1
|
Mondal IC, Rawat P, Galkin M, Deka S, Karmakar A, Mondal P, Ghosh S. Julolidine-based small molecular probes for fluorescence imaging of RNA in live cells. Org Biomol Chem 2023; 21:7831-7840. [PMID: 37728395 DOI: 10.1039/d3ob01314f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/21/2023]
Abstract
Intracellular RNA imaging with organic small molecular probes has been an intense topic, although the number of such reported dyes, particularly dyes with high quantum yields and long wavelength excitation/emission, is quite limited. The present work reports the design and synthesis of three cationic julolidine-azolium conjugates (OX-JLD, BTZ-JLD and SEZ-JLD) as turn-on fluorescent probes with appreciably high quantum yields and brightness upon interaction with RNA. A structure-efficiency relationship has been established for their potential for the interaction and imaging of intracellular RNA. Given their chemical structure, the free rotation between the donor and the acceptor gets restricted when the probes bind with RNA resulting in strong fluorescence emission towards a higher wavelength upon photoexcitation. A detailed investigation revealed that the photophysical properties and the optical responses of two probes, viz. BTZ-JLD and SEZ-JLD, towards RNA are very promising and qualify them to be suitable candidates for biological studies, particularly for cellular imaging applications. The probes allow imaging of intracellular RNA with prominent staining of nucleoli in live cells under a range of physiological conditions. The results of the cellular digest test established the appreciable RNA selectivity of BTZ-JLD and SEZ-JLD inside the cellular environment. Moreover, a comparison between the relative intensity profile of SEZ-JLD before and after the RNA-digestion test inside the cellular environment indicated that the interference of cellular viscosity in fluorescence enhancement is insignificant, and hence, SEZ-JLD can be used as a cell membrane permeable cationic molecular probe for deep-red imaging of intracellular RNA with a good degree of selectivity.
Collapse
Affiliation(s)
- Iswar Chandra Mondal
- School of Chemical Sciences, Indian Institute of Technology Mandi, H.P-175005, India
| | - Priya Rawat
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, H.P-175005, India
| | - Maksym Galkin
- Laboratory of Chemical Biology, The Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague 6 16610, Czech Republic
| | - Snata Deka
- School of Chemical Sciences, Indian Institute of Technology Mandi, H.P-175005, India
| | - Anirban Karmakar
- Centro de Química Estrutural, Instituto Superior Técnico, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Prosenjit Mondal
- School of Biosciences and Bioengineering, Indian Institute of Technology Mandi, H.P-175005, India
| | - Subrata Ghosh
- School of Chemical Sciences, Indian Institute of Technology Mandi, H.P-175005, India
| |
Collapse
|
2
|
Lalji RSK, Prince, Gupta M, Kumar S, Kumar A, Singh BK. Rhodium-catalyzed selenylation and sulfenylation of quinoxalinones 'on water'. RSC Adv 2023; 13:6191-6198. [PMID: 36814880 PMCID: PMC9940630 DOI: 10.1039/d2ra07400a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/08/2023] [Indexed: 02/22/2023] Open
Abstract
A rhodium-catalysed, regioselective synthetic methodology for selenylation and sulfenylation of 3-phenyl quinoxolinones has been developed through N-directed C-H activation in the presence of silver triflimide, and silver carbonate using dichalcogenides 'on water'. The methodology has been proven to be efficient, regioselective and green. Using this method, a range of selenylations and sulfenylations of the substrates has been carried out in good to excellent yields. Further, late-stage functionalisation produced potential anti-tumour, anti-fungal and anti-bacterial agents making these compounds potential drug candidates.
Collapse
Affiliation(s)
- Ram Sunil Kumar Lalji
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
- Department of Chemistry, Kirori Mal College, University of Delhi Delhi 110007 India
| | - Prince
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| | - Mohit Gupta
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
- Department of Chemistry, L. N. M. S. College Supaul Birpur Bihar 8543340 India
| | - Sandeep Kumar
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| | - Amit Kumar
- Department of Chemistry, IIT Patna Bihar 801106 India
| | - Brajendra Kumar Singh
- Bio-Organic Research Laboratory, Department of Chemistry, University of Delhi Delhi 110007 India
| |
Collapse
|
3
|
Li ZC, Wu TY, Zeng ST, Fang L, Mao JX, Chen SB, Huang ZS, Chen XC, Tan JH. Benzoselenazolium-based hemicyanine dye for G-Quadruplex detection. Bioorg Med Chem Lett 2022; 70:128801. [PMID: 35597422 DOI: 10.1016/j.bmcl.2022.128801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/02/2022]
Abstract
Benzothiazolium and benzoxazolium are common groups for the construction of hemicyanine dyes; however, their isosteric analogue benzoselenazolium have rarely been studied. Here, we report the development of the first benzoselenazolium-based hemicyanine dye for the selective detection of G-quadruplexes. This molecule, SEMA-1, was validated as a red-emitting and activatable fluorescent probe whose fluorescence would only be activated in the presence of G-quadruplexes in buffer solution. Consistent with this, SEMA-1 was found to accumulate in nucleoli and could be used to detect the high abundance of nucleolar rDNA and rRNA G-quadruplexes in fixed HeLa cells. On the other hand, due to the retained mitochondrial membrane potential in live HeLa cells, SEMA-1 was captured by mitochondria and had the potential to detect the mitochondrial G-quadruplexes. Collectively, this work demonstrates the value of developing G-quadruplex-specific fluorescent probes from novel benzoselenazolium-based hemicyanine scaffold.
Collapse
Affiliation(s)
- Zhang-Chi Li
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Tian-Ying Wu
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shu-Tang Zeng
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Lan Fang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Jun-Xin Mao
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Shuo-Bin Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhi-Shu Huang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Xiu-Cai Chen
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jia-Heng Tan
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
4
|
Fu M, Sun Y, Kenry, Zhang M, Zhou H, Shen W, Hu Y, Zhu Q. A dual-rotator fluorescent probe for analyzing the viscosity of mitochondria and blood. Chem Commun (Camb) 2021; 57:3508-3511. [PMID: 33690772 DOI: 10.1039/d1cc00519g] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A novel mitochondria-targeting molecular rotator FD was designed to visualize changes in viscosity under hypoxic conditions in vitro and in vivo. Importantly, FD can be used to detect changes in the blood viscosity of liver cancer and liver cirrhosis patients, and also rehabilitation of liver disease.
Collapse
Affiliation(s)
- Manlin Fu
- College of Biotechnology and Bioengineering & Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China.
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Abdillah A, Sonawane PM, Kim D, Mametov D, Shimodaira S, Park Y, Churchill DG. Discussions of Fluorescence in Selenium Chemistry: Recently Reported Probes, Particles, and a Clearer Biological Knowledge. Molecules 2021; 26:692. [PMID: 33525729 PMCID: PMC7866183 DOI: 10.3390/molecules26030692] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 12/15/2022] Open
Abstract
In this review from literature appearing over about the past 5 years, we focus on selected selenide reports and related chemistry; we aimed for a digestible, relevant, review intended to be usefully interconnected within the realm of fluorescence and selenium chemistry. Tellurium is mentioned where relevant. Topics include selenium in physics and surfaces, nanoscience, sensing and fluorescence, quantum dots and nanoparticles, Au and oxide nanoparticles quantum dot based, coatings and catalyst poisons, thin film, and aspects of solar energy conversion. Chemosensing is covered, whether small molecule or nanoparticle based, relating to metal ion analytes, H2S, as well as analyte sulfane (biothiols-including glutathione). We cover recent reports of probing and fluorescence when they deal with redox biology aspects. Selenium in therapeutics, medicinal chemistry and skeleton cores is covered. Selenium serves as a constituent for some small molecule sensors and probes. Typically, the selenium is part of the reactive, or active site of the probe; in other cases, it is featured as the analyte, either as a reduced or oxidized form of selenium. Free radicals and ROS are also mentioned; aggregation strategies are treated in some places. Also, the relationship between reduced selenium and oxidized selenium is developed.
Collapse
Affiliation(s)
- Ariq Abdillah
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Prasad M. Sonawane
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Donghyeon Kim
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Dooronbek Mametov
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Shingo Shimodaira
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - Yunseon Park
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
| | - David G. Churchill
- Molecular Logic Gate Laboratory, Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (A.A.); (P.M.S.); (D.K.); (D.M.); (S.S.); (Y.P.)
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
- KAIST Institute for Health Science and Technology (KIHST) (Therapeutic Bioengineering), Daejeon 34141, Korea
| |
Collapse
|
6
|
Ma W, Kaplaneris N, Fang X, Gu L, Mei R, Ackermann L. Chelation-assisted transition metal-catalysed C–H chalcogenylations. Org Chem Front 2020. [DOI: 10.1039/c9qo01497g] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review summarizes recent advances in C–S and C–Se formationsviatransition metal-catalyzed C–H functionalization utilizing directing groups to control the site-selectivity.
Collapse
Affiliation(s)
- Wenbo Ma
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu
- P. R. China
| | - Nikolaos Kaplaneris
- Institute fuer Organische und Biomolekular Chemie
- Georg-August-Universitaet Goettingen
- 37077 Goettingen
- Germany
| | - Xinyue Fang
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu
- P. R. China
| | - Linghui Gu
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province
- Sichuan Industrial Institute of Antibiotics
- Chengdu University
- Chengdu
- P. R. China
| | - Ruhuai Mei
- College of Pharmacy and Biological Engineering Chengdu University
- Chengdu
- P. R. China
| | - Lutz Ackermann
- Institute fuer Organische und Biomolekular Chemie
- Georg-August-Universitaet Goettingen
- 37077 Goettingen
- Germany
| |
Collapse
|
7
|
Zhang Y, Yang M, Jia C, Ji M. Iodine-Promoted Domino Oxidative Cyclization for the One-Pot Synthesis of Novel Fused Four-Ring Quinoxaline Fluorophores by sp 3 C-H Functionalization. Chemistry 2019; 25:13709-13713. [PMID: 31498477 DOI: 10.1002/chem.201903688] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 09/05/2019] [Indexed: 02/02/2023]
Abstract
A method for the synthesis of novel fused four-ring quinoxaline skeleton has been described by an I2 promoted sp3 C-H functionalization between 1,2,3,3-tetramethyl-3H-indolium iodides and 1,2-diamines. This transformation proceeds smoothly under metal- and peroxide-free conditions through a sequential iodination, oxidation, annulation and rearrangement. Moreover, 8,9-dichloro-5,12,12-trimethyl-2-(trifluoromethyl)-5,12-dihydroquinolino[2,3-b]quinoxaline showed good photophysical properties and was used in live cell imaging, indicating the potential value of this skeleton as a fluorophore in probes.
Collapse
Affiliation(s)
- Yong Zhang
- School of Biological Science and Medical Engineering, Southeast University, Dingjiaqiao 87, 210009, Nanjing, P. R. China
| | - Min Yang
- School of Biological Science and Medical Engineering, Southeast University, Dingjiaqiao 87, 210009, Nanjing, P. R. China
| | - Chengli Jia
- School of Biological Science and Medical Engineering, Southeast University, Dingjiaqiao 87, 210009, Nanjing, P. R. China
| | - Min Ji
- School of Biological Science and Medical Engineering, Southeast University, Dingjiaqiao 87, 210009, Nanjing, P. R. China
| |
Collapse
|
8
|
Kummari VB, Chiranjeevi K, Suman Kumar A, Kumar RA, Yadav JS. Metal free montmorillonite KSF clay catalyzed practical synthesis of benzoxazoles and benzothiazoles under aerobic conditions. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1665183] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Vijaya Babu Kummari
- Centre for Semiochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | | | - Alleni Suman Kumar
- Centre for Semiochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | - Rathod Aravind Kumar
- Centre for Semiochemicals, CSIR-Indian Institute of Chemical Technology, Hyderabad, India
| | | |
Collapse
|
9
|
Zhang Y, Zong X, Ji M. An iodine-promoted one-pot and metal-free access to indolin-2-ones. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.1177/1747519819875862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
A new method for the synthesis of indolin-2-ones has been realized by an I2-promoted oxidative reaction from 1,2,3,3-tetramethyl-3 H-indolium iodides. This transformation proceeded smoothly under metal-free and peroxide-free conditions in a cascade manner.
Collapse
Affiliation(s)
- Yong Zhang
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xi Zong
- Suzhou Key Laboratory of Biomaterials and Technologies & Collaborative Innovation Center of Suzhou Nano Science and Technology, Suzhou, China
| | - Min Ji
- School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
10
|
Qin W, Alifu N, Cai Y, Lam JWY, He X, Su H, Zhang P, Qian J, Tang BZ. Synthesis of an efficient far-red/near-infrared luminogen with AIE characteristics for in vivo bioimaging applications. Chem Commun (Camb) 2019; 55:5615-5618. [PMID: 31025683 DOI: 10.1039/c9cc02238d] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A selenium-containing FR/NIR AIE luminogen with efficient solid-state emission is reported. Its AIE dots exhibit high brightness, large Stokes shift, good biocompatibility and satisfactory photostability, making them the first selenium-containing FR/NIR nanoprobes with AIE characteristics for in vivo bioimaging applications with high contrast and a high penetration depth.
Collapse
Affiliation(s)
- Wei Qin
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong.
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Xia Y, He W, Li J, Zeng L, Chen T, Liao Y, Sun W, Lan J, Zhuo S, Zhang J, Yang H, Chen J. Acridone Derivate Simultaneously Featuring Multiple Functions and Its Applications. Anal Chem 2019; 91:8406-8414. [DOI: 10.1021/acs.analchem.9b01289] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Yaokun Xia
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, People’s Republic of China
| | - Wenhui He
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, People’s Republic of China
| | - Juan Li
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian Province 350108, People’s Republic of China
| | - Lupeng Zeng
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, People’s Republic of China
| | - Tingting Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, People’s Republic of China
| | - Yijuan Liao
- Department of Chemical Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, People’s Republic of China
| | - Weiming Sun
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, People’s Republic of China
| | - Jianming Lan
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, People’s Republic of China
| | - Shuangmu Zhuo
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou, Fujian Province 350007, People’s Republic of China
| | - Jing Zhang
- Department of Chemical Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province 350002, People’s Republic of China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian Province 350108, People’s Republic of China
| | - Jinghua Chen
- Department of Pharmaceutical Analysis, The School of Pharmacy, Fujian Medical University, Fuzhou, Fujian Province 350122, People’s Republic of China
| |
Collapse
|
12
|
Chao XJ, Wang KN, Sun LL, Cao Q, Ke ZF, Cao DX, Mao ZW. Cationic Organochalcogen with Monomer/Excimer Emissions for Dual-Color Live Cell Imaging and Cell Damage Diagnosis. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13264-13273. [PMID: 29616788 DOI: 10.1021/acsami.7b12521] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Studies on the development of fluorescent organic molecules with different emission colors for imaging of organelles and their biomedical application are gaining lots of focus recently. Here, we report two cationic organochalcogens 1 and 2, both of which exhibit very weak green emission (Φ1 = 0.12%; Φ2 = 0.09%) in dilute solution as monomers, but remarkably enhanced green emission upon interaction with nucleic acids and large red-shifted emission in aggregate state by the formation of excimers at high concentration. More interestingly, the monomer emission and excimer-like emission can be used for dual color imaging of different organelles. Upon passively diffusing into cells, both probes selectively stain nucleoli with strong green emission upon 488 nm excitation, whereas upon 405 nm excitation, a completely different stain pattern by staining lysosomes (for 1) or mitochondria (for 2) with distinct red emission is observed because of the highly concentrated accumulation in these organelles. Studies on the mechanism of the accumulation in lysosomes (for 1) or mitochondria (for 2) found that the accumulations of the probes are dependent on the membrane permeabilization, which make the probes have great potential in diagnosing cell damage by sensing lysosomal or mitochondrial membrane permeabilization. The study is demonstrative, for the first time, of two cationic molecules for dual-color imaging nucleoli and lysosomes (1)/mitochondria (2) simultaneously in live cell based on monomer and excimer-like emission, respectively, and more importantly, for diagnosing cell damage.
Collapse
Affiliation(s)
- Xi-Juan Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Kang-Nan Wang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Li-Li Sun
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Qian Cao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Zhuo-Feng Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
| | - Du-Xia Cao
- School of Materials Science and Engineering , University of Jinan , Jinan 250022 Shandong , China
| | - Zong-Wan Mao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry , Sun Yat-Sen University , Guangzhou 510275 , China
- College of Materials and Energy , South China Agricultural University , Guangzhou 510642 , China
| |
Collapse
|