1
|
Cho Y, Kim J, Park J, Doh J. Surface nanotopography and cell shape modulate tumor cell susceptibility to NK cell cytotoxicity. MATERIALS HORIZONS 2023; 10:4532-4540. [PMID: 37559559 DOI: 10.1039/d3mh00367a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Natural killer (NK) cells are innate cytotoxic lymphocytes exerting cytotoxicity against virally infected cells and tumor cells. NK cell cytotoxicity is primarily determined by biochemical signals received from ligands expressed on target cell surfaces, but it is also possible that biophysical environments of tumor cells, such as nanoscale surface topography typically existing on extracellular matrixes (ECMs) or cell morphology determined by ECM spaces or cell density, regulate NK cell cytotoxicity. In this study, micro/nanofabrication technology was applied to examine this possibility. Tumor cells were plated on flat or nanogrooved surfaces, or micropatterned into circular or elliptical geometries, and the effects of surface topography and tumor cell morphology on NK cell cytotoxicity were investigated. NK cells exhibited significantly higher cytotoxicity against tumor cells on nanogrooved surfaces or tumor cells in elliptical patterns than tumor cells on flat surfaces or tumor cells in circular patterns, respectively. The amounts of stress fiber formation in tumor cells positively correlated with NK cell cytotoxicity, indicating that increased cellular tension of tumor cells, either mediated by nanogrooved surfaces or elongated morphologies, was a key factor regulating NK cell cytotoxicity. These results may provide insight into the design of NK cell-based cancer immunotherapy.
Collapse
Affiliation(s)
- Yongbum Cho
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology, 77, Cheongam-ro, Pohang, Gyeongbuk, 37673, Republic of Korea
| | - JangHyuk Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea.
| | - Jeehun Park
- SOFT Foundry Institute, Seoul National University, Seoul, South Korea.
| | - Junsang Doh
- Department of Materials Science and Engineering, Seoul National University, Seoul, South Korea.
- SOFT Foundry Institute, Seoul National University, Seoul, South Korea.
- Institute of Engineering Research, BioMAX, Seoul National University, Seoul, South Korea
| |
Collapse
|
2
|
Kourti D, Kanioura A, Chatzichristidi M, Beltsios KG, Kakabakos SE, Petrou PS. Photopatternable materials for guided cell adhesion and growth. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2021.110896] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
3
|
Park J, Kim SE, Cho Y, An S, Moon D, Park I, Doh J. Fabrication of 2D and 3D Cell Cluster Arrays Using a Cell-Friendly Photoresist. ACS Biomater Sci Eng 2021; 7:3082-3087. [PMID: 34125522 DOI: 10.1021/acsbiomaterials.1c00655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cells in 3D behave differently than cells in 2D. We develop a new method for the fabrication of 2D and 3D cell cluster arrays on an identical substrate using a cell-friendly photoresist, which enables comparative study between cells in 2D and 3D cell clusters. The fabricated cell cluster arrays maintain their structure up to 3 days with good viability. Using this method, 2D and 3D cancer cell clusters with comparable sizes are fabricated, and natural killer (NK) cell cytotoxicity assays are performed to assess how dimensionality of cancer cell clusters influence their susceptibility to immune cell-mediated killing.
Collapse
Affiliation(s)
- Jeehun Park
- Research Institute of Advanced Materials (RIAM), Seoul National University, 1, Gwanak-ro, Seoul 08826, South Korea
| | - Seong-Eun Kim
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Pohang, Gyeongbuk 37673, South Korea
| | - Yongbum Cho
- School of Interdisciplinary Bioscience and Bioengineering (I-Bio), Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Pohang, Gyeongbuk 37673, South Korea
| | - Seongmin An
- Research Institute of Advanced Materials (RIAM), Seoul National University, 1, Gwanak-ro, Seoul 08826, South Korea
| | - Dowon Moon
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), 77, Cheongam-ro, Pohang, Gyeongbuk 37673, South Korea
| | - Inae Park
- Research Institute of Advanced Materials (RIAM), Seoul National University, 1, Gwanak-ro, Seoul 08826, South Korea
| | - Junsang Doh
- Research Institute of Advanced Materials (RIAM), Seoul National University, 1, Gwanak-ro, Seoul 08826, South Korea.,Department of Materials Science and Engineering, Institute of Engineering Research, BioMAX, Seoul National University, 1, Gwanak-ro, Seoul 08826, South Korea
| |
Collapse
|
4
|
Park J, Kim T, Choi JC, Doh J. In Situ Subcellular Detachment of Cells Using a Cell-Friendly Photoresist and Spatially Modulated Light. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900566. [PMID: 31380216 PMCID: PMC6661940 DOI: 10.1002/advs.201900566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/22/2019] [Indexed: 06/10/2023]
Abstract
Dynamic adhesion and detachment of subcellular regions occur during cell migration, thus a technique allowing precise control of subcellular detachment of cells will be useful for cell migration study. Previous methods for cell detachment were developed either for harvesting cells or cell sheets attached on surfaces with low resolution patterning capability, or for detaching subcellular regions located on predefined electrodes. In this paper, a method that allows in situ subcellular detachment of cells with ≈1.5 µm critical feature size while observing cells under a fluorescence microscope is introduced using a cell-friendly photoresist and spatially modulated light. Using this method, a single cell, regions in cell sheets, and a single focal adhesion complex within a cell are successfully detached. Furthermore, different subcellular regions of migrating cells are detached and changes in cell polarity and migration direction are quantitatively analyzed. This method will be useful for many applications in cell detachment, in particular when subcellular resolution is required.
Collapse
Affiliation(s)
- Jeehun Park
- School of Interdisciplinary Bioscience and Bioengineering (I‐Bio)Pohang University of Science and Technology77, Cheongam‐roPohangGyeongbuk37673South Korea
| | - Taeyup Kim
- Department of Mechanical EngineeringPohang University of Science and Technology77, Cheongam‐roPohangGyeongbuk37673South Korea
| | - Jong Chul Choi
- Department of Mechanical EngineeringPohang University of Science and Technology77, Cheongam‐roPohangGyeongbuk37673South Korea
| | - Junsang Doh
- Department of Materials Science and EngineeringSeoul National University1 Gwanak‐roGwanak‐guSeoul08826South Korea
| |
Collapse
|
5
|
Civantos A, Barnwell A, Shetty AR, Pavón JJ, El-Atwani O, Arias SL, Lang E, Reece LM, Chen M, Allain JP. Designing Nanostructured Ti 6Al 4V Bioactive Interfaces with Directed Irradiation Synthesis toward Cell Stimulation to Promote Host-Tissue-Implant Integration. ACS Biomater Sci Eng 2019; 5:3325-3339. [PMID: 33405575 DOI: 10.1021/acsbiomaterials.9b00469] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A new generation of biomaterials are evolving from being biologically inert toward bioactive surfaces, which can further interact with biological components at the nanoscale. Here, we present directed irradiation synthesis (DIS) as a novel technology to selectively apply plasma ions to bombard any type of biomaterial and tailor the nanofeatures needed for in vitro growth stimulation. In this work, we demonstrate for the first time, the influence of physiochemical cues (e.g., self-organized topography at nanoscale) of medical grade Ti6Al4V results in control of cell shape, adhesion, and proliferation of human aortic smooth muscle stem cells. The control of surface nanostructures was found to be correlated to ion-beam incidence angle linked to a surface diffusive regime during irradiation synthesis with argon ions at energies below 1 keV and a fluence of 2.5 × 1017 cm-2. Cell viability and cytoskeleton morphology were evaluated at 24 h, observing an advance cell attachment state on post-DIS surfaces. These modified surfaces showed 84% of cell biocompatibility and an increase in cytoplasmatic protusions ensuring a higher cell adhesion state. Filopodia density was promoted by a 3-fold change for oblique incidence angle DIS treatment compared to controls (e.g., no patterning) and lamellipodia structures were increased more than a factor of 2, which are indicators of cell attachment stimulation due to DIS modification. In addition, the morphology of the nanofeatures were tailored, with high fidelity control of the main DIS parameters that control diffusive and erosive regimes of self-organization. We have correlated the morphology and the influence in cell behavior, where nanoripple formation is the most active morphology for cell stimulation.
Collapse
Affiliation(s)
- Ana Civantos
- Department of Nuclear, Plasma and Radiological Engineering, College of Engineering, University of Illinois at Urbana-Champaign, 104 S Wright St, Urbana, Illinois 61801, United States.,Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 208 N Wright St, Urbana, Illinois 61801, United States
| | - Alethia Barnwell
- Department of Nuclear, Plasma and Radiological Engineering, College of Engineering, University of Illinois at Urbana-Champaign, 104 S Wright St, Urbana, Illinois 61801, United States
| | - Akshath R Shetty
- Department of Nuclear, Plasma and Radiological Engineering, College of Engineering, University of Illinois at Urbana-Champaign, 104 S Wright St, Urbana, Illinois 61801, United States.,Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 208 N Wright St, Urbana, Illinois 61801, United States
| | - Juan Jose Pavón
- Department of Nuclear, Plasma and Radiological Engineering, College of Engineering, University of Illinois at Urbana-Champaign, 104 S Wright St, Urbana, Illinois 61801, United States.,Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 208 N Wright St, Urbana, Illinois 61801, United States.,Group of Advanced Biomaterials and Regenerative Medicine, Bioengineering Program, University of Antioquia, Cl. 67, 53-108 Medellín, Antioquia, Colombia
| | - Osman El-Atwani
- Materials Science and Technology Division, Los Alamos National Laboratory, Los Alamos, New México 87545, United States
| | - Sandra L Arias
- Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 208 N Wright St, Urbana, Illinois 61801, United States.,Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W Green St, Urbana, Illinois 61801, United States
| | - Eric Lang
- Department of Nuclear, Plasma and Radiological Engineering, College of Engineering, University of Illinois at Urbana-Champaign, 104 S Wright St, Urbana, Illinois 61801, United States
| | - Lisa M Reece
- University of Texas Medical Branch at Galveston Sealy Center for Vaccine Development, 301 University Blvd, Galveston, Texas 77555, United States
| | - Michael Chen
- City of Hope National Research Medical Center, 1500 E Duarte Road, Duarte, California 91010-3012, United States
| | - Jean Paul Allain
- Department of Nuclear, Plasma and Radiological Engineering, College of Engineering, University of Illinois at Urbana-Champaign, 104 S Wright St, Urbana, Illinois 61801, United States.,Micro and Nanotechnology Laboratory, University of Illinois at Urbana-Champaign, 208 N Wright St, Urbana, Illinois 61801, United States.,Department of Bioengineering, University of Illinois at Urbana-Champaign, 1406 W Green St, Urbana, Illinois 61801, United States
| |
Collapse
|
6
|
Bourkoula A, Mavrogonatou E, Pavli P, Petrou PS, Douvas AM, Argitis P, Kletsas D, Kakabakos SE. Guided cell adhesion, orientation, morphology and differentiation on silicon substrates photolithographically micropatterned with a cell-repellent cross-linked poly(vinyl alcohol) film. ACTA ACUST UNITED AC 2018; 14:014101. [PMID: 30362459 DOI: 10.1088/1748-605x/aae7ba] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this work, silicon substrates with poly(vinyl alcohol) (PVA) patterns created by a simple, low-cost and high-fidelity photolithographic procedure were evaluated with respect to cell adhesion and alignment, viability, metabolic activity, proliferation and cell cycle progression using the human glioblastoma cell-line U87MG and human skin fibroblasts. In addition, rat adrenal pheochromocytoma cells (PC-12) were employed to evaluate a modified photolithographic protocol appropriate for adhesion of cells requiring extracellular matrix components to adhere on the surface and to demonstrate that the proposed patterned substrates could provide unhindered cell differentiation. Regarding U87MG cells and skin fibroblasts, it was found that as the stripes width increased from 10 to 50 μm, the percentage of cells attached to Si versus the total area (Si + PVA) increased from 78% and 72% to 98.5% and 94.5% (p < 0.05), for U87MG cells and skin fibroblasts, respectively, with optimum cell alignment (≥95% of adherent cells with fidelity between 0.90 and 1.0; p < 0.05) for stripes width ranging between 20 and 22.5 μm. Concerning the viability, metabolic activity and proliferation of adherent cells, no statistically significant differences were observed compared to cells cultured onto non-patterned surfaces. Regarding PC-12 cells, a modification of the patterning procedure was followed involving coating of the substrate with type IV collagen prior to the photolithographic procedure, since they could not adhere on plain Si substrates. It was found that PC-12 cells adhere selectively (>95%) to collagen-coated Si stripes when the pattern width was equal to or wider than 10 μm. Following treatment with nerve growth factor, approximately 80% (p < 0.05) of the adherent cells differentiated to neuron-like cells extending neurites exclusively within the pattern. Given that the proposed patterning procedure allows highly selective cell adhesion without affecting cell proliferation, metabolic activity, and differentiation it could serve as a useful tool in various fields including tissue engineering, cell-based sensors and analytical microsystems.
Collapse
Affiliation(s)
- Athanasia Bourkoula
- Immunoassays/Immunosensors Laboratory, Institute of Nuclear and Radiological Sciences & Technology, Energy & Safety, NCSR 'Demokritos', 15341 Aghia Paraskevi, Greece
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Abstract
A great breadth of questions remains in cellular biology. Some questions cannot be answered using traditional analytical techniques and so demand the development of new tools for research. In the near future, the development of highly integrated microfluidic analytical platforms will enable the acquisition of unknown biological data. These microfluidic systems must allow cell culture under controlled microenvironment and high throughput analysis. For this purpose, the integration of a variable number of newly developed micro- and nano-technologies, which enable control of topography and surface chemistry, soluble factors, mechanical forces and cell–cell contacts, as well as technology for monitoring cell phenotype and genotype with high spatial and temporal resolution will be necessary. These multifunctional devices must be accompanied by appropriate data analysis and management of the expected large datasets generated. The knowledge gained with these platforms has the potential to improve predictive models of the behavior of cells, impacting directly in better therapies for disease treatment. In this review, we give an overview of the microtechnology toolbox available for the design of high throughput microfluidic platforms for cell analysis. We discuss current microtechnologies for cell microenvironment control, different methodologies to create large arrays of cellular systems and finally techniques for monitoring cells in microfluidic devices.
Collapse
|
8
|
Zou F, Lu FZ, Ma XS, He DW, Tang TT, Xia XL, Jiang JY, Niu YF. Retracted Article: Cell orientation, proliferation, and differentiation on poly( l-lactide) spherulites. RSC Adv 2016. [DOI: 10.1039/c6ra07524j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We show cytoskeleton and nuclear alignment on PLLA crystallized at 140 °C. Cell proliferation and differentiation were also promoted significantly and we study the effect of polymer spherulites on cell orientation, proliferation and differentiation.
Collapse
Affiliation(s)
- F. Zou
- Department of Orthopaedics
- Huashan Hospital
- Fudan University
- Shanghai
- China
| | - F. Z. Lu
- Department of Orthopaedics
- Huashan Hospital
- Fudan University
- Shanghai
- China
| | - X. S. Ma
- Department of Orthopaedics
- Huashan Hospital
- Fudan University
- Shanghai
- China
| | - D. W. He
- Department of Orthopaedics
- Changhai Hospital
- The Second Military Medical University
- Shanghai 200433
- China
| | - T. T. Tang
- Shanghai Key Laboratory of Orthopedic Implants
- Department of Orthopedic Surgery
- Shanghai Ninth People's Hospital
- Shanghai Jiao Tong University School of Medicine
- Shanghai 200011
| | - X. L. Xia
- Department of Orthopaedics
- Huashan Hospital
- Fudan University
- Shanghai
- China
| | - J. Y. Jiang
- Department of Orthopaedics
- Huashan Hospital
- Fudan University
- Shanghai
- China
| | - Y. F. Niu
- Department of Orthopaedics
- Changhai Hospital
- The Second Military Medical University
- Shanghai 200433
- China
| |
Collapse
|