the peaks in the reflectance spectra can be predicted accurately from a single-scattering model that accounts for the effective refractive index of the material. This agreement shows that the main color peak arises from short-range correlations between particles. However, the single-scattering model does not quantitatively reproduce the observed color: the main peak in the reflectance spectrum is much broader and the reflectance at low wavelengths is much larger than predicted by the model. We use a combination of experiment and theory to understand these features. We find that one significant contribution to the breadth of the main peak is light that is scattered, totally internally reflected from the boundary of the sample, and then scattered again. The high reflectance at low wavelengths also results from multiple scattering but can be traced to the increase in the scattering cross section of individual particles with decreasing wavelength. Both of these effects tend to reduce the saturation of the structural color, which limits the use of these materials in applications. We show that while the single-scattering model cannot reproduce the observed saturations, it can be used as a design tool to reduce the amount of multiple scattering and increase the color saturation of materials, even in the absence of absorbing components.
Collapse
Affiliation(s)
- Victoria Hwang
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Anna B Stephenson
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Sofia Magkiriadou
- Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Jin-Gyu Park
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, USA
| | - Vinothan N Manoharan
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, 29 Oxford Street, Cambridge, Massachusetts 02138, USA.,Department of Physics, Harvard University, 17 Oxford Street, Cambridge, Massachusetts 02138, USA
| |
Collapse
|
15
|
Liu F, Zhang S, Jin X, Wang W, Tang B. Thermal-Responsive Photonic Crystal with Function of Color Switch Based on Thermochromic System. ACS APPLIED MATERIALS & INTERFACES 2019; 11:39125-39131. [PMID: 31544458 DOI: 10.1021/acsami.9b16411] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Responsive photonic crystals have attracted considerable attention. The responsiveness is usually achieved through the variation of reflection wavelengths based on Bragg diffraction. However, distinguishing external stimuli from intrinsic angle dependence is a challenge. Herein, a novel thermal-responsive photonic crystal was constructed based on the synergistic effect of the low-angle dependence of SnO2 inverse opals and a thermochromic phase change system. The organic thermochromic phase change system was obtained by mixing the fluoran dye (heat-sensitive red TF-R2), bisphenol A, and aliphatic alcohols in a certain proportion. By filling the thermochromic phase change system into SnO2 inverse opals, the thermal-responsive photonic crystal was fabricated. Through simple external thermal stimulation, the mutual transformation of low-angle-dependent structural color and pigmentary color is realized and inverse opal patterns can be displayed and hidden. The proposed system, while preventing the interference of the observation angle to the thermal stimulation, shows potential application prospect in the fields of anti-counterfeiting and information encryption fields.
Collapse
Affiliation(s)
- Fangfang Liu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
| | - Xin Jin
- Eco-chemical Engineering Cooperative Innovation Center of Shandong , Qingdao University of Science and Technology , Qingdao 266042 , China
| | - Wentao Wang
- Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education , Zhejiang Sci-Tech University , Hangzhou 310018 , China
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian 116024 , China
- Eco-chemical Engineering Cooperative Innovation Center of Shandong , Qingdao University of Science and Technology , Qingdao 266042 , China
| |
Collapse
|
16
|
Xue Y, Wang F, Luo H, Zhu J. Preparation of Noniridescent Structurally Colored PS@TiO 2 and Air@C@TiO 2 Core-Shell Nanoparticles with Enhanced Color Stability. ACS APPLIED MATERIALS & INTERFACES 2019; 11:34355-34363. [PMID: 31432662 DOI: 10.1021/acsami.9b12060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Natural amorphous photonic crystals benefit from reflectance at selective wavelengths in some specific existing natural systems. Noniridescence from natural organisms has also attracted great interest for various examples in bionic colors, pigments, and paintings. Here, Air@C@TiO2 sphere was obtained by the first calcination of PS@TiO2 core-shell nanoparticles in nitrogen to ensure the integrity of the shell structure followed by low-temperature calcination to obtain the appropriate color saturation. We demonstrate that, compared with the prepared colored PS@TiO2/carbon black (CB) pigments, angle-independent hollow Air@C@TiO2 nanoparticles have enhanced color stability under the action of in situ synthesized carbon black (CB). Our results suggest that it is easy to change the color of these Air@C@TiO2 spheres by adjusting the sphere structure sizes, which have the potential to show visual signaling.
Collapse
Affiliation(s)
| | | | - Hongjie Luo
- School of Materials Science and Engineering , Shanghai University , Shanghai 200444 , P. R. China
| | | |
Collapse
|
17
|
Wu H, Chu C, Chen T, Yu M, Guo J, Li Z, Xu G, Cheng Y, Sun A. Electrically responsive structural colors from colloidal crystal arrays of PS@PANI core–shell nanoparticles. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.049] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
18
|
Yu S, Cao X, Niu W, Wu S, Ma W, Zhang S. Large-Area and Water Rewriteable Photonic Crystal Films Obtained by the Thermal Assisted Air-Liquid Interface Self Assembly. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22777-22785. [PMID: 31194499 DOI: 10.1021/acsami.9b06470] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Compared with traditional paper, water rewritable photonic crystal (PC) paper is an environmentally friendly and low resource-consuming material for information storage. Although, recently reported PC papers have high-quality structure color showing promising prospect, the paper size, that is within several centimeters, still limits turning it from potential to reality. Here, we present a new water rewritable PC film as large as the A4 size (210 × 300 mm2) with a high-quality structure color. The material is prepared by thermal assisted self-assembly on the air-liquid interface. To fix such a large-area self-assembled PC film, we partially deform and coalesce the self-assembled nanoparticles, which have low glass transition temperature. This process causes the film to be transparent and structural colorless but still keeps the inner 3D-ordered structure. Then, utilizing the hydrophilic nature of the assembled block, the film can be switched to a structural color state by touching water. Diverse brilliant structural colors appear with different assembled particle (poly(butyl methacrylate- co-methylmethacrylate- co-butyl acrylate- co-diacetone acrylamide) named as PBMBD) sizes. The transparency-structural color transition can be performed multiple times reversibly in all or specific regions of the film. It provides a new solution for future applications of rewriteable PC paper.
Collapse
Affiliation(s)
- Shuzhen Yu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| | - Xu Cao
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| | - Wenbin Niu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| |
Collapse
|
19
|
Yang D, Liao G, Huang S. Hand Painting of Noniridescent Structural Multicolor through the Self-Assembly of YOHCO 3 Colloids and Its Application for Anti-Counterfeiting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8428-8435. [PMID: 31199656 DOI: 10.1021/acs.langmuir.9b01571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
YOHCO3 colloidal particles with tunable size, composition, and optical properties were prepared, and they were used for the fabrication of amorphous photonic crystals? (APCs) patterns through direct hand painting. YOHCO3 colloids were synthesized by a seeding growth method, in which the colloid size could be controlled by altering the seed amounts and the composition and optical properties can be altered via the doping of Eu3+. APCs? films with bright, permanent, and tunable structural colors were prepared by the self-assembly of YOHCO3 colloids of different sizes. Multicolor patterns can be obtained quickly and efficiently by hand painting with the dispersion of YOHCO3 colloids as ink. An APCs? pattern assembled from YOHCO3:Eu colloids is also fabricated, and the pattern shows blue structural color under natural light and bright red colors under illumination of UV light. The facile synthesis procedure, simple assembly process, and unique optical properties of the APCs make it valuable for practical applications such as structural color-based printing and anticounterfeiting.
Collapse
Affiliation(s)
- Dongpeng Yang
- School of Materials and Energy , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| | - Guolong Liao
- Zhejiang Key Laboratory of Carbon Materials , Wenzhou University , Wenzhou 325027 , P. R. China
| | - Shaoming Huang
- School of Materials and Energy , Guangdong University of Technology , Guangzhou 510006 , P. R. China
| |
Collapse
|
20
|
Kim SH, Hwang V, Lee SG, Ha JW, Manoharan VN, Yi GR. Solution-Processable Photonic Inks of Mie-Resonant Hollow Carbon-Silica Nanospheres. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900931. [PMID: 31038291 DOI: 10.1002/smll.201900931] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Hollow carbon-silica nanospheres that exhibit angle-independent structural color with high saturation and minimal absorption are made. Through scattering calculations, it is shown that the structural color arises from Mie resonances that are tuned precisely by varying the thickness of the shells. Since the color does not depend on the spatial arrangement of the particles, the coloration is angle independent and vibrant in powders and liquid suspensions. These properties make hollow carbon-silica nanospheres ideal for applications, and their potential in making flexible, angle-independent films and 3D printed films is explored.
Collapse
Affiliation(s)
- Seung-Hyun Kim
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
- Interface Materials and Chemical Engineering Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Victoria Hwang
- Harvard John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, MA, 02138, USA
| | - Sang Goo Lee
- Interface Materials and Chemical Engineering Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Jong-Wook Ha
- Interface Materials and Chemical Engineering Research Center, Korea Research Institute of Chemical Technology, Daejeon, 34114, Republic of Korea
| | - Vinothan N Manoharan
- Harvard John A. Paulson School of Engineering and Applied Science, Harvard University, Cambridge, MA, 02138, USA
- Department of Physics, Harvard University, Cambridge, MA, 02138, USA
| | - Gi-Ra Yi
- School of Chemical Engineering, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| |
Collapse
|
21
|
Wang W, Zheng A, Jiang Y, Lan D, Lu F, Zheng L, Zhuang L, Hong R. Large-scale preparation of size-controlled Fe 3O 4@SiO 2 particles for electrophoretic display with non-iridescent structural colors. RSC Adv 2018; 9:498-506. [PMID: 35521571 PMCID: PMC9059269 DOI: 10.1039/c8ra08352e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 12/05/2018] [Indexed: 11/21/2022] Open
Abstract
Monodisperse colloidal particles have promising applications in electrophoretic displays with vivid colors, reversibility and low switching times. In this study, a facile, effective and large-scale strategy for preparing size-controlled Fe3O4@SiO2 particles is reported. Multiple Fe3O4 particles were synthesized by a modified solvothermal method using sodium citrate as a surface modifier with a binary solvent, and were then coated with a SiO2 layer to obtain a highly negatively charged surface via a modified Stöber method. Owing to the easily controlled sizes and sufficient surface charges, Fe3O4@SiO2 particles can be assembled into colloidal amorphous arrays with the balance of electrostatic repulsion and electrophoretic forces. The reflections cover wavelengths ranging from 802 to 453 nm, and were optimized by investigating the dependence of the particles on variables such as particle size, particle volume fraction, and electric field intensity. The large-scale preparation of electrically responsive Fe3O4@SiO2 particles facilitates an electrophoretic display with broad-range colors, showing the practical potential in industrial application. Fe3O4@SiO2 particles were prepared on the gram-scale by selecting Na3Cit as the modifier with binary solvent and were assembled into colloidal amorphous arrays with unique and attractive optical properties for EPD.![]()
Collapse
Affiliation(s)
- Wei Wang
- Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, School of Physics, Sun Yat-Sen University Guangzhou 510275 People's Republic of China .,School of Materials Science and Engineering, Sun Yat-Sen University Guangzhou 510275 People's Republic of China
| | - Ang Zheng
- Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, School of Physics, Sun Yat-Sen University Guangzhou 510275 People's Republic of China .,School of Materials Science and Engineering, Sun Yat-Sen University Guangzhou 510275 People's Republic of China
| | - Yifan Jiang
- Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, School of Physics, Sun Yat-Sen University Guangzhou 510275 People's Republic of China
| | - Dongsheng Lan
- Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, School of Physics, Sun Yat-Sen University Guangzhou 510275 People's Republic of China
| | - Fenghua Lu
- Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, School of Physics, Sun Yat-Sen University Guangzhou 510275 People's Republic of China
| | - Lelin Zheng
- Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, School of Physics, Sun Yat-Sen University Guangzhou 510275 People's Republic of China
| | - Lin Zhuang
- Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, School of Physics, Sun Yat-Sen University Guangzhou 510275 People's Republic of China
| | - Ruijiang Hong
- Institute for Solar Energy Systems, Guangdong Provincial Key Laboratory of Photovoltaics Technologies, School of Physics, Sun Yat-Sen University Guangzhou 510275 People's Republic of China
| |
Collapse
|
22
|
Cui Y, Wang F, Zhu J, Wu W, Qin Y, Zhang X. Preparation of large-scale and angle-independent structural colors by additive of black polypyrrole. J Colloid Interface Sci 2018; 531:609-617. [DOI: 10.1016/j.jcis.2018.07.094] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 07/11/2018] [Accepted: 07/23/2018] [Indexed: 11/27/2022]
|
23
|
Meng Z, Wu S, Tang B, Ma W, Zhang S. Structurally colored polymer films with narrow stop band, high angle-dependence and good mechanical robustness for trademark anti-counterfeiting. NANOSCALE 2018; 10:14755-14762. [PMID: 30042988 DOI: 10.1039/c8nr04058c] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The photonic stop bands of colloidal crystals appear as structural colors, which are potentially useful for display devices, colorimetric sensors, optical filters, paints, and photonic papers. However, low durability and pale colors caused by the undesired scattering of light seriously limit their practical applications. In this article, a polydimethylsiloxane (PDMS)/photonic crystal (PC)/PDMS sandwich structure was designed as a free standing structural colored film with good durability and brilliant color. The monodispersed polystyrene (PS) spheres were self-assembled on the hydrophobic PDMS surface to facilitate the integrity of the assembled structure and then, PDMS with a refractive index of 1.41 was filled in the gaps between the PS spheres (nPS = 1.59), replacing air (nair = 1). The surface was finally covered with a thin layer of PS PCs, forming a continuous and free standing PC film. The continuous feature of the composite PC can greatly improve their mechanical properties. At the same time, the lower index contrast results in narrow reflection peaks for the composite films, which indicates that higher color purity and brightness could be achieved. Clearly distinguished, vivid structural colors can be observed between red to green or green to blue by tuning the viewing angle from 5° to 50° for films composed of PS spheres with diameters of 247 nm or 209 nm, respectively. They can also be easily patterned by spraying methods and embedded as a trademark on clothes. Patterns with different structural colors at different angle can be clearly be observed under sunlight, which makes them potentially useful as security materials.
Collapse
Affiliation(s)
- Zhipeng Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, Dalian 116024, P.R. China.
| | | | | | | | | |
Collapse
|
24
|
Gou S, Zhou Y, Duan M, Peng C, Yang X, Wang J. Amidoxime-modified chitosan for pigment red 224 enrichment through reversible assembly. NEW J CHEM 2018. [DOI: 10.1039/c7nj04024e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An amidoxime-modified chitosan, featuring favorable porosity and super-lipophilic properties, was successfully prepared for pigment red 224 enrichment.
Collapse
Affiliation(s)
- Shaohua Gou
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province
- Southwest Petroleum University
- Chengdu 610500
- China
| | - Yanting Zhou
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province
- Southwest Petroleum University
- Chengdu 610500
- China
| | - Ming Duan
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province
- Southwest Petroleum University
- Chengdu 610500
- China
| | - Chuan Peng
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province
- Southwest Petroleum University
- Chengdu 610500
- China
| | - Xiaoyan Yang
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province
- Southwest Petroleum University
- Chengdu 610500
- China
| | - Jin Wang
- Oil and Gas Field Applied Chemistry Key Laboratory of Sichuan Province
- Southwest Petroleum University
- Chengdu 610500
- China
| |
Collapse
|
25
|
Lee CH, Yu J, Wang Y, Tang AYL, Kan CW, Xin JH. Effect of graphene oxide inclusion on the optical reflection of a silica photonic crystal film. RSC Adv 2018; 8:16593-16602. [PMID: 35540510 PMCID: PMC9080331 DOI: 10.1039/c8ra02235f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Accepted: 04/23/2018] [Indexed: 12/03/2022] Open
Abstract
In this study, the inclusion of graphene oxide in silica photonic crystals was found to affect optical reflectance intensity and reflectance peak broadening. The quantitative relationship between weight percentage and the reflected light intensity and corresponding wavelength shift of light GO-decorated photonic crystals was studied, providing a useful parameter in the rational design of antireflection coatings for GO-based photonic crystal films. Comparison of the experimental results with a pure SiO2 particle film shows that a SiO2 particle surface layer incorporated with a fixed graphene oxide weight percentage results in broadening of the peak and a decrease in reflectance intensity. The percentage of the reduction in reflectance intensity is a function of particle size, as indicated by the structured color film surface, demonstrating the possibility of estimating the effect of different graphene oxide inclusion percentages on the antireflection properties of photonic crystal films. In this study, the inclusion of graphene oxide in silica photonic crystals was found to affect optical reflectance intensity and reflectance peak broadening.![]()
Collapse
Affiliation(s)
- Cheng Hao Lee
- Department of Applied Biology and Chemical Technology
- The Hong Kong Polytechnic University
- Kowloon
- China
| | - Jiali Yu
- Institute of Textile and Clothing
- The Hong Kong Polytechnic University
- Kowloon
- China
| | - Yanming Wang
- Institute of Textile and Clothing
- The Hong Kong Polytechnic University
- Kowloon
- China
| | - Alan Yiu Lun Tang
- Institute of Textile and Clothing
- The Hong Kong Polytechnic University
- Kowloon
- China
| | - Chi Wai Kan
- Institute of Textile and Clothing
- The Hong Kong Polytechnic University
- Kowloon
- China
| | - John H. Xin
- Institute of Textile and Clothing
- The Hong Kong Polytechnic University
- Kowloon
- China
| |
Collapse
|
26
|
Takeoka Y. Environment and human friendly colored materials prepared using black and white components. Chem Commun (Camb) 2018; 54:4905-4914. [DOI: 10.1039/c8cc01894d] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A review describing how to prepare structural colored materials with less angle dependency using white and black substances.
Collapse
Affiliation(s)
- Yukikazu Takeoka
- Department of Molecular & Macromolecular Chemistry
- Nagoya University
- Nagoya 464-8603
- Japan
| |
Collapse
|
27
|
Wu S, Liu B, Su X, Zhang S. Structural Color Patterns on Paper Fabricated by Inkjet Printer and Their Application in Anticounterfeiting. J Phys Chem Lett 2017; 8:2835-2841. [PMID: 28598163 DOI: 10.1021/acs.jpclett.7b01372] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Inkjet-printed structural color patterns have attracted great attention in recent years because of their broadly promising applications. However, the patterns are usually fabricated on pretreated plastic substrates. Herein a convenient inkjet printing method was developed to fabricate large-scale computer-designed structural color patterns on photo paper without any treatment using inks containing monodisperse CdS spheres. By this strategy, not only were the single-color and multicolor structural color patterns on paper successfully obtained, but also invisible photonic anticounterfeiting was achieved without any external stimuli. The key point of this anticounterfeiting technique is printing patterns and the background with inks containing uniformed CdS spheres with different diameters but similar intrinsic colors, so that the invisible patterns can be observed clearly by simply changing the viewing angle. The invisible and visible can be realized without the change of intrinsic structure, and the patterns are all solids. The patterns will have long lifetime and good durability, which is beneficial for their practical usage.
Collapse
Affiliation(s)
- Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , 2 Linggong Road, Dalian 116024, PR China
| | - Baoqi Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , 2 Linggong Road, Dalian 116024, PR China
| | - Xin Su
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , 2 Linggong Road, Dalian 116024, PR China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , 2 Linggong Road, Dalian 116024, PR China
| |
Collapse
|
28
|
Iwata M, Teshima M, Seki T, Yoshioka S, Takeoka Y. Bio-Inspired Bright Structurally Colored Colloidal Amorphous Array Enhanced by Controlling Thickness and Black Background. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1605050. [PMID: 28447768 DOI: 10.1002/adma.201605050] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/21/2017] [Indexed: 06/07/2023]
Abstract
Inspired by Steller's jay, which displays angle-independent structural colors, angle-independent structurally colored materials are created, which are composed of amorphous arrays of submicrometer-sized fine spherical silica colloidal particles. When the colloidal amorphous arrays are thick, they do not appear colorful but almost white. However, the saturation of the structural color can be increased by (i) appropriately controlling the thickness of the array and (ii) placing the black background substrate. This is similar in the case of the blue feather of Steller's jay. Based on the knowledge gained through the biomimicry of structural colored materials, colloidal amorphous arrays on the surface of a black particle as the core particle are also prepared as colorful photonic pigments. Moreover, a structural color on-off system is successfully built by controlling the background brightness of the colloidal amorphous arrays.
Collapse
Affiliation(s)
- Masanori Iwata
- Department of Molecular Design and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Midori Teshima
- Department of Molecular Design and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Takahiro Seki
- Department of Molecular Design and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Shinya Yoshioka
- Department of Physics, Faculty of Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, 278-8510, Japan
| | - Yukikazu Takeoka
- Department of Molecular Design and Engineering, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan
| |
Collapse
|
29
|
Meng Y, Tang B, Ju B, Wu S, Zhang S. Multiple Colors Output on Voile through 3D Colloidal Crystals with Robust Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2017; 9:3024-3029. [PMID: 28032744 DOI: 10.1021/acsami.6b14819] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Distinguished from the chromatic mechanism of dyes and pigments, structural color is derived from physical interactions of visible light with structures that are periodic at the scale of the wavelength of light. Using colloidal crystals with coloring functions for fabrics has resulted in significant improvements compared with chemical colors because the structural color from colloidal crystals bears many unique and fascinating optical properties, such as vivid iridescence and nonphotobleaching. However, the poor mechanical performance of the structural color films cannot meet actual requirements because of the weak point contact of colloidal crystal particles. Herein, we demonstrate in this study the patterning on voile fabrics with high mechanical strength on account of the periodic array lock effect of polymers, and multiple structural color output was simultaneously achieved by a simple two-phase self-assembly method for printing voile fabrics with 3D colloidal crystals. The colored voile fabrics exhibit high color saturation, good mechanical stability, and multiple-color patterns printable. In addition, colloidal crystals are promising potential substitutes for organic dyes and pigments because colloidal crystals are environmentally friendly.
Collapse
Affiliation(s)
- Yao Meng
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , West Campus, 2# Linggong Rd, Dalian 116024, China
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , West Campus, 2# Linggong Rd, Dalian 116024, China
| | - Benzhi Ju
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , West Campus, 2# Linggong Rd, Dalian 116024, China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , West Campus, 2# Linggong Rd, Dalian 116024, China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , West Campus, 2# Linggong Rd, Dalian 116024, China
| |
Collapse
|
30
|
Li F, Tang B, Wu S, Zhang S. Facile Synthesis of Monodispersed Polysulfide Spheres for Building Structural Colors with High Color Visibility and Broad Viewing Angle. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1602565. [PMID: 27813250 DOI: 10.1002/smll.201602565] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/30/2016] [Indexed: 06/06/2023]
Abstract
The synthesis and assembly of monodispersed colloidal spheres are currently the subject of extensive investigation to fabricate artificial structural color materials. However, artificial structural colors from general colloidal crystals still suffer from the low color visibility and strong viewing angle dependence which seriously hinder their practical application in paints, colorimetric sensors, and color displays. Herein, monodispersed polysulfide (PSF) spheres with intrinsic high refractive index (as high as 1.858) and light-absorbing characteristics are designed, synthesized through a facile polycondensation and crosslinking process between sodium disulfide and 1,2,3-trichloropropane. Owing to their high monodispersity, sufficient surface charge, and good dispersion stability, the PSF spheres can be assembled into large-scale and high-quality 3D photonic crystals. More importantly, high structural color visibility and broad viewing angle are easily achieved because the unique features of PSF can remarkably enhance the relative reflectivity and eliminate the disturbance of scattering and background light. The results of this study provide a simple and efficient strategy to create structural colors with high color visibility, which is very important for their practical application.
Collapse
Affiliation(s)
- Feihu Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
31
|
Niu W, Qu L, Lyv R, Zhang S. Reconfigurable photonic crystals with optical bistability enabled by “cold” programming and thermo-recoverable shape memory polymers. RSC Adv 2017. [DOI: 10.1039/c6ra28682h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A type of reconfigurable photonic crystals with optically bistable states enabled by capillary pressure-induced programming and heat-caused recoverable shape memory polymers was reported.
Collapse
Affiliation(s)
- Wenbin Niu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- West Campus
- Dalian 116024
- China
| | - Lingcheng Qu
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- West Campus
- Dalian 116024
- China
| | - Rongwen Lyv
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- West Campus
- Dalian 116024
- China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals
- Dalian University of Technology
- West Campus
- Dalian 116024
- China
| |
Collapse
|
32
|
Colloidal Photonic Crystals Containing Silver Nanoparticles with Tunable Structural Colors. CRYSTALS 2016. [DOI: 10.3390/cryst6050061] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
33
|
Li F, Tang B, Xiu J, Zhang S. Hydrophilic Modification of Multi-Walled Carbon Nanotube for Building Photonic Crystals with Enhanced Color Visibility and Mechanical Strength. Molecules 2016; 21:molecules21050547. [PMID: 27136514 PMCID: PMC6273566 DOI: 10.3390/molecules21050547] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2016] [Revised: 04/15/2016] [Accepted: 04/21/2016] [Indexed: 11/21/2022] Open
Abstract
Low color visibility and poor mechanical strength of polystyrene (PS) photonic crystal films have been the main shortcomings for the potential applications in paints or displays. This paper presents a simple method to fabricate PS/MWCNTs (multi-walled carbon nanotubes) composite photonic crystal films with enhanced color visibility and mechanical strength. First, MWCNTs was modified through radical addition reaction by aniline 2,5-double sulfonic acid diazonium salt to generate hydrophilic surface and good water dispersity. Then the MWCNTs dispersion was blended with PS emulsion to form homogeneous PS/MWCNTs emulsion mixtures and fabricate composite films through thermal-assisted method. The obtained films exhibit high color visibility under natural light and improved mechanical strength owing to the light-adsorption property and crosslinking effect of MWCNTs. The utilization of MWCNTs in improving the properties of photonic crystals is significant for various applications, such as in paints and displays.
Collapse
Affiliation(s)
- Feihu Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Bingtao Tang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Jinghai Xiu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|