1
|
Khavani M, Mehranfar A, Mofrad MRK. On the interactions of peptides with gold nanoparticles: effects of sequence and size. J Biomol Struct Dyn 2024; 42:4429-4441. [PMID: 37306472 DOI: 10.1080/07391102.2023.2220816] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/28/2023] [Indexed: 06/13/2023]
Abstract
Peptide-based self-assembly and synthesis techniques have emerged as a viable approach to designing active and stable inorganic nanostructures in aqueous media. In the present study, we use all-atom molecular dynamic (MD) simulations to study the interactions of ten short peptides (namely A3, AgBP1, AgBP2, AuBP1, AuBP2, GBP1, Midas2, Pd4, Z1, and Z2) with different gold nanoparticles (of different diameters ranging from 2 to 8 nm). Our MD simulation results imply that the gold nanoparticles have a remarkable effect on the stability and conformational properties of peptides. Moreover, the size of the gold nanoparticles and the type of peptide amino acid sequences play important roles in the stability of the peptide-AuNP complexes. Our results reveal that some amino acids such as Tyr, Phe, Met, Lys, Arg, and Gln have direct contact with the metal surface in comparison with Gly, Ala, Pro, Thr, and Val residues. The peptide adsorption on the surface of the gold nanoparticles is favorable from the energetic viewpoint, in which the van der Waals (vdW) interactions between the peptides and metal surface can be considered as one of the driving forces for the complexation process. The calculated Gibbs binding energies indicate that AuNPs have more sensitivity against the GBP1 peptide in the presence of different peptides. Overall, the results of this study can provide new insight into the peptide interaction with the gold nanoparticles from the molecular viewpoint, which can be important for designing new biomaterials based on the peptides and gold nanoparticles.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohammad Khavani
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California, USA
| | - Aliyeh Mehranfar
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California, USA
| | - Mohammad R K Mofrad
- Molecular Cell Biomechanics Laboratory, Departments of Bioengineering and Mechanical Engineering, University of California Berkeley, Berkeley, California, USA
| |
Collapse
|
2
|
Indurkar A, Choudhary R, Rubenis K, Nimbalkar M, Sarakovskis A, Boccaccini AR, Locs J. Amorphous Calcium Phosphate and Amorphous Calcium Phosphate Carboxylate: Synthesis and Characterization. ACS OMEGA 2023; 8:26782-26792. [PMID: 37546623 PMCID: PMC10399191 DOI: 10.1021/acsomega.3c00796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 06/27/2023] [Indexed: 08/08/2023]
Abstract
Amorphous calcium phosphate (ACP) is the first solid phase precipitated from a supersaturated calcium phosphate solution. Naturally, ACP is formed during the initial stages of biomineralization and stabilized by an organic compound. Carboxylic groups containing organic compounds are known to regulate the nucleation and crystallization of hydroxyapatite. Therefore, from a biomimetic point of view, the synthesis of carboxylate ions containing ACP (ACPC) is valuable. Usually, ACP is synthesized with fewer steps than ACPC. The precipitation reaction of ACP is rapid and influenced by pH, temperature, precursor concentration, stirring conditions, and reaction time. Due to phosphates triprotic nature, controlling pH in a multistep approach becomes tedious. Here, we developed a new ACP and ACPC synthesis approach and thoroughly characterized the obtained materials. Results from vibration spectroscopy, nuclear magnetic resonance (NMR), X-ray photoelectron spectroscopy (XPS), true density, specific surface area, and ion release studies have shown a difference in the physiochemical properties of the ACP and ACPC. Additionally, the effect of a carboxylic ion type on the physiochemical properties of ACPC was characterized. All of the ACPs and ACPCs were synthesized in sterile conditions, and in vitro analysis was performed using MC-3T3E1 cells, revealing the cytocompatibility of the synthesized ACPs and ACPCs, of which the ACPC synthesized with citrate showed the highest cell viability.
Collapse
Affiliation(s)
- Abhishek Indurkar
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka Street 3, LV-1007 Riga, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Kipsalas Street 6A, LV-1048 Riga, Latvia
| | - Rajan Choudhary
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka Street 3, LV-1007 Riga, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Kipsalas Street 6A, LV-1048 Riga, Latvia
| | - Kristaps Rubenis
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka Street 3, LV-1007 Riga, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Kipsalas Street 6A, LV-1048 Riga, Latvia
| | | | - Anatolijs Sarakovskis
- Institute
of Solid State Physics, University of Latvia, 8 Kengaraga Str., LV-1063 Riga, Latvia
| | - Aldo R. Boccaccini
- Institute
of Biomaterials, Department of Material Science and Engineering, University of Erlangen-Nuremberg, 91085 Erlangen, Germany
| | - Janis Locs
- Rudolfs
Cimdins Riga Biomaterials Innovations and Development Centre of RTU,
Institute of General Chemical Engineering, Faculty of Materials Science
and Applied Chemistry, Riga Technical University, Pulka Street 3, LV-1007 Riga, Latvia
- Baltic
Biomaterials Centre of Excellence, Headquarters
at Riga Technical University, Kipsalas Street 6A, LV-1048 Riga, Latvia
| |
Collapse
|
3
|
Mathew R, Stevensson B, Pujari-Palmer M, Wood CS, Chivers PRA, Spicer CD, Autefage H, Stevens MM, Engqvist H, Edén M. Nuclear Magnetic Resonance and Metadynamics Simulations Reveal the Atomistic Binding of l-Serine and O-Phospho-l-Serine at Disordered Calcium Phosphate Surfaces of Biocements. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:8815-8830. [PMID: 36248225 PMCID: PMC9558313 DOI: 10.1021/acs.chemmater.2c02112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/09/2022] [Indexed: 06/16/2023]
Abstract
Interactions between biomolecules and structurally disordered calcium phosphate (CaP) surfaces are crucial for the regulation of bone mineralization by noncollagenous proteins, the organization of complexes of casein and amorphous calcium phosphate (ACP) in milk, as well as for structure-function relationships of hybrid organic/inorganic interfaces in biomaterials. By a combination of advanced solid-state NMR experiments and metadynamics simulations, we examine the detailed binding of O-phospho-l-serine (Pser) and l-serine (Ser) with ACP in bone-adhesive CaP cements, whose capacity of gluing fractured bone together stems from the close integration of the organic molecules with ACP over a subnanometer scale. The proximity of each carboxy, aliphatic, and amino group of Pser/Ser to the Ca2+ and phosphate species of ACP observed from the metadynamics-derived models agreed well with results from heteronuclear solid-state NMR experiments that are sensitive to the 13C-31P and 15N-31P distances. The inorganic/organic contacts in Pser-doped cements are also contrasted with experimental and modeled data on the Pser binding at nanocrystalline HA particles grown from a Pser-bearing aqueous solution. The molecular adsorption is driven mainly by electrostatic interactions between the negatively charged carboxy/phosphate groups and Ca2+ cations of ACP, along with H bonds to either protonated or nonprotonated inorganic phosphate groups. The Pser and Ser molecules anchor at their phosphate/amino and carboxy/amino moieties, respectively, leading to an extended molecular conformation across the surface, as opposed to an "upright standing" molecule that would result from the binding of one sole functional group.
Collapse
Affiliation(s)
- Renny Mathew
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Baltzar Stevensson
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| | - Michael Pujari-Palmer
- Applied
Material Science, Department of Engineering, Uppsala University, Uppsala SE-751 21, Sweden
| | - Christopher S. Wood
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm SE-171 77, Sweden
| | - Phillip R. A. Chivers
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm SE-171 77, Sweden
| | - Christopher D. Spicer
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm SE-171 77, Sweden
- Department
of Chemistry, University of York, Heslington, York YO10 5DD, U.K.
| | - Hélène Autefage
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm SE-171 77, Sweden
| | - Molly M. Stevens
- Department
of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm SE-171 77, Sweden
- Department
of Materials, Department of Bioengineering, and Institute of Biomedical
Engineering, Imperial College London, London SW7 2AZ, U.K.
| | - Håkan Engqvist
- Applied
Material Science, Department of Engineering, Uppsala University, Uppsala SE-751 21, Sweden
| | - Mattias Edén
- Department
of Materials and Environmental Chemistry, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
4
|
Chemical Bonding of Biomolecules to the Surface of Nano-Hydroxyapatite to Enhance Its Bioactivity. COATINGS 2022. [DOI: 10.3390/coatings12070999] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Hydroxyapatite (HA) is a significant constituent of bones or teeth and is widely used as an artificial bone graft. It is often used to replace the lost bones or in reconstructing alveolar bones before dental implantation. HA with biological functions finds its importance in orthopedic surgery and dentistry to increase the local concentration of calcium ions, which activate the growth and differentiation of mesenchymal stem cells (MSC). To make relevant use of HA in bone transplantation, the surfaces of orthopedic and dental implants are frequently coated with nanosized hydroxyapatite (nHA), but its low dispersibility and tendency to form aggregates, the purpose of the surface modification of bone implants is defeated. To overcome these drawbacks and to improve the histocompatibility of bone implants or to use nHA in therapeutic applications of implants in the treatment of bone diseases, various studies suggested the attachment of biomolecules (growth factors) or drugs through chemical bonding at the surface of nHA. The growth factors or drugs bonded physically at the surface of nHA are mostly unstable and burst released immediately. Therefore, reported studies suggested that the surface of nHA needs to be modified through the chemical bonding of biologically active molecules at the surface of bone implants such as proteins, peptides, or naturally occurring polysaccharides to prevent the aggregation of nHA and to get homogenous dispersion of nHA in solution. The role of irradiation in producing bioactive and antibacterial nHA through morphological variations in surfaces of nHA is also summarized by considering internal structures and the formation of reactive oxygen species on irradiation. This mini-review aims to highlight the importance of small molecules such as proteins, peptides, drugs, and photocatalysts in surface property modification of nHA to achieve stable, bioactive, and antibacterial nHA to act as artificial bone implants (scaffolds) in combination with biodegradable polymers.
Collapse
|
5
|
Zeng J, Yang S, Yu H, Xu Z, Quan X, Zhou J. Simulation Insight into the Synergic Role of Citrate and Polyaspartic Peptide in Biomineralization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:3410-3419. [PMID: 33691409 DOI: 10.1021/acs.langmuir.0c03626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Hydroxyapatite (HAP) is one of the most important inorganic components in biological minerals such as bones and teeth. More than 90% of the total citrate is accumulated in human bones and other biomineralized tissues. In addition, mineralizing proteins are enriched in glutamate and aspartate residues, which are important for their mineral-regulating properties. However, how citrate ions (CITs) and/or acidic amino acids regulate the formation of HAP is still unclear. In this work, molecular dynamics simulations were performed to study how CIT regulates the adsorption behavior of polyaspartic acid (PASP) on the HAP surface in the calcium phosphate solution. The simulation results indicate that PASP can be used as an ion chelator to complex Ca2+ and can serve as templates for HAP mineralization by templating the distribution of Ca2+ on its surface, which are attributed to the -COO- and α-helix structure. Most importantly, the orientation distributions of PASP in all systems are narrower with the help of CIT, thereby PASP can be adsorbed on the HAP surface stably with a "lying-down" orientation. This indicates that CIT can be used as a bridging agent to bond the acidic peptide to the HAP surface in biomineralization. Thus, the synergic role of CIT and the acidic peptide on the HAP surface were revealed in this work, which can provide new insights into the interfacial phenomena during the biomineralization.
Collapse
Affiliation(s)
- Jinxiang Zeng
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Shengjiang Yang
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Hai Yu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Zhiyong Xu
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xuebo Quan
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| | - Jian Zhou
- School of Chemistry and Chemical Engineering, Guangdong Provincial Key Lab for Green Chemical Product Technology, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
6
|
Xu Z, He Z, Quan X, Sun D, Miao Z, Yu H, Yang S, Chen Z, Zeng J, Zhou J. Molecular simulations of charged complex fluids: A review. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
7
|
Wang X, Yang X, Chen H, Yang X, Xu Z. Entropy-Enthalpy Compensation in Peptide Adsorption on Solid Surfaces: Dependence on Surface Hydration. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10822-10829. [PMID: 32813538 DOI: 10.1021/acs.langmuir.0c01845] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Although protein adsorption at the solid-water interface is of immense importance, understanding the crucial role of the water phase in mediating protein-surface interactions is lacking, particularly due to the lack of fundamental thermodynamic data. Herein, we have performed complicated free energy calculations and successfully extracted the entropy and enthalpy changes of molecular adsorption on solids. Using the gold and graphene as the surface models with distinct affinities to the water phase, we successfully unravel the sharply opposite manners of entropy-enthalpy compensation in driving water and tripeptide adsorptions on two surfaces. Though the thermodynamic features of water adsorption on surface are enthalpically dominated based on the positions of free energy barriers and minima, the favorable entropy term significantly decreases the free energy barrier and further stabilizes the adsorbate at the adsorption site on the graphene surface. For the peptide, the shape of the adsorption free energy profile is jointly determined by the enthalpy and entropy changes, which, however, alternatively act the driving force to promote the peptide adsorption on the Au surface and graphene surface. The distinct structural and dynamic properties of solid-liquid interfaces account for the special role of the interfacial water phase in regulating the competitive relationship between the entropy and enthalpy variations.
Collapse
Affiliation(s)
- Xiang Wang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Xinmofanmalu 30, Nanjing 210009, China
| | - Xiao Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Xinmofanmalu 30, Nanjing 210009, China
| | - Huijun Chen
- Obstetrics and Gynecology Department, Zhongnan Hospital of Wuhan University, #169 East Lake Road, Wuchang District, Wuhan 430017, China
| | - Xiaoning Yang
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Xinmofanmalu 30, Nanjing 210009, China
| | - Zhijun Xu
- College of Chemical Engineering, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Xinmofanmalu 30, Nanjing 210009, China
- Zhangjiagang Institute of Nanjing Tech University, Jiangfanlu 8, Zhangjiagang 215699, China
| |
Collapse
|
8
|
Huang K, Yang MS, Tang YJ, Ling SY, Pan F, Liu XD, Chen J. Porous shape memory scaffold of dextran and hydroxyapatite for minimum invasive implantation for bone tissue engineering applications. J Biomater Appl 2020; 35:823-837. [PMID: 32842853 DOI: 10.1177/0885328220950062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Minimally invasive implantation of a porous scaffold of large volume into bone defect site remains a challenge. Scaffolds based on shape memory polymer (SMP) show potential to be delivered in the compact form via minimally invasive surgery. The present study chooses poly (ε-caprolactone)-diols (PCL-diols) as the SMP to cross-link carboxyl dextran via ester bonds together with particle leaching method to yield a porous SMP scaffold. The inner surfaces of porous SMP scaffold are then mineralized via in situ precipitation to yield mineralized porous SMP-hydroxyapatite (SMP-HA) scaffold. The porous SMP-HA scaffold possesses pore size of 400-500 μm, with HA particles uniformly distributed and orientationally aligned on the inner surfaces of scaffold. X-ray diffraction (XRD) and differential scanning calorimetry (DSC) are carried out to identify the HA deposition. The phase transition temperature of the scaffold is adjusted to 38°C via changing the dosage of PCL (molecule weight: 2800) to endow the scaffold with shape deformation and fixed properties, as well as well-performed shape recovery property under body temperature. Bone marrow mesenchymal stem cells (BMSCs) adhere on the inner surfaces of SMP-HA scaffold, exhibiting larger spreading area when compared to cells adhered on SMP scaffold without HA, promoting its osteogenesis. In vivo degradation showed that the scaffold degrades completely after 6 months post-implantation. At the same time, significant tissue and capillary invasion indicated that the present porous SMP-HA scaffold hold great promise towards bone tissue engineering applications.
Collapse
Affiliation(s)
- Kai Huang
- Shanghai Zhabei District Library, Shanghai, China
| | - Mo-Song Yang
- Shanghai Zhabei District Library, Shanghai, China
| | - Yu-Jun Tang
- Shanghai Zhabei District Library, Shanghai, China
| | | | - Feng Pan
- Shanghai Zhabei District Library, Shanghai, China
| | | | - Jun Chen
- Department of Orthopedic, Zhabei Central Hospital of Jin'an District, Shanghai, China
| |
Collapse
|
9
|
Huang H, Du M, Chen J, Zhong S, Wang J. Preparation and characterization of abalone shells derived biological mesoporous hydroxyapatite microspheres for drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 113:110969. [PMID: 32487387 DOI: 10.1016/j.msec.2020.110969] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Revised: 03/13/2020] [Accepted: 04/13/2020] [Indexed: 01/03/2023]
Abstract
The rapid growth of the abalone industry has brought a great burden to the environment because of their inedible shells. Aiming at environmental and resource sustainability, porous microspheres of carbonate-substituted hydroxyapatite (HAP) were prepared by a hydrothermal method using abalone shells; then, they were further used as a carrier for doxorubicin (DOX) in a drug delivery system. The porous HAP microspheres were approximately 6 μm in size with a considerable specific surface area and average pore size (128.6659 cm2/g and 9.064 nm, respectively), which ensured excellent drug-handling capacity (95.542%). In addition, the pH responsiveness of the drug release system was favorable for effective in vivo drug release in an acidic tumor microenvironment. Moreover, the drug-loaded microspheres could effectively induce apoptosis of MCF-7 cells but were less cytotoxic to MC3T3-E1 cells. Because of its good biocompatibility, high drug loading capacity and controlled drug release property, the porous microspheres prepared in this experiment have potential application value in drug delivery and tumor therapy; furthermore, they make full use of abalone shells, providing environmental sustainability.
Collapse
Affiliation(s)
- Hao Huang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, PR China
| | - Mingzu Du
- Marine College, Shandong University, Weihai 264209, PR China
| | - Jingdi Chen
- Marine College, Shandong University, Weihai 264209, PR China.
| | - Shengnan Zhong
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, PR China
| | - Jianhua Wang
- Institute of Biomedical and Pharmaceutical Technology, Fuzhou University, Fuzhou 350002, PR China
| |
Collapse
|
10
|
Ling C, Zhao W, Wang Z, Chen J, Ustriyana P, Gao M, Sahai N. Structure-Activity Relationships of Hydroxyapatite-Binding Peptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2729-2739. [PMID: 32078330 DOI: 10.1021/acs.langmuir.9b03779] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Elucidating the structure-activity relationships between biomolecules and hydroxyapatite (HAP) is essential to understand bone mineralization mechanisms, develop HAP-based implants, and design drug delivery vectors. Here, four peptides identified by phage display were selected as model HAP-binding peptides (HBPs) to examine the effects of primary amino acid sequence, phosphorylation of serine, presence of charged amino acid residues, and net charge of the peptide on (1) HAP-binding affinity, (2) secondary conformation, and (3) HAP nucleation and crystal growth. Binding affinities were determined by obtaining adsorption isotherms by mass depletion, and the conformations of the peptides in solution and bound states were observed by circular dichroism. Results showed that the magnitude of the net charge primarily controlled binding affinity, with little dependence on the other HBP features. The binding affinity and conformation results were in good agreement with our previous molecular dynamics simulation results, thus providing an excellent benchmark for the simulations. Transmission electron microscopy was used to explore the effect of these HBPs on calcium phosphate (Ca-PO4) nucleation and growth. Results indicated that HBPs may inhibit nucleation of Ca-PO4 nanoparticles and their phase transition to crystalline HAP, as well as control crystal growth rates in specific crystallographic directions, thus changing the classical needle-like morphology of inorganically grown HAP crystals to a biomimetic plate-like morphology.
Collapse
Affiliation(s)
- Chen Ling
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Weilong Zhao
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Ziqiu Wang
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Jiadong Chen
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Putu Ustriyana
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Min Gao
- Advanced Materials and Liquid Crystal Institute, Kent State University, Kent, Ohio 44242, United States
| | - Nita Sahai
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
- Department of Geosciences, The University of Akron, Akron, Ohio 44325, United States
- Integrated Bioscience Program, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
11
|
Xu Z, Yang X, Wei Q, Zhao W, Cui B, Yang X, Sahai N. Quantitatively Identifying the Roles of Interfacial Water and Solid Surface in Governing Peptide Adsorption. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7932-7941. [PMID: 29888924 DOI: 10.1021/acs.langmuir.8b01189] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Understanding the molecular mechanism of protein adsorption on solids is critical to their applications in materials synthesis and tissue engineering. Although the water phase at the surface/water interface has been recognized as three types: bulk water, intermediate water phase and surface-bound water layers, the roles of the water and surface in determining the protein adsorption are not clearly identified, particularly at the quantitative level. Herein, we provide a methodology involving the combination of microsecond strengthen sampling simulation and force integration to quantitatively characterize the water-induced contribution and the peptide-surface interactions into the adsorption free energy. Using hydroxyapatite and graphene surfaces as examples, we demonstrate how the distinct interfacial features dominate the delicate force balance between these two thermodynamics parameters, leading to surface preference/resistance to peptide adsorption. Specifically, the water layer provides sustained repelling force against peptide adsorption, as indicated by a monotonic increase in the water-induced free energy profile, whereas the contribution from the surface-peptide interactions is thermodynamically favorable to peptide adsorptions. More importantly, the revealed adsorption mechanism is critically dictated by the distribution of water phase, which plays a crucial role in establishing the force balance between the interactions of the peptide with the water layer and the surface. For the HAP surface, the charged peptide exhibits strong binding affinity to the surface, due to the controlling contribution of peptide-surface interaction in the intermediate water phase. The surface-bound water layers are observed as the origin of bioresistance of solid surfaces toward the adsorption of charge-neutral peptides. The preferred peptide adsorption on the graphene, however, is dominated by the surface-induced component at the water layers adjacent to the surface. Our results further elucidate that the intermediate water phase significantly shortens the effective range of the surface dispersion force, in contrast to the observation on the hydrophilic surface.
Collapse
Affiliation(s)
| | | | | | - Weilong Zhao
- Department of Polymer Science , University of Akron , Akron , Ohio 44325-3909 , United States
| | | | | | - Nita Sahai
- Department of Polymer Science , University of Akron , Akron , Ohio 44325-3909 , United States
| |
Collapse
|
12
|
Wei Q, Zhao W, Yang Y, Cui B, Xu Z, Yang X. Method Evaluations for Adsorption Free Energy Calculations at the Solid/Water Interface through Metadynamics, Umbrella Sampling, and Jarzynski's Equality. Chemphyschem 2018; 19:690-702. [DOI: 10.1002/cphc.201701241] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 12/18/2017] [Indexed: 12/18/2022]
Affiliation(s)
- Qichao Wei
- College of Chemical Engineering; State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; Nanjing 210009 P.R. China
| | - Weilong Zhao
- Department of Polymer Science; University of Akron; Akron OH 44325-3909 USA
| | - Yang Yang
- Department of Chemistry; Haverford College; Haverford PA 19041 USA
| | - Beiliang Cui
- Network Information Center; Nanjing Tech University; Nanjing 210009 P.R. China
| | - Zhijun Xu
- College of Chemical Engineering; State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; Nanjing 210009 P.R. China
| | - Xiaoning Yang
- College of Chemical Engineering; State Key Laboratory of Materials-Oriented Chemical Engineering; Nanjing Tech University; Nanjing 210009 P.R. China
| |
Collapse
|
13
|
Chen W, Zhao W, Wu YN, Wang Y, Zhang B, Li F, Chen Q, Qi Z, Xu Z. Origin of gypsum growth habit difference as revealed by molecular conformations of surface-bound citrate and tartrate. CrystEngComm 2018. [DOI: 10.1039/c8ce00669e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Correlation of the microscopic gypsum–organic interfacial structural information with the macroscopic crystal morphology difference induced by different organic acids.
Collapse
Affiliation(s)
- Wei Chen
- State Key Lab of Pollution Control and Resource Reuse Study
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- P.R. China
| | - Weilong Zhao
- Department of Polymer Science
- The University of Akron
- Akron
- USA
| | - Yi-nan Wu
- State Key Lab of Pollution Control and Resource Reuse Study
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- P.R. China
| | - Ying Wang
- State Key Lab of Pollution Control and Resource Reuse Study
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- P.R. China
| | - Bingru Zhang
- State Key Lab of Pollution Control and Resource Reuse Study
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- P.R. China
| | - Fengting Li
- State Key Lab of Pollution Control and Resource Reuse Study
- College of Environmental Science and Engineering
- Tongji University
- Shanghai 200092
- P.R. China
| | - Qian Chen
- Department of Orthopaedic Surgery
- Zhongshan Hospital
- Fudan University
- Shanghai 200032
- China
| | - Zeming Qi
- National Synchrotron Radiation Laboratory
- University of Science and Technology of China
- Hefei
- China
| | - Zhijun Xu
- College of Chemical Engineering
- State Key Laboratory of Materials-Oriented Chemical Engineering
- Nanjing Tech University
- Nanjing 210009
- China
| |
Collapse
|
14
|
Ivanchenko P, Delgado-López JM, Iafisco M, Gómez-Morales J, Tampieri A, Martra G, Sakhno Y. On the surface effects of citrates on nano-apatites: evidence of a decreased hydrophilicity. Sci Rep 2017; 7:8901. [PMID: 28827557 PMCID: PMC5567200 DOI: 10.1038/s41598-017-09376-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 07/26/2017] [Indexed: 11/09/2022] Open
Abstract
The surface structure and hydrophilicity of synthetic nanocrystalline apatite with strongly bound citrates on their surface are here investigated at the molecular level, by combining advanced IR spectroscopy, microgravimetry and adsorption microcalorimetry. Citrate are found to form unidentate-like and ionic-like complexes with surface Ca2+ ions, with a surface coverage closely resembling that present in bone apatite platelets (i.e., 1 molecule/(n nm)2, with n ranging between 1.4 and 1.6). These surface complexes are part of a hydrated non-apatitic surface layer with a sub-nanometre thickness. Noticeably, it is found that the hydrophilicity of the nanoparticles, measured in terms of adsorption of water molecules in the form of multilayers, decreases in a significant extent in relation to the presence of citrates, most likely because of the exposure toward the exterior of –CH2 groups. Our findings provide new insights on the surface properties of bio-inspired nano-apatites, which can be of great relevance for better understanding the role of citrate in determining important interfacial properties, such as hydrophobicity, of bone apatite platelets. The evaluation and comprehension of surface composition and structure is also of paramount interest to strictly control the functions of synthetic biomaterials, since their surface chemistry strongly affects the hosting tissue response.
Collapse
Affiliation(s)
- Pavlo Ivanchenko
- Department of Chemistry and Interdepartmental Centre "Nanostructured Interfaces and Surfaces-NIS", University of Torino, Via P. Giuria 7, 10125, Torino, Italy
| | - José Manuel Delgado-López
- Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR), Avda. Las Palmeras 4, E-18100, Armilla, Granada, Spain
| | - Michele Iafisco
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018, Faenza (RA), Italy
| | - Jaime Gómez-Morales
- Laboratorio de Estudios Cristalográficos, IACT (CSIC-UGR), Avda. Las Palmeras 4, E-18100, Armilla, Granada, Spain
| | - Anna Tampieri
- Institute of Science and Technology for Ceramics (ISTEC), National Research Council (CNR), Via Granarolo 64, 48018, Faenza (RA), Italy
| | - Gianmario Martra
- Department of Chemistry and Interdepartmental Centre "Nanostructured Interfaces and Surfaces-NIS", University of Torino, Via P. Giuria 7, 10125, Torino, Italy.
| | - Yuriy Sakhno
- Department of Chemistry and Interdepartmental Centre "Nanostructured Interfaces and Surfaces-NIS", University of Torino, Via P. Giuria 7, 10125, Torino, Italy.
| |
Collapse
|