1
|
Islam M, Lantada AD, Mager D, Korvink JG. Carbon-Based Materials for Articular Tissue Engineering: From Innovative Scaffolding Materials toward Engineered Living Carbon. Adv Healthc Mater 2022; 11:e2101834. [PMID: 34601815 PMCID: PMC11469261 DOI: 10.1002/adhm.202101834] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Indexed: 12/14/2022]
Abstract
Carbon materials constitute a growing family of high-performance materials immersed in ongoing scientific technological revolutions. Their biochemical properties are interesting for a wide set of healthcare applications and their biomechanical performance, which can be modulated to mimic most human tissues, make them remarkable candidates for tissue repair and regeneration, especially for articular problems and osteochondral defects involving diverse tissues with very different morphologies and properties. However, more systematic approaches to the engineering design of carbon-based cell niches and scaffolds are needed and relevant challenges should still be overcome through extensive and collaborative research. In consequence, this study presents a comprehensive description of carbon materials and an explanation of their benefits for regenerative medicine, focusing on their rising impact in the area of osteochondral and articular repair and regeneration. Once the state-of-the-art is illustrated, innovative design and fabrication strategies for artificially recreating the cellular microenvironment within complex articular structures are discussed. Together with these modern design and fabrication approaches, current challenges, and research trends for reaching patients and creating social and economic impacts are examined. In a closing perspective, the engineering of living carbon materials is also presented for the first time and the related fundamental breakthroughs ahead are clarified.
Collapse
Affiliation(s)
- Monsur Islam
- Karlsruhe Institute of TechnologyInstitute of Microstructure TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Andrés Díaz Lantada
- Department of Mechanical EngineeringUniversidad Politécnica de MadridJosé Gutiérrez Abascal 2Madrid28006Spain
| | - Dario Mager
- Karlsruhe Institute of TechnologyInstitute of Microstructure TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| | - Jan G. Korvink
- Karlsruhe Institute of TechnologyInstitute of Microstructure TechnologyHermann‐von‐Helmholtz‐Platz 1Eggenstein‐Leopoldshafen76344Germany
| |
Collapse
|
2
|
Siemsen K, Rajput S, Rasch F, Taheri F, Adelung R, Lammerding J, Selhuber‐Unkel C. Tunable 3D Hydrogel Microchannel Networks to Study Confined Mammalian Cell Migration. Adv Healthc Mater 2021; 10:e2100625. [PMID: 34668667 PMCID: PMC8743577 DOI: 10.1002/adhm.202100625] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/12/2021] [Indexed: 11/12/2022]
Abstract
Cells adapt and move due to chemical, physical, and mechanical cues from their microenvironment. It is therefore important to create materials that mimic human tissue physiology by surface chemistry, architecture, and dimensionality to control cells in biomedical settings. The impact of the environmental architecture is particularly relevant in the context of cancer cell metastasis, where cells migrate through small constrictions in their microenvironment to invade surrounding tissues. Here, a synthetic hydrogel scaffold with an interconnected, random, 3D microchannel network is presented that is functionalized with collagen to promote cell adhesion. It is shown that cancer cells can invade such scaffolds within days, and both the microarchitecture and stiffness of the hydrogel modulate cell invasion and nuclear dynamics of the cells. Specifically, it is found that cell migration through the microchannels is a function of hydrogel stiffness. In addition to this, it is shown that the hydrogel stiffness and confinement, influence the occurrence of nuclear envelope ruptures of cells. The tunable hydrogel microarchitecture and stiffness thus provide a novel tool to investigate cancer cell invasion as a function of the 3D microenvironment. Furthermore, the material provides a promising strategy to control cell positioning, migration, and cellular function in biological applications, such as tissue engineering.
Collapse
Affiliation(s)
| | - Sunil Rajput
- Institute for Molecular Systems Engineering (IMSE)Heidelberg UniversityHeidelberg69120Germany
| | - Florian Rasch
- Institute for Materials ScienceKiel UniversityKielD‐24143Germany
| | - Fereydoon Taheri
- Institute for Molecular Systems Engineering (IMSE)Heidelberg UniversityHeidelberg69120Germany
| | - Rainer Adelung
- Institute for Materials ScienceKiel UniversityKielD‐24143Germany
| | - Jan Lammerding
- Meinig School of Biomedical Engineering & Weill Institute for Cell and Molecular BiologyCornell UniversityIthacaNY14853USA
| | - Christine Selhuber‐Unkel
- Institute for Molecular Systems Engineering (IMSE)Heidelberg UniversityHeidelberg69120Germany
- Max Planck School Matter to LifeJahnstraße 29Heidelberg69120Germany
| |
Collapse
|
3
|
Della Sala F, Biondi M, Guarnieri D, Borzacchiello A, Ambrosio L, Mayol L. Mechanical behavior of bioactive poly(ethylene glycol) diacrylate matrices for biomedical application. J Mech Behav Biomed Mater 2020; 110:103885. [PMID: 32957192 DOI: 10.1016/j.jmbbm.2020.103885] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 05/12/2020] [Accepted: 05/25/2020] [Indexed: 12/20/2022]
Abstract
The biomedical applications of physically entangled polymeric hydrogels are generally limited due to their weak mechanical properties, rapid swelling and dissolution in physiologically relevant environment. Chemical crosslinking helps stabilizing hydrogel structure and enhancing mechanical properties, thereby allowing a higher stability in phisiological environment. In this context, it is known that the mechanical properties of the hydrogel are affected by both the molecular weight (MW) of the starting polymer and the concentration of the crosslinker. Here, our aim was to assess the influence of polymer MW and concentration in the precursor solution on the mechanical features of the final hydrogel and their influence on cells-material interaction. In detail, 3D synthetic matrices based on poly(ethylene glycol) diacrylate (PEGDA) at two molecular weights (PEG 700 and PEG 3400) and at three different concentrations (10, 20, 40 w/v %), which were photopolymerized using darocour as an initiator, were studied. Then, infrared and swelling analyses, along with a comprehensive mechanical characterization of the obtained hydrogels (i.e. oscillatory shear and confined compression tests), were performed. Finally, to evaluate the influence of the mechanical features on the biological behaviour, the hydrogels were characterized in terms of cell adhesion percentage and cell viability after functionalizing the substrates with RGD peptide at three different concentrations. Results have demonstrated that both the Young's modulus (E) in compression and the elastic modulus (G') in shear of the hydrogels increase with increasing polymer precursor concentration. E decreased as MW increased, and the differences are more relevant for more concentrated hydrogels. On the contrary, G' appears to increase with increasing PEGDA MW and in particular for the lowest polymer precursor concentration. The biological results have demonstrated that cells cultured for longer times seem to prefer PEG 3400 hydrogels with a larger mesh size structure that posses higher viscoelastic properties in shear.
Collapse
Affiliation(s)
- Francesca Della Sala
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche (IPCB-CNR), Viale J.F. Kennedy 54, Napoli, Italy; University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Marco Biondi
- Dipartimento di Farmacia, Università di Napoli Federico II, Via Domenico Montesano 49, Napoli, Italy; Centro di Ricerca Interdipartimentale sui Biomateriali (CRIB), Università di Napoli Federico II, Piazzale Tecchio 80, Napoli, Italy
| | - Daniela Guarnieri
- Dipartimento di Chimica e Biologia A. Zambelli, Università di Salerno, via Giovanni Paolo II 132, Fisciano, Salerno, I-84084, Italy
| | - Assunta Borzacchiello
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche (IPCB-CNR), Viale J.F. Kennedy 54, Napoli, Italy.
| | - Luigi Ambrosio
- Istituto per i Polimeri, Compositi e Biomateriali, Consiglio Nazionale delle Ricerche (IPCB-CNR), Viale J.F. Kennedy 54, Napoli, Italy
| | - Laura Mayol
- Dipartimento di Farmacia, Università di Napoli Federico II, Via Domenico Montesano 49, Napoli, Italy; Centro di Ricerca Interdipartimentale sui Biomateriali (CRIB), Università di Napoli Federico II, Piazzale Tecchio 80, Napoli, Italy
| |
Collapse
|
4
|
Pryjmaková J, Kaimlová M, Hubáček T, Švorčík V, Siegel J. Nanostructured Materials for Artificial Tissue Replacements. Int J Mol Sci 2020; 21:E2521. [PMID: 32260477 PMCID: PMC7178059 DOI: 10.3390/ijms21072521] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 03/26/2020] [Accepted: 04/01/2020] [Indexed: 02/04/2023] Open
Abstract
This paper review current trends in applications of nanomaterials in tissue engineering. Nanomaterials applicable in this area can be divided into two groups: organic and inorganic. Organic nanomaterials are especially used for the preparation of highly porous scaffolds for cell cultivation and are represented by polymeric nanofibers. Inorganic nanomaterials are implemented as they stand or dispersed in matrices promoting their functional properties while preserving high level of biocompatibility. They are used in various forms (e.g., nano- particles, -tubes and -fibers)-and when forming the composites with organic matrices-are able to enhance many resulting properties (biologic, mechanical, electrical and/or antibacterial). For this reason, this contribution points especially to such type of composite nanomaterials. Basic information on classification, properties and application potential of single nanostructures, as well as complex scaffolds suitable for 3D tissues reconstruction is provided. Examples of practical usage of these structures are demonstrated on cartilage, bone, neural, cardiac and skin tissue regeneration and replacements. Nanomaterials open up new ways of treatments in almost all areas of current tissue regeneration, especially in tissue support or cell proliferation and growth. They significantly promote tissue rebuilding by direct replacement of damaged tissues.
Collapse
Affiliation(s)
- Jana Pryjmaková
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.P.); (M.K.); (V.Š.)
| | - Markéta Kaimlová
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.P.); (M.K.); (V.Š.)
| | - Tomáš Hubáček
- Soil & Water Research Infrastructure, Biology Centre CAS, Na Sádkách 7, 370 05 České Budějovice, Czech Republic;
| | - Václav Švorčík
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.P.); (M.K.); (V.Š.)
| | - Jakub Siegel
- Department of Solid State Engineering, University of Chemistry and Technology Prague, Technická 5, 166 28 Prague, Czech Republic; (J.P.); (M.K.); (V.Š.)
| |
Collapse
|
5
|
The fate of mesenchymal stem cells is greatly influenced by the surface chemistry of silica nanoparticles in 3D hydrogel-based culture systems. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 106:110259. [DOI: 10.1016/j.msec.2019.110259] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 09/18/2019] [Accepted: 09/25/2019] [Indexed: 12/17/2022]
|
6
|
Geetha Bai R, Muthoosamy K, Manickam S, Hilal-Alnaqbi A. Graphene-based 3D scaffolds in tissue engineering: fabrication, applications, and future scope in liver tissue engineering. Int J Nanomedicine 2019; 14:5753-5783. [PMID: 31413573 PMCID: PMC6662516 DOI: 10.2147/ijn.s192779] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 01/22/2019] [Indexed: 12/14/2022] Open
Abstract
Tissue engineering embraces the potential of recreating and replacing defective body parts by advancements in the medical field. Being a biocompatible nanomaterial with outstanding physical, chemical, optical, and biological properties, graphene-based materials were successfully employed in creating the perfect scaffold for a range of organs, starting from the skin through to the brain. Investigations on 2D and 3D tissue culture scaffolds incorporated with graphene or its derivatives have revealed the capability of this carbon material in mimicking in vivo environment. The porous morphology, great surface area, selective permeability of gases, excellent mechanical strength, good thermal and electrical conductivity, good optical properties, and biodegradability enable graphene materials to be the best component for scaffold engineering. Along with the apt microenvironment, this material was found to be efficient in differentiating stem cells into specific cell types. Furthermore, the scope of graphene nanomaterials in liver tissue engineering as a promising biomaterial is also discussed. This review critically looks into the unlimited potential of graphene-based nanomaterials in future tissue engineering and regenerative therapy.
Collapse
Affiliation(s)
- Renu Geetha Bai
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Kasturi Muthoosamy
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Sivakumar Manickam
- Nanotechnology and Advanced Materials (NATAM), Faculty of Science and Engineering, University of Nottingham Malaysia, Semenyih, Selangor, 43500, Malaysia
| | - Ali Hilal-Alnaqbi
- Electromechanical Technology, Abu Dhabi Polytechnic, Abu Dhabi, United Arab Emirates
| |
Collapse
|
7
|
Taale M, Krüger D, Ossei-Wusu E, Schütt F, Rehman MAU, Mishra YK, Marx J, Stock N, Fiedler B, Boccaccini AR, Willumeit-Römer R, Adelung R, Selhuber-Unkel C. Systematically Designed Periodic Electrophoretic Deposition for Decorating 3D Carbon-Based Scaffolds with Bioactive Nanoparticles. ACS Biomater Sci Eng 2019; 5:4393-4404. [PMID: 33438405 DOI: 10.1021/acsbiomaterials.9b00102] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The coating of porous scaffolds with nanoparticles is crucial in many applications, for example to generate scaffolds for catalysis or to make scaffolds bioactive. A standard and well-established method for coating surfaces with charged nanoparticles is electrophoresis, but when used on porous scaffolds, this method often leads to a blockage of the pores so that only the outermost layers of the scaffolds are coated. In this study, the electrophoretic coating process is monitored in situ and the kinetics of nanoparticle deposition are investigated. This concept can be extended to design a periodic electrophoretic deposition (PEPD) strategy, thus avoiding the typical blockage of surface pores. In the present work we demonstrate successful and homogeneous electrophoretic deposition of hydroxyapatite nanoparticles (HAn, diameter ≤200 nm) on a fibrous graphitic 3D structure (ultralightweight aerographite) using the PEPD strategy. The microfilaments of the resulting scaffold are covered with HAn both internally and on the surface. Furthermore, protein adsorption assays and cell proliferation assays were carried out and revealed that the HAn-decorated aerographite scaffolds are biocompatible. The HAn decoration of the scaffolds also significantly increases the alkaline phosphatase activity of osteoblast cells, showing that the scaffolds are able to promote their osteoblastic activity.
Collapse
Affiliation(s)
- Mohammadreza Taale
- Biocompatible Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Diana Krüger
- Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Division Metallic Biomaterials, Max-Planck-Str. 1, D-21502 Geesthacht, Germany
| | - Emmanuel Ossei-Wusu
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Fabian Schütt
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Muhammad Atiq Ur Rehman
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany.,Department of Materials Science and Engineering, Institute of Space Technology Islamabad, 1, Islamabad Highway, Islamabad 44000, Pakistan
| | - Yogendra Kumar Mishra
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Janik Marx
- Institute of Polymer and Composites, Hamburg University of Technology, Denickestr. 15, D-21073 Hamburg, Germany
| | - Norbert Stock
- Institute of Inorganic Chemistry, Kiel University, Max-Eyth Straße 2, D-24118 Kiel, Germany
| | - Bodo Fiedler
- Institute of Polymer and Composites, Hamburg University of Technology, Denickestr. 15, D-21073 Hamburg, Germany
| | - Aldo R Boccaccini
- Institute of Biomaterials, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
| | - Regine Willumeit-Römer
- Helmholtz-Zentrum Geesthacht, Institute of Materials Research, Division Metallic Biomaterials, Max-Planck-Str. 1, D-21502 Geesthacht, Germany
| | - Rainer Adelung
- Functional Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| | - Christine Selhuber-Unkel
- Biocompatible Nanomaterials, Institute for Materials Science, Kiel University, Kaiserstr. 2, D-24143 Kiel, Germany
| |
Collapse
|
8
|
Marx J, Berns JC, Spille C, Mintken M, Adelung R, Schlüter M, Fiedler B. Theoretical Computational Fluid Dynamics Study of the Chemical Vapor Deposition Process for the Manufacturing of a Highly Porous 3D Carbon Foam. Chem Eng Technol 2019. [DOI: 10.1002/ceat.201800677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Janik Marx
- Hamburg University of TechnologyInstitute of Polymer Composites Denickestrasse 15 21073 Hamburg Germany
| | - Jan-Christoph Berns
- Hamburg University of TechnologyInstitute of Polymer Composites Denickestrasse 15 21073 Hamburg Germany
| | - Claas Spille
- Hamburg University of TechnologyInstitute of Multiphase Flows Eissendorfer Strasse 38 21073 Hamburg Germany
| | - Mona Mintken
- Kiel UniversityFunctional Nanomaterials, Institute for Materials Science Kaiserstrasse 2 24143 Kiel Germany
| | - Rainer Adelung
- Kiel UniversityFunctional Nanomaterials, Institute for Materials Science Kaiserstrasse 2 24143 Kiel Germany
| | - Michael Schlüter
- Hamburg University of TechnologyInstitute of Multiphase Flows Eissendorfer Strasse 38 21073 Hamburg Germany
| | - Bodo Fiedler
- Hamburg University of TechnologyInstitute of Polymer Composites Denickestrasse 15 21073 Hamburg Germany
| |
Collapse
|
9
|
Taale M, Schütt F, Carey T, Marx J, Mishra YK, Stock N, Fiedler B, Torrisi F, Adelung R, Selhuber-Unkel C. Biomimetic Carbon Fiber Systems Engineering: A Modular Design Strategy To Generate Biofunctional Composites from Graphene and Carbon Nanofibers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:5325-5335. [PMID: 30600988 PMCID: PMC6369718 DOI: 10.1021/acsami.8b17627] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Accepted: 01/02/2019] [Indexed: 05/21/2023]
Abstract
Carbon-based fibrous scaffolds are highly attractive for all biomaterial applications that require electrical conductivity. It is additionally advantageous if such materials resembled the structural and biochemical features of the natural extracellular environment. Here, we show a novel modular design strategy to engineer biomimetic carbon fiber-based scaffolds. Highly porous ceramic zinc oxide (ZnO) microstructures serve as three-dimensional (3D) sacrificial templates and are infiltrated with carbon nanotubes (CNTs) or graphene dispersions. Once the CNTs and graphene coat the ZnO template, the ZnO is either removed by hydrolysis or converted into carbon by chemical vapor deposition. The resulting 3D carbon scaffolds are both hierarchically ordered and free-standing. The properties of the microfibrous scaffolds were tailored with a high porosity (up to 93%), a high Young's modulus (ca. 0.027-22 MPa), and an electrical conductivity of ca. 0.1-330 S/m, as well as different surface compositions. Cell viability, fibroblast proliferation rate and protein adsorption rate assays have shown that the generated scaffolds are biocompatible and have a high protein adsorption capacity (up to 77.32 ± 6.95 mg/cm3) so that they are able to resemble the extracellular matrix not only structurally but also biochemically. The scaffolds also allow for the successful growth and adhesion of fibroblast cells, showing that we provide a novel, highly scalable modular design strategy to generate biocompatible carbon fiber systems that mimic the extracellular matrix with the additional feature of conductivity.
Collapse
Affiliation(s)
- Mohammadreza Taale
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials,
Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
| | - Fabian Schütt
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials,
Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
| | - Tian Carey
- Cambridge
Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K.
| | - Janik Marx
- Institute
of Polymer and Composites, Hamburg University
of Technology, Denickestraße
15, D-21073 Hamburg, Germany
| | - Yogendra Kumar Mishra
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials,
Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
| | - Norbert Stock
- Institute
of Inorganic Chemistry, Kiel University, Max-Eyth Straße 2, D-24118 Kiel, Germany
| | - Bodo Fiedler
- Institute
of Polymer and Composites, Hamburg University
of Technology, Denickestraße
15, D-21073 Hamburg, Germany
| | - Felice Torrisi
- Cambridge
Graphene Centre, University of Cambridge, 9 JJ Thomson Avenue, Cambridge CB3 0FA, U.K.
| | - Rainer Adelung
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials,
Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
| | - Christine Selhuber-Unkel
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials,
Institute for Materials Science, Kiel University, Kaiserstraße 2, D-24143 Kiel, Germany
| |
Collapse
|
10
|
Taale M, Schütt F, Zheng K, Mishra YK, Boccaccini AR, Adelung R, Selhuber-Unkel C. Bioactive Carbon-Based Hybrid 3D Scaffolds for Osteoblast Growth. ACS APPLIED MATERIALS & INTERFACES 2018; 10:43874-43886. [PMID: 30395704 PMCID: PMC6302313 DOI: 10.1021/acsami.8b13631] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Accepted: 11/05/2018] [Indexed: 05/22/2023]
Abstract
Bone, nerve, and heart tissue engineering place high demands on the conductivity of three-dimensional (3D) scaffolds. Fibrous carbon-based scaffolds are excellent material candidates to fulfill these requirements. Here, we show that highly porous (up to 94%) hybrid 3D framework structures with hierarchical architecture, consisting of microfiber composites of self-entangled carbon nanotubes (CNTs) and bioactive nanoparticles are highly suitable for growing cells. The hybrid 3D structures are fabricated by infiltrating a combination of CNTs and bioactive materials into a porous (∼94%) zinc oxide (ZnO) sacrificial template, followed by the removal of the ZnO backbone via a H2 thermal reduction process. Simultaneously, the bioactive nanoparticles are sintered. In this way, conductive and mechanically stable 3D composites of free-standing CNT-based microfibers and bioactive nanoparticles are formed. The adopted strategy demonstrates great potential for implementing low-dimensional bioactive materials, such as hydroxyapatite (HA) and bioactive glass nanoparticles (BGN), into 3D carbon-based microfibrous networks. It is demonstrated that the incorporation of HA nanoparticles and BGN promotes the biomineralization ability and the protein adsorption capacity of the scaffolds significantly, as well as fibroblast and osteoblast adhesion. These results demonstrate that the developed carbon-based bioactive scaffolds are promising materials for bone tissue engineering and related applications.
Collapse
Affiliation(s)
- Mohammadreza Taale
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials, Institute
for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Fabian Schütt
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials, Institute
for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Kai Zheng
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Yogendra Kumar Mishra
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials, Institute
for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Aldo R. Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstr. 6, 91058 Erlangen, Germany
| | - Rainer Adelung
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials, Institute
for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| | - Christine Selhuber-Unkel
- Biocompatible
Nanomaterials, Institute for Materials Science and Functional Nanomaterials, Institute
for Materials Science, Kiel University, Kaiserstr. 2, 24143 Kiel, Germany
| |
Collapse
|