1
|
Jeong SG, Kim J, Son H, Kim JS, Kim JH, Kim BG, Lee CS. Fully autonomous water monitoring by plant-inspired robots. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135641. [PMID: 39208628 DOI: 10.1016/j.jhazmat.2024.135641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Developing countries struggle with water quality management owing to poor infrastructure, limited expertise, and financial constraints. Traditional water testing, relying on periodic site visits and manual sampling, is impractical for continuous wide-area monitoring and fails to detect sudden heavy metal contamination. To address this, plant-inspired robots capable of fully autonomous water quality monitoring are proposed. Constructed from paper, the robot absorbs surrounding water through its roots. This paper robot is controlled by paper-based microfluidic logic that sends absorbed water to petal-shaped actuators only when the water is polluted by heavy metals. This triggers the actuators to swell and bend like a blooming flower, visually signaling contamination to local residents. In tests with copper-contaminated water, the robotic flower's diameter increased from 4.69 cm to 14.89 cm, a more than threefold expansion (217.25 %). This significant blooming movement serves as a highly visible and easily recognizable indicator of water pollution, even for the public. Furthermore, the paper robot can be mass-produced at a low cost (∼$0.2 per unit) and deployed over large areas. Once installed, the paper robot operates autonomously using surrounding water as a power source, eliminating the need for external electrical infrastructure and expert intervention. Therefore, this autonomous robot offers a new approach to water quality monitoring suitable for resource-limited environments, such as Sub-Saharan Africa.
Collapse
Affiliation(s)
- Seong-Geun Jeong
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea; Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Jingyeong Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Huiseong Son
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jae Seong Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ji-Hyun Kim
- Department of Chemistry, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Byung-Gee Kim
- Bio-MAX Institute, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang-Soo Lee
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
2
|
Jiang Y, Zhu C, Ma X, Fan D. Janus hydrogels: merging boundaries in tissue engineering for enhanced biomaterials and regenerative therapies. Biomater Sci 2024; 12:2504-2520. [PMID: 38529571 DOI: 10.1039/d3bm01875j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
In recent years, the design and synthesis of Janus hydrogels have witnessed a thriving development, overcoming the limitations of single-performance materials and expanding their potential applications in tissue engineering and regenerative medicine. Janus hydrogels, with their exceptional mechanical properties and excellent biocompatibility, have emerged as promising candidates for various biomedical applications, including tissue engineering and regenerative therapies. In this review, we present the latest progress in the synthesis of Janus hydrogels using commonly employed preparation methods. We elucidate the surface and interface interactions of these hydrogels and discuss the enhanced properties bestowed by the unique "Janus" structure in biomaterials. Additionally, we explore the applications of Janus hydrogels in facilitating regenerative therapies, such as drug delivery, wound healing, tissue engineering, and biosensing. Furthermore, we analyze the challenges and future trends associated with the utilization of Janus hydrogels in biomedical applications.
Collapse
Affiliation(s)
- Yingxue Jiang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Chenhui Zhu
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an, 710069, China.
- Shaanxi Key Laboratory of Degradable Biomedical Materials and Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, China
| |
Collapse
|
3
|
Nasseri R, Bouzari N, Huang J, Golzar H, Jankhani S, Tang XS, Mekonnen TH, Aghakhani A, Shahsavan H. Programmable nanocomposites of cellulose nanocrystals and zwitterionic hydrogels for soft robotics. Nat Commun 2023; 14:6108. [PMID: 37777525 PMCID: PMC10542366 DOI: 10.1038/s41467-023-41874-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 09/22/2023] [Indexed: 10/02/2023] Open
Abstract
Stimuli-responsive hydrogels have garnered significant attention as a versatile class of soft actuators. Introducing anisotropic properties, and shape-change programmability to responsive hydrogels promises a host of opportunities in the development of soft robots. Herein we report the synthesis of pH-responsive hydrogel nanocomposites with predetermined microstructural anisotropy, shape-transformation, and self-healing. Our hydrogel nanocomposites are largely composed of zwitterionic monomers and asymmetric cellulose nanocrystals. While the zwitterionic nature of the network imparts both self-healing and cytocompatibility to our hydrogel nanocomposites, the shear-induced alignment of cellulose nanocrystals renders their anisotropic swelling and mechanical properties. Thanks to the self-healing properties, we utilized a cut-and-paste approach to program reversible, and complex deformation into our hydrogels. As a proof-of-concept, we demonstrated the transport of light cargo using tethered and untethered soft robots made from our hydrogels. We believe the proposed material system introduce a powerful toolbox for the development of future generations of biomedical soft robots.
Collapse
Affiliation(s)
- Rasool Nasseri
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Negin Bouzari
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Junting Huang
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Hossein Golzar
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Sarah Jankhani
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Xiaowu Shirley Tang
- Department of Chemistry, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Tizazu H Mekonnen
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
- Institute for Polymer Research, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Amirreza Aghakhani
- Institute of Biomaterials and Biomolecular Systems (IBBS), University of Stuttgart, Pfaffenwaldring 57, 70569, Stuttgart, Germany
| | - Hamed Shahsavan
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
- Centre for Bioengineering and Biotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
- Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada.
| |
Collapse
|
4
|
Zhang H, Wang F, Nestler B. Janus Droplet Formation via Thermally Induced Phase Separation: A Numerical Model with Diffusion and Convection. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6882-6895. [PMID: 35617199 PMCID: PMC9178917 DOI: 10.1021/acs.langmuir.2c00308] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Microscale Janus particles have versatile potential applications in many physical and biomedical fields, such as microsensor, micromotor, and drug delivery. Here, we present a phase-field approach of multicomponent and multiphase to investigate the Janus droplet formation via thermally induced phase separation. The crucial kinetics for the formation of Janus droplets consisting of two polymer species and a solvent component via an interplay of both diffusion and convection is considered in the Cahn-Hilliard-Navier-Stokes equation. The simulation results of the phase-field model show that unequal interfacial tensions between the two polymer species and the solvent result in asymmetric phase separation in the formation process of Janus droplets. This asymmetric phase separation plays a vital role in the establishment of the so-called core-shell structure that has been observed in previous experiments. By varying the droplet size, the surface tension, and the molecular interaction between the polymer species, several novel droplet morphologies are predicted in the development process of Janus droplets. Moreover, we stress that the hydrodynamics should be reckoned as a non-negligible mechanism that not only accelerates the Janus droplet evolution but also has great impacts on the coarsening and coalescence of the Janus droplets.
Collapse
Affiliation(s)
- Haodong Zhang
- Institute
of Applied Materials-Microstructure Modelling and Simulation, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Fei Wang
- Institute
of Applied Materials-Microstructure Modelling and Simulation, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
| | - Britta Nestler
- Institute
of Applied Materials-Microstructure Modelling and Simulation, Karlsruhe Institute of Technology (KIT), Straße am Forum 7, 76131 Karlsruhe, Germany
- Institute
of Digital Materials Science, Karlsruhe
University of Applied Sciences, Moltkestraße 30, 76133 Karlsruhe, Germany
| |
Collapse
|
5
|
Chen Y, Chang Z, Zhang J, Gong J. Bending for Better: Flexible Organic Single Crystals with Controllable Curvature and Curvature-Related Conductivity for Customized Electronic Devices. Angew Chem Int Ed Engl 2021; 60:22424-22431. [PMID: 34375037 DOI: 10.1002/anie.202108441] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/28/2021] [Indexed: 11/07/2022]
Abstract
Electronic microdevices of self-bending coronene crystals are developed to reveal an unexplored link between mechanical deformation and crystal function. First, a facile approach towards length/width/curvature-controllable micro-crystals through bottom-up solution crystallization was proposed for high processability and stability. The bending crystal devices show a significant increase beyond seven orders of magnitude in conductivity than the straight ones, providing the first example of deformation-induced function enhancement in crystal materials. Besides, double effects caused by bending, including the change of π electron level as well as the enhancement of carrier mobility, were determined, respectively by the X-ray photoelectric spectroscopy and X-ray crystallography to coexist, contributing to the conductivity improvement. Our findings will promote future creation of flexible organic crystal systems with deformation-enhanced functional features towards customized smart devices.
Collapse
Affiliation(s)
- Yifu Chen
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering, Weijin Road 92, Tianjin, 300072, China
| | - Zewei Chang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering, Weijin Road 92, Tianjin, 300072, China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering, Weijin Road 92, Tianjin, 300072, China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Weijin Road 92, Tianjin, 300072, China.,Collaborative Innovation Center of Chemical Science and Engineering, Weijin Road 92, Tianjin, 300072, China
| |
Collapse
|
6
|
Chen Y, Chang Z, Zhang J, Gong J. Bending for Better: Flexible Organic Single Crystals with Controllable Curvature and Curvature‐Related Conductivity for Customized Electronic Devices. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yifu Chen
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Weijin Road 92 Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Weijin Road 92 Tianjin 300072 China
| | - Zewei Chang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Weijin Road 92 Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Weijin Road 92 Tianjin 300072 China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Weijin Road 92 Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Weijin Road 92 Tianjin 300072 China
| | - Junbo Gong
- State Key Laboratory of Chemical Engineering School of Chemical Engineering and Technology Tianjin University Weijin Road 92 Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering Weijin Road 92 Tianjin 300072 China
| |
Collapse
|
7
|
Gleason KK. Controlled Release Utilizing Initiated Chemical Vapor Deposited (iCVD) of Polymeric Nanolayers. Front Bioeng Biotechnol 2021; 9:632753. [PMID: 33634089 PMCID: PMC7902001 DOI: 10.3389/fbioe.2021.632753] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/05/2021] [Indexed: 11/29/2022] Open
Abstract
This review will focus on the controlled release of pharmaceuticals and other organic molecules utilizing polymeric nanolayers grown by initiated chemical vapor deposited (iCVD). The iCVD layers are able conform to the geometry of the underlying substrate, facilitating release from one- and two-dimensional nanostructures with high surface area. The reactors for iCVD film growth can be customized for specific substrate geometries and scaled to large overall dimensions. The absence of surface tension in vapor deposition processes allows the synthesis of pinhole-free layers, even for iCVD layers <10 nm thick. Such ultrathin layers also provide rapid transport of the drug across the polymeric layer. The mild conditions of the iCVD process avoid damage to the drug which is being encapsulated. Smart release is enabled by iCVD hydrogels which are responsive to pH, temperature, or light. Biodegradable iCVD layers have also be demonstrated for drug release.
Collapse
Affiliation(s)
- Karen K Gleason
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
8
|
Thermally triggered soft actuators based on a bilayer hydrogel synthesized by gamma ray irradiation. POLYMER 2021. [DOI: 10.1016/j.polymer.2020.123163] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
Song Y, He J, Zhang Y. Controllable, Bidirectional Water/Organic Vapors Responsive Actuators Fabricated by One-Step Thiol-Ene Click Polymerization. Macromol Rapid Commun 2020; 41:e2000456. [PMID: 33196123 DOI: 10.1002/marc.202000456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Revised: 09/28/2020] [Indexed: 11/11/2022]
Abstract
It is challenging to synthesize stimuli-responsive materials with the well-balanced performance of fast stimulus-response speed, good mechanical strength, multi-functionality, and deformation diversity as well. This work reports a facile, one-step thiol-ene click polymerization strategy for preparation of water/acetone vapor-responsive hierarchical films, by using diallyl terephthalate (P) as hydrophobic ene-monomer, 1,4-diallyl-1,4-diazabicyclo [2.2.2]octane-1,4-diium bromide (B) as hydrophilic ene-monomer, and pentaerythritol tetra(3-mercaptopropionate) (PETMP) as thiol monomer. Besides, by taking advantage of the specific hydrophilic/hydrophobic induction effect of substrate and adjusting the molar ratio of P to B, P60 B40 -HPI film is fabricated on hydrophilic substrate "with plasma treatment" whereas P80 B20 -HPO film is obtained on hydrophobic substrate "without plasma treatment". Their "upper-dense and lower-porous" structural feature ensured the excellent combination of fast stimuli-response speed endowed by the porous structure and good mechanical strength enhanced by the upper dense surface. Both films are bidirectional water/acetone vapor-responsive materials, but their bending directions responding to the stimuli factors are completely opposite. This strategy showed great potential in the development of smart stimuli-responsive materials.
Collapse
Affiliation(s)
- Yanjiao Song
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Jianghua He
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| | - Yuetao Zhang
- State Key Laboratory of Supramolecular Structure and MaterialsCollege of Chemistry, Jilin University, Changchun, Jilin, 130012, P. R. China
| |
Collapse
|
10
|
Kim DI, Song S, Jang S, Kim G, Lee J, Lee Y, Park S. Untethered gripper-type hydrogel millirobot actuated by electric field and magnetic field. SMART MATERIALS AND STRUCTURES 2020; 29:085024. [DOI: 10.1088/1361-665x/ab8ea4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
11
|
Song YY, Liu Y, Jiang HB, Xue JZ, Yu ZP, Li SY, Han ZW, Ren LQ. Janus Soft Actuators with On-Off Switchable Behaviors for Controllable Manipulation Driven by Oil. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13742-13751. [PMID: 30848595 DOI: 10.1021/acsami.8b20061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Soft actuators have tremendous applications in diverse fields. Facile preparation, rapid actuation, and versatile actions are always pursued when developing new types of soft actuators. In this paper, we present a facile method integrating laser etching and mechanical cutting to prepare Janus actuators driven by oil. A Janus film with superhydrophobic and hydrophobic sides was fabricated successfully. By cutting the functional layer at the desired positions, a number of quintessential oil-driven soft devices were demonstrated. Furthermore, Janus actuators with surfaces of different wettabilities exhibited different swelling behaviors, and different media manifested different surface extensions; thus, these actuators are promising candidates for soft actuators and also realized on-off switchability between an oil/water mixture and ethanol. This study offers novel insight into the design of soft actuators, and this insight may be helpful for developing an oil-driven soft actuator that can be operated like a human finger to manipulate any object and extending stimuli-responsive applications for soft robotics.
Collapse
Affiliation(s)
- Yun-Yun Song
- Key Laboratory of Bionic Engineering (Ministry of Education) , Jilin University , Changchun 130022 , P. R. China
| | - Yan Liu
- Key Laboratory of Bionic Engineering (Ministry of Education) , Jilin University , Changchun 130022 , P. R. China
| | - Hao-Bo Jiang
- Key Laboratory of Bionic Engineering (Ministry of Education) , Jilin University , Changchun 130022 , P. R. China
| | - Jing-Ze Xue
- Key Laboratory of Bionic Engineering (Ministry of Education) , Jilin University , Changchun 130022 , P. R. China
| | - Zhao-Peng Yu
- School of Automotive Engineering , Changshu Institute of Technology , Dongnan Campus, No. 99 Hushan Road , Changshu , Suzhou 215500 , P. R. China
| | - Shu-Yi Li
- Key Laboratory of Bionic Engineering (Ministry of Education) , Jilin University , Changchun 130022 , P. R. China
| | - Zhi-Wu Han
- Key Laboratory of Bionic Engineering (Ministry of Education) , Jilin University , Changchun 130022 , P. R. China
| | - Lu-Quan Ren
- Key Laboratory of Bionic Engineering (Ministry of Education) , Jilin University , Changchun 130022 , P. R. China
| |
Collapse
|
12
|
Shang J, Le X, Zhang J, Chen T, Theato P. Trends in polymeric shape memory hydrogels and hydrogel actuators. Polym Chem 2019. [DOI: 10.1039/c8py01286e] [Citation(s) in RCA: 117] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recently, “smart” hydrogels with either shape memory behavior or reversible actuation have received particular attention and have been further developed into sensors, actuators, or artificial muscles.
Collapse
Affiliation(s)
- Jiaojiao Shang
- Institute for Technical and Macromolecular Chemistry
- University of Hamburg
- D-20146 Hamburg
- Germany
| | - Xiaoxia Le
- Department of Polymers and Composites
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- 315201 Ningbo
| | - Jiawei Zhang
- Department of Polymers and Composites
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- 315201 Ningbo
| | - Tao Chen
- Department of Polymers and Composites
- Key Laboratory of Bio-based Polymeric Materials Technology and Application of Zhejiang Province
- Ningbo Institute of Materials Technology and Engineering
- Chinese Academy of Sciences
- 315201 Ningbo
| | - Patrick Theato
- Institute for Chemical Technology and Polymer Chemistry
- Karlsruhe Institute of Technology (KIT)
- D-76131 Karlsruhe
- Germany
- Institute for Biological Interfaces III
| |
Collapse
|
13
|
Li Y, Yang J, Yu X, Sun X, Chen F, Tang Z, Zhu L, Qin G, Chen Q. Controlled shape deformation of bilayer films with tough adhesion between nanocomposite hydrogels and polymer substrates. J Mater Chem B 2018; 6:6629-6636. [PMID: 32254871 DOI: 10.1039/c8tb01971a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Shape-shifting materials have received increasing attention owing to their promising applications in soft robotics, biomedical devices, actuators, morphing aircraft and so on. However, their practical applications are limited due to their weak mechanical strength, low interfacial adhesion and complex preparation method. In this paper, bilayer films were synthesized by in situ one-step forming soft and water-swellable nanocomposite hydrogels on the surface of the rigid and nonresponsive poly(ethylene terephthalate) (PET) film without any surface modification. The strong interfacial toughness between the hydrogel layer and the PET layer, the high swelling ability of the soft hydrogel layer, and the high strength of the rigid PET film endowed the bilayer film with excellent self-bending behaviour. The shape deformation of the bilayer films can be controlled by adjusting the geometry parameters of the bilayer film, such as the hydrogel thickness, the aspect ratio and the width of the bilayer film. Moreover, the bilayer film exhibited excellent reversible bidirectional self-bending behaviour. In addition, the mechanisms for driving the shape transformation were discussed. We believe this work will provide a promising and simple strategy to develop novel responsive materials with controlled shape deformation.
Collapse
Affiliation(s)
- Yu Li
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo, China454003.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Xiao S, Zhang M, He X, Huang L, Zhang Y, Ren B, Zhong M, Chang Y, Yang J, Zheng J. Dual Salt- and Thermoresponsive Programmable Bilayer Hydrogel Actuators with Pseudo-Interpenetrating Double-Network Structures. ACS APPLIED MATERIALS & INTERFACES 2018; 10:21642-21653. [PMID: 29878750 DOI: 10.1021/acsami.8b06169] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Development of smart soft actuators is highly important for fundamental research and industrial applications but has proved to be extremely challenging. In this work, we present a facile, one-pot, one-step method to prepare dual-responsive bilayer hydrogels, consisting of a thermoresponsive poly( N-isopropylacrylamide) (polyNIPAM) layer and a salt-responsive poly(3-(1-(4-vinylbenzyl)-1 H-imidazol-3-ium-3-yl)propane-1-sulfonate) (polyVBIPS) layer. Both polyNIPAM and polyVBIPS layers exhibit a completely opposite swelling/shrinking behavior, where polyNIPAM shrinks (swells) but polyVBIPS swells (shrinks) in salt solution (water) or at high (low) temperatures. By tuning NIPAM:VBIPS ratios, the resulting polyNIPAM/polyVBIPS bilayer hydrogels enable us to achieve fast and large-amplitude bidirectional bending in response to temperatures, salt concentrations, and salt types. Such bidirectional bending, bending orientation, and degree can be reversibly, repeatedly, and precisely controlled by salt- or temperature-induced cooperative swelling-shrinking properties from both layers. Based on their fast, reversible, and bidirectional bending behavior, we further design two conceptual hybrid hydrogel actuators, serving as a six-arm gripper to capture, transport, and release an object and an electrical circuit switch to turn on-and-off a lamp. Different from the conventional two- or multistep methods for preparation of bilayer hydrogels, our simple, one-pot, one-step method and a new bilayer hydrogel system provide an innovative concept to explore new hydrogel-based actuators through combining different responsive materials that allow us to program different stimuli for soft and intelligent materials applications.
Collapse
Affiliation(s)
- Shengwei Xiao
- College of Materials Science & Engineering , Zhejiang University of Technology , Hangzhou 310014 , China
- School of Pharmaceutical and Chemical Engineering , Taizhou University , Jiaojiang 318000 , China
| | - Mingzhen Zhang
- Department of Chemical and Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
| | - Xiaomin He
- College of Materials Science & Engineering , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Lei Huang
- College of Materials Science & Engineering , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Yanxian Zhang
- Department of Chemical and Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
| | - Baiping Ren
- Department of Chemical and Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
| | | | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering , Chung Yuan Christian University , Chung-Li , Taoyuan 320 , Taiwan
| | - Jintao Yang
- College of Materials Science & Engineering , Zhejiang University of Technology , Hangzhou 310014 , China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering , The University of Akron , Akron , Ohio 44325 , United States
| |
Collapse
|
15
|
Preparation of chemically uniform and monodisperse microparticles as highly efficient solid acid catalysts for aldol condensation. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2017.09.052] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
16
|
|
17
|
Xiao S, Yang Y, Zhong M, Chen H, Zhang Y, Yang J, Zheng J. Salt-Responsive Bilayer Hydrogels with Pseudo-Double-Network Structure Actuated by Polyelectrolyte and Antipolyelectrolyte Effects. ACS APPLIED MATERIALS & INTERFACES 2017; 9:20843-20851. [PMID: 28570039 DOI: 10.1021/acsami.7b04417] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Development of stimuli-responsive, shape-transformable materials is fundamentally and practically important for smart actuators. Herein, we design and synthesize a bilayer hydrogel by assembling a polycationic (polyMETAC/HEAA) layer with polyelectrolyte effect and a polyzwitterionic (polyVBIPS) layer with antipolyelectrolyte effect together. The bilayer hydrogels adopt a pseudo-double-network structure, and both polyelectrolyte and polyzwitterionic layers have salt-responsive swelling and shrinkage properties, but in a completely opposite way. The resulting polyMETAC/HEAA-polyVBIPS bilayer hydrogels exhibit bidirectional bending in response to salt solutions, salt concentrations, and counterion types. Such bidirectional bending of this bilayer hydrogel is fully reversible and triggered between salt solution and pure water multiple times. The bending orientation and degree of the bilayer hydrogel is driven by the opposite volume changes between the volume shrinking (swelling) of polyMETAC/HEAA layer and the volume swelling (shrinking) of polyVBIPS layer. Such cooperative, not competitive, salt-responsive swelling-shrinking properties of the two layers are contributed to by the polyelectrolyte and antipolyelectrolyte effects from the respective layers. Moreover, an eight-arm gripper made of this bilayer hydrogel is fabricated and demonstrates its ability to grasp an object in salt solution and release the object in water. This work provides a new shape-regulated, stimuli-responsive asymmetric hydrogel for actuator-based applications.
Collapse
Affiliation(s)
- Shengwei Xiao
- College of Materials Science & Engineering, Zhejiang University of Technology , Hangzhou 310014, China
| | - Yin Yang
- College of Materials Science & Engineering, Zhejiang University of Technology , Hangzhou 310014, China
| | - Mingqiang Zhong
- College of Materials Science & Engineering, Zhejiang University of Technology , Hangzhou 310014, China
| | - Hong Chen
- Department of Chemical and Biomolecular Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Yanxian Zhang
- Department of Chemical and Biomolecular Engineering, The University of Akron , Akron, Ohio 44325, United States
| | - Jintao Yang
- College of Materials Science & Engineering, Zhejiang University of Technology , Hangzhou 310014, China
| | - Jie Zheng
- Department of Chemical and Biomolecular Engineering, The University of Akron , Akron, Ohio 44325, United States
| |
Collapse
|
18
|
Boothby JM, Ware TH. Dual-responsive, shape-switching bilayers enabled by liquid crystal elastomers. SOFT MATTER 2017; 13:4349-4356. [PMID: 28466922 DOI: 10.1039/c7sm00541e] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Materials that change shape are attractive candidates to replace traditional actuators for applications with power or size restrictions. In this work, we design a polymeric bilayer that changes shape in response to both heat and water by the incorporation of a water-responsive hydrophilic polymer with a heat-responsive liquid crystal elastomer. The distinct shape changes based on stimulus are controlled by the molecular order, and consequently the anisotropic modulus, of a liquid crystal elastomer. In response to water, the hydrophilic polymer layer expands, bending the bilayer along the path dictated by the anisotropic modulus of the liquid crystal elastomer layer, which is approximately 5 times higher along the molecular orientation than in perpendicular directions. We demonstrate that by varying the direction of this stiffer axis in LCE films, helical pitch of the swollen bilayer can be controlled from 0.1 to 20 mm. By spatially patterning the stiffer axis with a resolution of 900 μm2, we demonstrate bilayers that fold and bend based on the pattern within the LCE. In response to heat, the liquid crystal elastomer contracts along the direction of molecular order, and when this actuation is constrained by the hydrophilic polymer, this contraction results in a 3D shape that is distinct from the shape seen in water. Furthermore, by using the vitrification of the dry hydrophilic polymer this 3D shape can be retained in the bilayer after cooling. By utilizing sequential exposure to heat and water, we can drive the initially flat bilayer to reversibly shift between 3D shapes.
Collapse
Affiliation(s)
- J M Boothby
- Bioengineering Department, The University of Texas at Dallas, 800 W Campbell Rd, Richardson, TX 75080, USA.
| | | |
Collapse
|
19
|
Choi A, Seo KD, Kim DW, Kim BC, Kim DS. Recent advances in engineering microparticles and their nascent utilization in biomedical delivery and diagnostic applications. LAB ON A CHIP 2017; 17:591-613. [PMID: 28101538 DOI: 10.1039/c6lc01023g] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Complex microparticles (MPs) bearing unique characteristics such as well-tailored sizes, various morphologies, and multi-compartments have been attempted to be produced by many researchers in the past decades. However, a conventionally used method of fabricating MPs, emulsion polymerization, has a limitation in achieving the aforementioned characteristics and several approaches such as the microfluidics-assisted (droplet-based microfluidics and flow lithography-based microfluidics), electrohydrodynamics (EHD)-based, centrifugation-based, and template-based methods have been recently suggested to overcome this limitation. The outstanding features of complex MPs engineered through these suggested methods have provided new opportunities for MPs to be applied in a wider range of applications including cell carriers, drug delivery agents, active pigments for display, microsensors, interface stabilizers, and catalyst substrates. Overall, the engineered MPs expose their potential particularly in the field of biomedical engineering as the increased complexity in the engineered MPs fulfills well the requirements of the high-end applications. This review outlines the current trends of newly developed techniques used for engineered MPs fabrication and focuses on the current state of engineered MPs in biomedical applications.
Collapse
Affiliation(s)
- Andrew Choi
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang City, Gyeongsangbuk-do 37673, South Korea.
| | - Kyoung Duck Seo
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang City, Gyeongsangbuk-do 37673, South Korea.
| | - Do Wan Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang City, Gyeongsangbuk-do 37673, South Korea.
| | - Bum Chang Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang City, Gyeongsangbuk-do 37673, South Korea.
| | - Dong Sung Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology, 77, Cheongam-ro, Nam-gu, Pohang City, Gyeongsangbuk-do 37673, South Korea.
| |
Collapse
|