1
|
Manha Veedu R, Niemeyer N, Bäumer N, Kartha Kalathil K, Neugebauer J, Fernández G. Sterically Allowed H-type Supramolecular Polymerizations. Angew Chem Int Ed Engl 2023; 62:e202314211. [PMID: 37797248 DOI: 10.1002/anie.202314211] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/05/2023] [Accepted: 10/05/2023] [Indexed: 10/07/2023]
Abstract
The functionalization of π-conjugated scaffolds with sterically demanding substituents is a widely used tactic to suppress cofacial (H-type) stacking interactions, which may even inhibit self-assembly. Contrary to expectations, we demonstrate herein that increasing steric effects can result in an enhanced thermodynamic stability of H-type supramolecular polymers. In our approach, we have investigated two boron dipyrromethene (BODIPY) dyes with bulky phenyl (2) and mesityl (3) meso-substituents and compared their self-assembly in nonpolar media with that of a parent meso-methyl BODIPY 1 lacking bulky groups. While the enhanced steric demand induces pathway complexity, the superior thermodynamic stability of the H-type pathways can be rationalized in terms of additional enthalpic gain arising from intermolecular C-H⋅⋅⋅F-B interactions of the orthogonally arranged aromatic substituents, which overrule their inherent steric demand. Our findings underline the importance of balancing competing non-covalent interactions in self-assembly.
Collapse
Affiliation(s)
- Rasitha Manha Veedu
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Niklas Niemeyer
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
- Universität Münster, Center for Multiscale Theory and Computation, Corrensstraße 36, 48149, Münster, Germany
| | - Nils Bäumer
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| | - Krishnan Kartha Kalathil
- School of Chemical Sciences, Mahatma Gandhi University, Priyadarsini Hills, Kottayam, Kerala-686560, India
| | - Johannes Neugebauer
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
- Universität Münster, Center for Multiscale Theory and Computation, Corrensstraße 36, 48149, Münster, Germany
| | - Gustavo Fernández
- Universität Münster, Organisch-Chemisches Institut, Corrensstraße 36, 48149, Münster, Germany
| |
Collapse
|
2
|
Chi Z, Dong H, Shi G, Liu P, Ma C, Chen X. Synthesis and Characterization of Metallo-Supramolecular Polymers Based on Benzodipyrrolidone. Front Chem 2021; 9:673834. [PMID: 33996768 PMCID: PMC8113679 DOI: 10.3389/fchem.2021.673834] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 03/30/2021] [Indexed: 11/13/2022] Open
Abstract
A simple route to the preparation of benzodipyrrolidone (BDP) based monomeric building blocks containing 2,2':6',2″-terpyridines is reported from a common precursor 4'-(4-pinacolatoboronphenyl)-2,2':6',2″-terpyridine via Suzuki coupling reaction. Self-assembly polymerization with ruthenium (II) ions under mild conditions yielded a series of novel metallo-supramolecular polymers with weak donor-acceptor (D-A) structures based on benzodipyrrolidone. The structure of the bridge connected BDP with terpyridine have a significant impact on the wavelength and intensity of the intramolecular charge transfer (ICT) absorption peak. The resulting metallo-polymers exhibited strong double absorption bands around 315 nm and 510 nm involved in π-π* transitions and ICT or metal to ligand charge transfer (MLCT) absorption bands. The forming of D-A structure and coordination with ruthenium (II) ions is favorable to narrow the energy gap and the energy gaps of the resulting metallo-supramolecular polymers are 2.01 and 1.62 eV, respectively.
Collapse
Affiliation(s)
| | | | | | | | | | - Xuegang Chen
- Key Laboratory of Rubber-Plastic of Ministry of Education (QUST), School of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, China
| |
Collapse
|
3
|
Roy S, Chakraborty C. Interfacial Coordination Nanosheet Based on Nonconjugated Three-Arm Terpyridine: A Highly Color-Efficient Electrochromic Material to Converge Fast Switching with Long Optical Memory. ACS APPLIED MATERIALS & INTERFACES 2020; 12:35181-35192. [PMID: 32657568 DOI: 10.1021/acsami.0c06045] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
An electrochromic (EC) hyperbranched coordination nanosheet (CONASH) comprising a three-arm terpyridine (3tpy)-based ligand and Fe(II) ion has been synthesized by interfacial complexation at the liquid-liquid interface. The film can be easily deposited on the desired substrate such as indium tin oxide (ITO) glass. Characterization of CONASH deposited on ITO by microscopic methods reveals the homogeneous nanosheet film with an ∼350 nm thickness after 48 h of reaction. The fabricated solid-state EC device (ECD) undergoes a reversible redox reaction (Fe2+ → Fe3+) in the potential range of +3 to -2 V in ECDs accompanied with a distinct color change from intense pink to colorless for several switching cycles with a coloration time of 1.15 s and a bleaching time of 2.49 s along with a high coloration efficiency of 470.16 cm2 C-1. Besides, the nonconjugated 3tpy ligand restricts the easy electron redox conduction inside the EC film to enhance the EC memory in open-circuit condition as it shows 50% retention of its colorless state until 25 min. The long EC memory compared to other metallo-supramolecular polymers having a conjugated ligand suggests the potentiality of the 3tpy-Fe CONASH film to be used as a power-efficient EC material for modern display device applications.
Collapse
Affiliation(s)
- Susmita Roy
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad 500078, India
| | - Chanchal Chakraborty
- Department of Chemistry, Birla Institute of Technology and Science (BITS) Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, Hyderabad 500078, India
| |
Collapse
|
4
|
S L V Narayana Y, Yoshida T, Bera MK, Mondal S, Higuchi M. Ni(II)-Based Metallosupramolecular Polymer with Carboxylic Acid Groups: A Stable Platform for Smooth Imidazole Loading and the Anhydrous Proton Channel Formation. ACS OMEGA 2020; 5:14796-14804. [PMID: 32596617 PMCID: PMC7315567 DOI: 10.1021/acsomega.0c01735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
The Ni(II)-based metallosupramolecular polymer with carboxylic acid groups (polyNi) was synthesized via a 1:1 complexation of Ni(II) salt with (4,4'-(9,9-dihexyl-9H-fluorene-2,7-diyl)bis(pyridine-2,6-dicarboxylic acid) for the first time. The divalent state of Ni(II) in the polymer was confirmed by the X-ray absorption fine structure analysis. Smooth loading of imidazole molecules into polyNi proceeded with the help of the carboxylic acid groups to form the imidazole-loaded polyNi (polyNi-Im). Thermogravimetric analysis of polyNi-Im revealed that approximately three imidazole molecules were incorporated per repeating unit of polyNi. The Fourier transform infrared spectrum of polyNi-Im showed a new peak at 3219 cm-1, which shows an ∼73 cm-1 enhancement to -N-H of pristine imidazole. The peak suggests the formation of an imidazolium cation in the polymer. Powder X-ray diffraction indicated no degradation of the polymer structure during the imidazole loading because the diffraction pattern of polyNi-Im was almost the same as that of polyNi except for the presence of peaks corresponding to the imidazole molecules. Interestingly, the scanning electron microscopy measurement showed a large morphological change to uniform spherical particles by loading imidazole to the polymer. PolyNi-Im exhibited good proton conductivity (1.05 × 10-2 mS/cm) at a high temperature (120 °C), which is around 7 orders of magnitude higher than that of pristine polyNi because of the proton conduction pathway formation along the polymer chains by the incorporated imidazole molecules.
Collapse
Affiliation(s)
- Yemineni S L V Narayana
- Electronic Functional Macromolecules
Group, National Institute for Materials
Science (NIMS), Tsukuba 305-0044, Japan
| | - Takefumi Yoshida
- Electronic Functional Macromolecules
Group, National Institute for Materials
Science (NIMS), Tsukuba 305-0044, Japan
| | - Manas Kumar Bera
- Electronic Functional Macromolecules
Group, National Institute for Materials
Science (NIMS), Tsukuba 305-0044, Japan
| | - Sanjoy Mondal
- Electronic Functional Macromolecules
Group, National Institute for Materials
Science (NIMS), Tsukuba 305-0044, Japan
| | - Masayoshi Higuchi
- Electronic Functional Macromolecules
Group, National Institute for Materials
Science (NIMS), Tsukuba 305-0044, Japan
| |
Collapse
|
5
|
Yoshida T, Ninomiya Y, Higuchi M. Reversible four-color electrochromism triggered by the electrochemical multi-step redox of Cr-based metallo-supramolecular polymers. RSC Adv 2020; 10:10904-10909. [PMID: 35492949 PMCID: PMC9050427 DOI: 10.1039/d0ra00676a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 02/28/2020] [Indexed: 12/12/2022] Open
Abstract
Four color electrochromism (yellow, magenta, blue, and navy) has been achieved in Cr(iii)-based metallo-supramolecular polymers (polyCr), which were synthesized by 1 : 1 complexation of Cr ions and 1,4-di[[2,2′:6′,2′′-terpyridin]-4′-yl]benzene (L).
Collapse
Affiliation(s)
- Takefumi Yoshida
- Electronic Functional Macromolecules Group
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Yoshikazu Ninomiya
- Electronic Functional Macromolecules Group
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Masayoshi Higuchi
- Electronic Functional Macromolecules Group
- National Institute for Materials Science (NIMS)
- Tsukuba 305-0044
- Japan
| |
Collapse
|
6
|
Xiong S, Zhang J, Wang R, Wu B, Chu J, Wang X, Zhang R, Gong M, Li Z, Qu M, Chen Z. Enhancing the Electrochromic Properties of Polyaniline through Incorporating Terpyridine Units and Coordination Bonding with Transition Metal Ions. ChemistrySelect 2019. [DOI: 10.1002/slct.201904040] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Shanxin Xiong
- College of Chemistry and Chemical EngineeringXi'an University of Science and Technology Xi'an 710054 PR China
- Key Laboratory of Coal Resources Exploration and Comprehensive UtilizationMinistry of Natural Resources Xi'an 710021 PR China
| | - Jiaojiao Zhang
- College of Chemistry and Chemical EngineeringXi'an University of Science and Technology Xi'an 710054 PR China
| | - Ru Wang
- College of Chemistry and Chemical EngineeringXi'an University of Science and Technology Xi'an 710054 PR China
| | - Bohua Wu
- College of Chemistry and Chemical EngineeringXi'an University of Science and Technology Xi'an 710054 PR China
| | - Jia Chu
- College of Chemistry and Chemical EngineeringXi'an University of Science and Technology Xi'an 710054 PR China
| | - Xiaoqin Wang
- College of Chemistry and Chemical EngineeringXi'an University of Science and Technology Xi'an 710054 PR China
| | - Runlan Zhang
- College of Chemistry and Chemical EngineeringXi'an University of Science and Technology Xi'an 710054 PR China
| | - Ming Gong
- College of Chemistry and Chemical EngineeringXi'an University of Science and Technology Xi'an 710054 PR China
| | - Zhen Li
- College of Chemistry and Chemical EngineeringXi'an University of Science and Technology Xi'an 710054 PR China
- Key Laboratory of Coal Resources Exploration and Comprehensive UtilizationMinistry of Natural Resources Xi'an 710021 PR China
| | - Mengnan Qu
- College of Chemistry and Chemical EngineeringXi'an University of Science and Technology Xi'an 710054 PR China
| | - Zhenming Chen
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive UtilizationHezhou University Hezhou 542899 PR China
| |
Collapse
|
7
|
Mubeena S, Chatterji A. Hierarchical and synergistic self-assembly in composites of model wormlike micellar-polymers and nanoparticles results in nanostructures with diverse morphologies. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2019; 42:50. [PMID: 31011936 DOI: 10.1140/epje/i2019-11811-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2018] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Using Monte Carlo simulations, we investigate the self-assembly of model nanoparticles inside a matrix of model equilibrium polymers (or matrix of wormlike micelles) as a function of the polymeric matrix density and the excluded volume parameter between polymers and nanoparticles. In this paper, we show morphological transitions in the system architecture via synergistic self-assembly of nanoparticles and the equilibrium polymers. In a synergistic self-assembly, the resulting morphology of the system is a result of the interaction between the nanoparticles and the polymers and corresponding re-organization of both the assemblies. This is different from the polymer templating method. We report the morphological transition of nanoparticle aggregates from percolating network-like structures to non-percolating clusters as a result of the change in the excluded volume parameter between nanoparticles and polymeric chains. Corresponding to the change in the self-assembled structures of nanoparticles, the matrix of equilibrium polymers also simultaneously shows a transition from a dispersed state to a percolating network-like structure formed by the clusters of polymeric chains. We show that the shape anisotropy of the nanoparticle clusters formed is governed by the polymeric density resulting in rod-like, sheet-like or other anisotropic nanoclusters. It is also shown that the pore shape and the pore size of the porous network of nanoparticles can be changed by changing the minimum approaching distance between nanoparticles and polymers. We provide a theoretical understanding of why various nanostructures with very different morphologies are obtained.
Collapse
Affiliation(s)
- Shaikh Mubeena
- Department of Physics, IISER-Pune, Dr. Homi Bhabha Road, 411008, Pune, India
| | - Apratim Chatterji
- Department of Physics, IISER-Pune, Dr. Homi Bhabha Road, 411008, Pune, India.
- Center for Energy Science, IISER-Pune, Dr. Homi Bhabha Road, 411008, Pune, India.
| |
Collapse
|
8
|
Yoshida T, Narayana YSLV, Abe H, Higuchi M. Slow magnetic relaxation in a Tb(iii)-based coordination polymer. Dalton Trans 2018; 47:16066-16071. [PMID: 30302445 DOI: 10.1039/c8dt03125h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Tb(iii)-based coordination polymer (polyTb) was synthesized by complexation of Tb(NO3)3·(6H2O) and 4',4''''-[1,1'-biphenyl]-4,4'-diylbis[6,6''-bis(ethoxycarbonyl)2':6',2''-terpyridine](L). The polymer structure was determined by Job's plots, DFT calculation, and X-ray absorption fine structure (XAFS) measurement. Job's plots indicated that the mole ratio (Tb ion : L) is 1 : 1. The optimized model structures suggested a La model: the LaN6(O[double bond, length as m-dash]C)2 model. The bond distances of La-O and La-N are ∼2.80 Å and 2.60 Å, respectively. The EXAFS fitting indicated that the bond distances of Tb-O and Tb-N are 2.65 Å and 2.95 Å, respectively. polyTb shows field-induced magnetic relaxation in the solid and solution state. The luminescence of polyTb, originating from an f-f transition, was observed (φ = 6.9%). polyTb formed a porous structure on a Si substrate, whereas a fibrous complex structure was formed on glass. polyTb chains are orientated on glass, which were determined by XRD.
Collapse
Affiliation(s)
- Takefumi Yoshida
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan.
| | - Yemineni S L V Narayana
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan.
| | - Hitoshi Abe
- Institute of Materials Structure Science High Energy Accelerator Research Organization (KEK) 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan and Department of Materials Structure Science, School of High Energy Accelerator Science, SOKENDAI (the Graduate University for Advanced Studies) 1-1 Oho, Tsukuba, Ibaraki 305-0801, Japan
| | - Masayoshi Higuchi
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS), Tsukuba 305-0044, Japan.
| |
Collapse
|
9
|
Narayana YSV, Chakraborty C, Rana U, Ninomiya Y, Yoshida T, Higuchi M. Modulation of a coordination structure in a europium(iii)-based metallo-supramolecular polymer for high proton conduction. RSC Adv 2018; 8:37193-37199. [PMID: 35557791 PMCID: PMC9089287 DOI: 10.1039/c8ra07405d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/29/2018] [Indexed: 11/21/2022] Open
Abstract
Developing high proton conducting solid materials is significant in the field of fuel cells. A europium(iii)-based metallo-supramolecular polymer with uncoordinated carboxylic acids (PolyEu-H) was successfully synthesized by modifying the synthesis conditions. The proton conductivity was enhanced with increasing the relative humidity (RH) from 30 to 95% RH. PolyEu-H showed about 104 times higher proton conductivity than the polymer with coordinated carboxylic acids (PolyEu) and about 400 times higher than the polymer without carboxylic acids (PolyEu-2). The proton conductivity of PolyEu-H reached 4.45 × 10−2 S cm−1 at 95% RH and 25 °C and 5.6 × 10−2 S cm−1 at 75 °C. The activation energy, Ea was ultralow (0.04 eV), which indicates proton conduction based on the Grotthuss mechanism. The results indicate that efficient proton conduction occurs through proton channels formed by moisture in PolyEu-H. Developing high proton conducting solid materials is significant in the field of fuel cells. We firstly synthesized europium(iii)-based metallo-supramolecular polymer with uncoordinated carboxylic acids (PolyEu-H), for high proton conduction.![]()
Collapse
Affiliation(s)
- Yemineni S. L. V. Narayana
- Electronic Functional Macromolecules Group
- National Institute for Material Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Chanchal Chakraborty
- Electronic Functional Macromolecules Group
- National Institute for Material Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Utpal Rana
- Electronic Functional Macromolecules Group
- National Institute for Material Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Yoshikazu Ninomiya
- Electronic Functional Macromolecules Group
- National Institute for Material Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Takefumi Yoshida
- Electronic Functional Macromolecules Group
- National Institute for Material Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Masayoshi Higuchi
- Electronic Functional Macromolecules Group
- National Institute for Material Science (NIMS)
- Tsukuba 305-0044
- Japan
| |
Collapse
|
10
|
Chakraborty C, Rana U, Pandey RK, Moriyama S, Higuchi M. One-Dimensional Anhydrous Proton Conducting Channel Formation at High Temperature in a Pt(II)-Based Metallo-Supramolecular Polymer and Imidazole System. ACS APPLIED MATERIALS & INTERFACES 2017; 9:13406-13414. [PMID: 28368106 DOI: 10.1021/acsami.6b12963] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
One dimensional (1D) Pt(II)-based metallo-supramolecular polymer with carboxylic acids (polyPtC) was synthesized using a new asymmetrical ditopic ligand with a pyridine moiety bearing two carboxylic acids. The carboxylic acids in the polymer successfully served as apohosts for imidazole loaded in the polymer interlayer scaffold to generate highly ordered 1D imidazole channels through the metallo-supramolecular polymer chains. The 1D structure of imidazole loaded polymer (polyPtC-Im) was analyzed in detail by thermogravimetric analysis, powder X-ray diffraction, scanning electron microscopy, Fourier transform infrared spectroscopy, and ultraviolet-visible and photoluminescence spectroscopic measurements. PolyPtC-Im exhibited proton conductivity of 1.5 × 10-5 S cm-1 at 120 °C under completely anhydrous conditions, which is 6 orders of magnitude higher than that of the pristine metallo-supramolecular polymer.
Collapse
Affiliation(s)
- Chanchal Chakraborty
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS) , Tsukuba 305-0044, Japan
- International Center for Materials Nanoarchitectonics (MANA), NIMS , Tsukuba 305-0044, Japan
| | - Utpal Rana
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS) , Tsukuba 305-0044, Japan
| | - Rakesh K Pandey
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS) , Tsukuba 305-0044, Japan
| | - Satoshi Moriyama
- International Center for Materials Nanoarchitectonics (MANA), NIMS , Tsukuba 305-0044, Japan
| | - Masayoshi Higuchi
- Electronic Functional Macromolecules Group, National Institute for Materials Science (NIMS) , Tsukuba 305-0044, Japan
| |
Collapse
|