1
|
Kumar R, Shafique MS, Chapa SOM, Madou MJ. Recent Advances in MOF-Based Materials for Biosensing Applications. SENSORS (BASEL, SWITZERLAND) 2025; 25:2473. [PMID: 40285162 PMCID: PMC12031313 DOI: 10.3390/s25082473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2025] [Revised: 03/23/2025] [Accepted: 03/25/2025] [Indexed: 04/29/2025]
Abstract
Metal-organic frameworks (MOFs) or coordination polymers have gained enormous interest in recent years due to their extraordinary properties, including their high surface area, tunable pore size, and ability to form nanocomposites with various functional materials. MOF materials possess redox-active properties that are beneficial for electrochemical sensing applications. Furthermore, the tunable pore size and high surface area improve the adsorption or immobilization of enzymes, which can enhance the sensitivity and selectivity for specific analytes. Additionally, MOF-derived metal sulfides, phosphides, and nitrides demonstrate superior electrical conductivity and structural stability, ideal for electrochemical sensing. Moreover, the functionalization of MOFs further increases sensitivity by enhancing electrode-analyte interactions. The inclusion of carbon materials within MOFs enhances their electrical conductivity and reduces background current through optimized loading, preventing agglomeration and ensuring uniform distribution. Noble metals immobilized on MOFs offer improved stability and catalytic performance, providing larger surface areas and uniform nanoparticle dispersion. This review focuses on recent developments in MOF-based biosensors specifically for glucose, dopamine, H2O2, ascorbic acid, and uric acid sensing.
Collapse
Affiliation(s)
- Rudra Kumar
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada, NL, 2501, Sur, Monterrey 64849, Mexico
| | - Muhammad Sajid Shafique
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada, NL, 2501, Sur, Monterrey 64849, Mexico
| | - Sergio O. Martínez Chapa
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada, NL, 2501, Sur, Monterrey 64849, Mexico
| | - Marc J. Madou
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. Eugenio Garza Sada, NL, 2501, Sur, Monterrey 64849, Mexico
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Wu C, Mu W, Wu F, Gao H, Ren X, Feng J, Miao M, Zhang H, Chang D, Pan H. Electrochemical detection of myoglobin using an ultrasensitive label-free sensor derived from cubic-ZIF67@Au-rGOF-NH 2 composite of MOF and GOF. Anal Biochem 2024; 692:115571. [PMID: 38796119 DOI: 10.1016/j.ab.2024.115571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/04/2024] [Accepted: 05/15/2024] [Indexed: 05/28/2024]
Abstract
Markers of myocardial injury, such as myoglobin (Mb), are substances swiftly released into the peripheral bloodstream upon myocardial cell injury or altered cardiac activity. During the onset of acute myocardial infarction, patients experience a significant surge in serum Mb levels. Given this, precise detection of Mb is essential, necessitating the development of innovative assays to optimize detection capabilities. This study introduces the synthesis of a three-dimensional hierarchical nanocomposite, Cubic-ZIF67@Au-rGOF-NH2, utilizing aminated reduced graphene oxide and zeolite imidazolium ester framework-67 (ZIF67) as foundational structures. Notably, this novel material, applied in a label-free electrochemical immunosensor, presents a groundbreaking approach for detecting myocardial injury markers. Experimental outcomes revealed ZIF67 and AuNPs exhibit enhanced affinity and growth on the 3D-rGOF-NH2 matrix, thus amplifying electrical conductivity while preserving the inherent electrochemical attributes of ZIF67. As a result, the Cubic-ZIF67@Au-rGOF-NH2 label-free electrochemical immunosensor exhibited a broad detection range and high sensitivity for Mb. The derived standard curve was ΔIp = 16.67552lgC+275.245 (R = 0.993) with a detection threshold of 3.47 fg/ml. Moreover, recoveries of standards spiked into samples ranged between 96.3% and 108.7%. Importantly, the devised immunosensor retained notable selectivity against non-target proteins, proving its potential clinical utility based on exemplary sample analysis performance.
Collapse
Affiliation(s)
- Chunyan Wu
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Wendi Mu
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Fangfang Wu
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Hongmin Gao
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Xinshui Ren
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China; Shanghai University of Medicine and Health Sciences, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, People's Republic of China
| | - Jing Feng
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Men Miao
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Hehua Zhang
- Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China
| | - Dong Chang
- Department of Laboratory Medicine, Shanghai Pudong Hospital, Shanghai, 201399, People's Republic of China.
| | - Hongzhi Pan
- School of Health Sciences and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, People's Republic of China; Collaborative Research Center, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, People's Republic of China.
| |
Collapse
|
3
|
Velmurugan S, Tse MM, Lin XY, Yu YH, Cheng SH, Lu KL. Surface modification prepared porous copper oxide/(Cu-S) n metal-organic framework/reduced graphene oxide hierarchical structure for highly selective electrochemical quercetin detection. Mikrochim Acta 2024; 191:471. [PMID: 39028342 DOI: 10.1007/s00604-024-06544-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024]
Abstract
Electrochemical alkalization of (Cu-S)n metal-organic framework (MOF) and graphene oxide ((Cu-S)n MOF/GO) composite yields a new CuO/(Cu-S)n MOF/RGO (reduced GO) composite with porous morphology on screen printed carbon electrode (SPCE) which facilitated the electron transfer properties in electrochemical quercetin (QUE) detection. A selective QUE detection ability has been demonstrated by the constructed electrochemical sensor (CuO/(Cu-S)n MOF/RGO/SPCE), which also has a broad dynamic range of 0.5 to 115 µM in pH 3 by differential pulse voltammetry. The detection limit is 0.083 µM (S/N = 3). In this study, it was observed that the real samples contained 0.34 mg mL-1 and 27.7 µg g-1 QUE in wine and onion, respectively.
Collapse
Affiliation(s)
- Sethupathi Velmurugan
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou Hsien, 545, Taiwan
| | - Man-Mo Tse
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou Hsien, 545, Taiwan
| | - Xiao-Yuan Lin
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Yuan-Hsiang Yu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Shu-Hua Cheng
- Department of Applied Chemistry, National Chi Nan University, Puli, Nantou Hsien, 545, Taiwan.
| | - Kuang-Lieh Lu
- Department of Chemistry, Fu Jen Catholic University, New Taipei City, 242, Taiwan.
| |
Collapse
|
4
|
Zhang M, Chen J, Zhao X, Mao X, Li C, Diwu J, Wu G, Chai Z, Wang S. A MOF@Metal Oxide Heterostructure Induced by Post-Synthetic Gamma-Ray Irradiation for Catalytic Reduction. Angew Chem Int Ed Engl 2024; 63:e202405213. [PMID: 38637914 DOI: 10.1002/anie.202405213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Metal-organic framework (MOF) based heterostructures, which exhibit enhanced or unexpected functionality and properties due to synergistic effects, are typically synthesized using post-synthetic strategies. However, several reported post-synthetic strategies remain unsatisfactory, considering issues such as damage to the crystallinity of MOFs, presence of impure phases, and high time and energy consumption. In this work, we demonstrate for the first time a novel route for constructing MOF based heterostructures using radiation-induced post-synthesis, highlighting the merits of convenience, ambient conditions, large-scale production, and notable time and energy saving. Specifically, a new HKUST-1@Cu2O heterostructure was successfully synthesized by simply irradiating a methanol solution dispersed of HKUST-1 with gamma ray under ambient conditions. The copper source of Cu2O was directly derived from in situ radiation etching and reduction of the parent HKUST-1, without the use of any additional copper reagents. Significantly, the resulting HKUST-1@Cu2O heterostructure exhibits remarkable catalytic performance, with a catalytic rate constant nearly two orders of magnitude higher than that of the parent HKUST-1.
Collapse
Affiliation(s)
- Mingxing Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Junchang Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Xiaofang Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Xuanzhi Mao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Chunyang Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Juan Diwu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Guozhong Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
5
|
Jiang Q, Chen C, Chai N, Guo Q, Chen T, Ma X, Yi FY. In Situ Exfoliation Growth Strategy Realizing Controlled Synthesis of 3D to 2D MOF Materials as High-Performance Electrochemical Biosensors. Inorg Chem 2024; 63:4636-4645. [PMID: 38394612 DOI: 10.1021/acs.inorgchem.3c04218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Two-dimensional (2D) metal-organic framework (MOF) nanosheets with large surface area, ultrathin thickness, and highly accessible active sites have attracted great research attention. Developing efficient approaches to realize the controllable synthesis of well-defined 2D MOFs with a specific composition and morphology is critical. However, it is still a significant challenge to construct thin and uniform 2D MOF nanosheets and resolve the reagglomeration as well as poor stability of target 2D MOF products. Here, an "in situ exfoliation growth" strategy is proposed, where a one-step synthetic process can realize the successful fabrication of PBA/MIL-53(NiFe)/NF nanosheets on the surface of nickel foam (NF) via in situ conversion and exfoliation growth strategies. The PBA/MIL-53(NiFe)/NF nanosheets combine the individual advantages of MOFs, Prussian blue analogues (PBAs), and 2D materials. As expected, the resulting PBA/MIL-53(NiFe)/NF as a glucose electrode exhibits an extremely high sensitivity of 25.74 mA mM-1 cm-2 in a very wide concentration range of 180 nM to 4.8 μM. The present exciting work provides a simple and effective strategy for the construction of high-performance nonenzymatic glucose electrochemical biosensors.
Collapse
Affiliation(s)
- Qiao Jiang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Chen Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Ning Chai
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Qingqing Guo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Tianyu Chen
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Xinghua Ma
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| | - Fei-Yan Yi
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, Zhejiang, P. R. China
| |
Collapse
|
6
|
Singh R, Gupta R, Bansal D, Bhateria R, Sharma M. A Review on Recent Trends and Future Developments in Electrochemical Sensing. ACS OMEGA 2024; 9:7336-7356. [PMID: 38405479 PMCID: PMC10882602 DOI: 10.1021/acsomega.3c08060] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/07/2024] [Accepted: 01/12/2024] [Indexed: 02/27/2024]
Abstract
Electrochemical methods and devices have ignited prodigious interest for sensing and monitoring. The greatest challenge for science is far from meeting the expectations of consumers. Electrodes made of two-dimensional (2D) materials such as graphene, metal-organic frameworks, MXene, and transition metal dichalcogenides as well as alternative electrochemical sensing methods offer potential to improve selectivity, sensitivity, detection limit, and response time. Moreover, these advancements have accelerated the development of wearable and point-of-care electrochemical sensors, opening new possibilities and pathways for their applications. This Review presents a critical discussion of the recent developments and trends in electrochemical sensing.
Collapse
Affiliation(s)
- Rimmy Singh
- Department
of Applied Science & Humanities, DPG
Institute of Technology and Management, Gurugram 122004, India
| | - Ruchi Gupta
- School
of Chemistry, University of Birmingham, Birmingham B15 2TT, U.K.
| | | | - Rachna Bhateria
- Department
of Environmental Science, Maharshi Dayanand
University, Rohtak 124001, India
| | - Mona Sharma
- Department
of Environmental Studies, Central University
of Haryana, Mahendergarh 123031, India
| |
Collapse
|
7
|
Rao S, Xu Y, Yuan J, Liu F, Wang S, Jiang H, Cheng GJ. MOFs for Ultrahigh Efficiency Pulsed Laser Micropropulsion. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2306228. [PMID: 37671692 DOI: 10.1002/adma.202306228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/29/2023] [Indexed: 09/07/2023]
Abstract
Conventional propellant materials, such as polymers and single metal elements, have long been investigated for their potential in pulsed laser micropropulsion (LMP) technology. However, achieving superior LMP efficiency through physical mixing of these materials remains a significant challenge. This study presents a paradigm shift by introducing porous crystalline polymers, known as metal-organic frameworks (MOFs), as novel propellants in pulsed LMP. MOFs are composed of metal cations and organic ligands that form ordered structures through coordination, eliminating the problem of local hot zones arising from uneven physical mixing encountered in LMP. In direct comparison to conventional polymers and single element targets, MOFs exhibit substantially higher LMP efficiency. By precisely tailoring the metal atom fraction within MOFs, an extraordinary ultrahigh efficiency of 51.15% is achieved in pulsed LMP, surpassing the performance of similar materials previously reported in the literature. This pioneering application of MOFs not only revolutionizes the field of LMP but also opens up new frontiers for MOF utilization in various energy applications.
Collapse
Affiliation(s)
- Senlin Rao
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Yuhang Xu
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Jun Yuan
- Institute of Laser Manufacturing, Henan Academy of Sciences, Zhengzhou, 450046, P. R. China
| | - Feng Liu
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Shuai Wang
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, P. R. China
| | - Haoqing Jiang
- Institute of Laser Manufacturing, Henan Academy of Sciences, Zhengzhou, 450046, P. R. China
| | - Gary J Cheng
- The Institute of Technological Sciences, Wuhan University, Wuhan, 430072, P. R. China
- School of Industrial Engineering, Purdue University, West Lafayette, IN, 47906, USA
| |
Collapse
|
8
|
Li Y, Zheng S, Hou S, Chen T, Bai Y, Zhang M, Zhou D, Yang S, Xu H, Zhang G. Construction of continuous flow catalytic reactor-HPLC system with ultrahigh catalytic activity using 2D nanoflower MOF-derived Cu 2O/Cu/PDA/CF catalyst. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132376. [PMID: 37690202 DOI: 10.1016/j.jhazmat.2023.132376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/20/2023] [Accepted: 08/22/2023] [Indexed: 09/12/2023]
Abstract
Currently, metal-organic frameworks (MOFs) derived materials have been widely concerned for the reduction of 4-nitrophenol (4-NP). However, complex recovery of powder catalysts and low utilization ratio of active sites make their application challenging. Herein, a novel Cu2O/Cu/PDA/CF catalyst has been developed for the rapid reduction of 4-NP to 4-aminophenol (4-AP). The catalyst was constructed by compositing a two-dimensional nanoflower MOF-derived nanoporous Cu2O/Cu network on a polydopamine (PDA)-modified porous copper foam by a mild and controllable in-situ reduction synthesis. Notably, an enhanced catalytic performance of Cu2O/Cu/PDA/CF was obtained for 4-NP reduction with a rate constant (k) of 0.8001 min-1, outperforming Cu/PDA/CF-X (X = 400, 500 and 600 ℃ pyrolysis temperature) catalysts (2.3-6.4 folds), and even many reported catalysts (2.3-46.5 folds). The ultrafast degradation of 4-NP was completed in 70 s. Moreover, an ingenious online continuous flow catalytic reactor (CFCR)-high performance liquid chromatography (HPLC) system was constructed for automatic and real-time monitoring of the reduction reaction. System stability experiments over 300 min revealed a surprisingly high reaction k value of 76.68 min-1 at low NaBH4 usage, significant increasing by 2-3 orders of magnitude compared with Cu2O/Cu/PDA/CF batch catalysis, due to the high aspect ratio of 2D nanoflower MOF and convection-accelerated mass transfer. This work offers new insights for the rational design of catalytic reactor and its potential application in wastewater treatment.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shuang Zheng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shenghuai Hou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Tiantian Chen
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Yuxuan Bai
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Manlin Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Dandan Zhou
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Shu Yang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China
| | - Hui Xu
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University, Wuhan 430079, China.
| | - Ganbing Zhang
- College of Chemistry and Chemical Engineering, Hubei University, Wuhan 430062, China
| |
Collapse
|
9
|
Fabrizio K, Gormley EL, Davenport AM, Hendon CH, Brozek CK. Gram-scale synthesis of MIL-125 nanoparticles and their solution processability. Chem Sci 2023; 14:8946-8955. [PMID: 37621428 PMCID: PMC10445466 DOI: 10.1039/d3sc02257a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 07/30/2023] [Indexed: 08/26/2023] Open
Abstract
Although metal-organic framework (MOF) photocatalysts have become ubiquitous, basic aspects of their photoredox mechanisms remain elusive. Nanosizing MOFs enables solution-state techniques to probe size-dependent properties and molecular reactivity, but few MOFs have been prepared as nanoparticles (nanoMOFs) with sufficiently small sizes. Here, we report a rapid reflux-based synthesis of the photoredox-active MOF Ti8O8(OH)4(terephthalate)6 (MIL-125) to achieve diameters below 30 nm in less than 2 hours. Whereas MOFs generally require ex situ analysis by solid-state techniques, sub-30 nm diameters ensure colloidal stability for weeks and minimal light scattering, permitting in situ analysis by solution-state methods. Optical absorption and photoluminescence spectra of free-standing colloids provide direct evidence that the photoredox chemistry of MIL-125 involves Ti3+ trapping and charge accumulation onto the Ti-oxo clusters. Solution-state potentiometry collected during the photochemical process also allows simultaneous measurement of MOF Fermi-level energies in situ. Finally, by leveraging the solution-processability of these nanoparticles, we demonstrate facile preparation of mixed-matrix membranes with high MOF loadings that retain the reversible photochromism. Taken together, these results demonstrate the feasibility of a rapid nanoMOF synthesis and fabrication of a photoactive membrane, and the fundamental insights they offer into heterogeneous photoredox chemistry.
Collapse
Affiliation(s)
- Kevin Fabrizio
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon Eugene OR 97403 USA
| | - Eoghan L Gormley
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon Eugene OR 97403 USA
| | - Audrey M Davenport
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon Eugene OR 97403 USA
| | - Christopher H Hendon
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon Eugene OR 97403 USA
| | - Carl K Brozek
- Department of Chemistry and Biochemistry, Material Science Institute, University of Oregon Eugene OR 97403 USA
| |
Collapse
|
10
|
Lin R, Chai M, Zhou Y, Chen V, Bennett TD, Hou J. Metal-organic framework glass composites. Chem Soc Rev 2023. [PMID: 37335141 DOI: 10.1039/d2cs00315e] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
The melting phenomenon in metal-organic frameworks (MOFs) has been recognised as one of the fourth generation MOF paradigm behaviours. Molten MOFs have high processibility for producing mechanically robust glassy MOF macrostructures, and they also offer highly tunable interfacial characteristics when combined with other types of functional materials, such as crystalline MOFs, inorganic glass and metal halide perovskites. As a result, MOF glass composites have emerged as a family of functional materials with dynamic properties and hierarchical structural control. These nanocomposites allow for sophisticated materials science studies as well as the fabrication of next-generation separation, catalysis, optical, and biomedical devices. Here, we review the approaches for designing, fabricating, and characterising MOF glass composites. We determine the key application opportunities enabled by these composites and explore the remaining hurdles, such as improving thermal and chemical compatibility, regulating interfacial properties, and scalability.
Collapse
Affiliation(s)
- Rijia Lin
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Milton Chai
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Yinghong Zhou
- School of Dentistry, The University of Queensland, Herston, QLD 4006, Australia
| | - Vicki Chen
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
- University of Technology Sydney, 15 Broadway, Ultimo, NSW 2007, Australia
| | - Thomas D Bennett
- Department of Materials Science and Metallurgy, Cambridge University, CB3 0FS, Cambridge, UK
| | - Jingwei Hou
- School of Chemical Engineering, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
11
|
Khan S, Cho WC, Sepahvand A, Haji Hosseinali S, Hussain A, Nejadi Babadaei MM, Sharifi M, Falahati M, Jaragh-Alhadad LA, ten Hagen TLM, Li X. Electrochemical aptasensor based on the engineered core-shell MOF nanostructures for the detection of tumor antigens. J Nanobiotechnology 2023; 21:136. [PMID: 37101280 PMCID: PMC10131368 DOI: 10.1186/s12951-023-01884-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/06/2023] [Indexed: 04/28/2023] Open
Abstract
It is essential to develop ultrasensitive biosensors for cancer detection and treatment monitoring. In the development of sensing platforms, metal-organic frameworks (MOFs) have received considerable attention as potential porous crystalline nanostructures. Core-shell MOF nanoparticles (NPs) have shown different diversities, complexities, and biological functionalities, as well as significant electrochemical (EC) properties and potential bio-affinity to aptamers. As a result, the developed core-shell MOF-based aptasensors serve as highly sensitive platforms for sensing cancer biomarkers with an extremely low limit of detection (LOD). This paper aimed to provide an overview of different strategies for improving selectivity, sensitivity, and signal strength of MOF nanostructures. Then, aptamers and aptamers-modified core-shell MOFs were reviewed to address their functionalization and application in biosensing platforms. Additionally, the application of core-shell MOF-assisted EC aptasensors for detection of several tumor antigens such as prostate-specific antigen (PSA), carbohydrate antigen 15-3 (CA15-3), carcinoembryonic antigen (CEA), human epidermal growth factor receptor-2 (HER2), cancer antigen 125 (CA-125), cytokeratin 19 fragment (CYFRA21-1), and other tumor markers were discussed. In conclusion, the present article reviews the advancement of potential biosensing platforms toward the detection of specific cancer biomarkers through the development of core-shell MOFs-based EC aptasensors.
Collapse
Affiliation(s)
- Suliman Khan
- Medical Research Center, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Medical Lab Technology, The University of Haripur, Haripur, Pakistan
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong China
| | - Afrooz Sepahvand
- Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sara Haji Hosseinali
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Arif Hussain
- School of Life Sciences, Manipal Academy of Higher Education, Dubai, United Arab Emirates
| | - Mohammad Mahdi Nejadi Babadaei
- Department of Molecular Genetics, Faculty of Biological Science, North Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
- Depatment of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Mojtaba Falahati
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, The Netherlands
| | | | - Timo L. M. ten Hagen
- Precision Medicine in Oncology (PrMiO), Department of Pathology, Erasmus MC Cancer Institute, Erasmus MC, Rotterdam, The Netherlands
- Nanomedicine Innovation Center Erasmus (NICE), Erasmus MC, Rotterdam, The Netherlands
| | - Xin Li
- Department of Neurology, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
12
|
Sohrabi H, Maleki F, Khaaki P, Kadhom M, Kudaibergenov N, Khataee A. Electrochemical-Based Sensing Platforms for Detection of Glucose and H 2O 2 by Porous Metal-Organic Frameworks: A Review of Status and Prospects. BIOSENSORS 2023; 13:347. [PMID: 36979559 PMCID: PMC10046199 DOI: 10.3390/bios13030347] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/01/2023] [Accepted: 03/02/2023] [Indexed: 06/18/2023]
Abstract
Establishing enzyme-free sensing assays with great selectivity and sensitivity for glucose and H2O2 detection has been highly required in biological science. In particular, the exploitation of nanomaterials by using noble metals of high conductivity and surface area has been widely investigated to act as selective catalytic agents for molecular recognition in sensing platforms. Several approaches for a straightforward, speedy, selective, and sensitive recognition of glucose and H2O2 were requested. This paper reviews the current progress in electrochemical detection using metal-organic frameworks (MOFs) for H2O2 and glucose recognition. We have reviewed the latest electrochemical sensing assays for in-place detection with priorities including straightforward procedure and manipulation, high sensitivity, varied linear range, and economic prospects. The mentioned sensing assays apply electrochemical systems through a rapid detection time that enables real-time recognition. In profitable fields, the obstacles that have been associated with sample preparation and tool expense can be solved by applying these sensing means. Some parameters, including the impedance, intensity, and potential difference measurement methods have permitted low limit of detections (LODs) and noticeable durations in agricultural, water, and foodstuff samples with high levels of glucose and H2O2.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| | - Fatemeh Maleki
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
| | - Pegah Khaaki
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz 51666-16471, Iran
| | - Mohammed Kadhom
- Department of Environmental Science, College of Energy and Environmental Science, Alkarkh University of Science, Baghdad 10081, Iraq
| | - Nurbolat Kudaibergenov
- Department of Chemistry and Chemical Technology, Al-Farabi Kazakh National University, Al-Farabi 71, Almaty 050038, Kazakhstan
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran
- Department of Environmental Engineering, Faculty of Engineering, Gebze Technical University, 41400 Gebze, Turkey
| |
Collapse
|
13
|
Fu X, Ding B, D'Alessandro D. Fabrication strategies for metal-organic framework electrochemical biosensors and their applications. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
14
|
Izhar F, Imran M, Izhar H, Latif S, Hussain N, Iqbal HMN, Bilal M. Recent advances in metal-based nanoporous materials for sensing environmentally-related biomolecules. CHEMOSPHERE 2022; 307:135999. [PMID: 35985388 DOI: 10.1016/j.chemosphere.2022.135999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/11/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
Highly sensitive, stable, selective, efficient, and short reaction time sensors play a substantial role in daily life/industry and are the need of the day. Due to the rising environmental issues, nanoporous carbon and metal-based materials have attracted significant attention in environmental analysis owing to their intriguing and multifunctional properties and cost-effective and rapid detection of different analytes by sensing applications. Environmental-related issues such as pollution have been a significant threat to the world. Therefore, it is necessary to fabricate highly promising performance-based sensor materials with excellent reliability, selectivity and good sensitivity for monitoring various analytes. In this regard, different methods have been employed to fabricate these sensors comprising metal, metal oxides, metal oxide carbon composites and MOFs leading to the formation of nanoporous metal and carbon composites. These composites have exceptional properties such as large surface area, distinctive porosity, and high conductivity, making them promising candidates for several versatile sensing applications. This review covers recent advances and significant studies in the sensing field of various nanoporous metal and carbon composites. Key challenges and future opportunities in this exciting field are also part of this review.
Collapse
Affiliation(s)
- Fatima Izhar
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan.
| | - Hamyal Izhar
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 53700, Pakistan
| | - Nazim Hussain
- Centre for Applied Molecular Biology (CAMB), University of the Punjab, Lahore, 53700, Pakistan
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, 64849, Mexico
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, 223003, China.
| |
Collapse
|
15
|
Dai S, Kajiwara T, Ikeda M, Romero‐Muñiz I, Patriarche G, Platero‐Prats AE, Vimont A, Daturi M, Tissot A, Xu Q, Serre C. Ultrasmall Copper Nanoclusters in Zirconium Metal-Organic Frameworks for the Photoreduction of CO 2. Angew Chem Int Ed Engl 2022; 61:e202211848. [PMID: 36055971 PMCID: PMC9826431 DOI: 10.1002/anie.202211848] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Indexed: 01/11/2023]
Abstract
Encapsulating ultrasmall Cu nanoparticles inside Zr-MOFs to form core-shell architecture is very challenging but of interest for CO2 reduction. We report for the first time the incorporation of ultrasmall Cu NCs into a series of benchmark Zr-MOFs, without Cu NCs aggregation, via a scalable room temperature fabrication approach. The Cu NCs@MOFs core-shell composites show much enhanced reactivity in comparison to the Cu NCs confined in the pore of MOFs, regardless of their very similar intrinsic properties at the atomic level. Moreover, introducing polar groups on the MOF structure can further improve both the catalytic reactivity and selectivity. Mechanistic investigation reveals that the CuI sites located at the interface between Cu NCs and support serve as the active sites and efficiently catalyze CO2 photoreduction. This synergetic effect may pave the way for the design of low-cost and efficient catalysts for CO2 photoreduction into high-value chemical feedstock.
Collapse
Affiliation(s)
- Shan Dai
- Institut des Matériaux Poreux de ParisEcole Normale SupérieureESPCI ParisCNRSPSL University75005ParisFrance,Normandie Univ.ENSICAENUNICAENCNRSLaboratoire Catalyse et Spectrochimie14000CaenFrance
| | - Takashi Kajiwara
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL)National Institute of Advanced Industrial Science and Technology (AIST)Sakyo-ku, Kyoto606-8501Japan,Institute for Integrated Cell-Material Sciences (iCeMS)Kyoto UniversitySakyo-ku, Kyoto606-8501Japan
| | - Miyuki Ikeda
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL)National Institute of Advanced Industrial Science and Technology (AIST)Sakyo-ku, Kyoto606-8501Japan
| | - Ignacio Romero‐Muñiz
- Departamento de Química InorgánicaFacultad de CienciasUniversidad Autónomade MadridCampus de Cantoblanco28049MadridSpain
| | - Gilles Patriarche
- Université Paris-SaclayCNRSCentre de Nanosciences et de Nanotechnologies91120PalaiseauFrance
| | - Ana E. Platero‐Prats
- Departamento de Química InorgánicaFacultad de CienciasUniversidad Autónomade MadridCampus de Cantoblanco28049MadridSpain,Condensed Matter Physics Center (IFIMAC)Universidad Autónoma de MadridCampus de Cantoblanco28049MadridSpain,Instituto de Investigación Avanzada en Ciencias Químicas de la UAMUniversidad Autónoma de MadridCampus de Cantoblanco28049MadridSpain
| | - Alexandre Vimont
- Normandie Univ.ENSICAENUNICAENCNRSLaboratoire Catalyse et Spectrochimie14000CaenFrance
| | - Marco Daturi
- Normandie Univ.ENSICAENUNICAENCNRSLaboratoire Catalyse et Spectrochimie14000CaenFrance
| | - Antoine Tissot
- Institut des Matériaux Poreux de ParisEcole Normale SupérieureESPCI ParisCNRSPSL University75005ParisFrance
| | - Qiang Xu
- AIST-Kyoto University Chemical Energy Materials Open Innovation Laboratory (ChEM-OIL)National Institute of Advanced Industrial Science and Technology (AIST)Sakyo-ku, Kyoto606-8501Japan,Institute for Integrated Cell-Material Sciences (iCeMS)Kyoto UniversitySakyo-ku, Kyoto606-8501Japan,Shenzhen Key Laboratory of Micro/Nano-Porous Functional Materials (SKLPM)Department of Chemistryand Department of Materials Science and EngineeringSouthern University of Science and Technology (SUSTech)Nanshan, ShenzhenGuangdong 518055China
| | - Christian Serre
- Institut des Matériaux Poreux de ParisEcole Normale SupérieureESPCI ParisCNRSPSL University75005ParisFrance
| |
Collapse
|
16
|
Shu Z, Zhang C, Yan L, Lei H, Peng C, Liu S, Fan L, Chu Y. Antibacterial and osteoconductive polycaprolactone/polylactic acid/nano-hydroxyapatite/Cu@ZIF-8 GBR membrane with asymmetric porous structure. Int J Biol Macromol 2022; 224:1040-1051. [DOI: 10.1016/j.ijbiomac.2022.10.189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 10/09/2022] [Accepted: 10/20/2022] [Indexed: 11/05/2022]
|
17
|
Yan F, Wang X, Wang Y, Yi C, Xu M, Xu J. Sensing performance and mechanism of carbon dots encapsulated into metal-organic frameworks. Mikrochim Acta 2022; 189:379. [PMID: 36087187 DOI: 10.1007/s00604-022-05481-5] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 08/27/2022] [Indexed: 01/28/2023]
Abstract
Metal-organic frameworks (MOFs) can be combined with nanomaterials and the combined composites have excellent optical properties. Carbon dots (CDs) with tiny particle size, non-toxic and rich surface functional groups are novel fluorescent materials. Carbon dots@metal-organic frameworks (CDs@MOFs) are synthesized by encapsulating CDs into MOFs. CDs@MOFs are promising composites for the preparation of a new generation of fluorescence sensors, which combine the hybrid properties of MOFs and the special optical properties of CDs. Urged as such, we are encouraged to categorize according to the sensing mechanisms. These include fluorescence resonance energy transfer (FRET), aggregation-caused quenching (ACQ), static quenching, dynamic quenching, photo-induced electron transfer (PET), inner filter effect (IFE) and so on. Based on the above mechanisms, CDs@MOFs can specifically interact with target analytes to generate fluorescence quenching. This review covers the research progress of CDs@MOFs in recent five years (with 103 refs), synthetic design of CDs@MOFs and introduces the sensing mechanism. The current challenges and future research directions are discussed briefly. The sensing mechanism and applications of CDs@MOFs.
Collapse
Affiliation(s)
- Fanyong Yan
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China.
| | - Xiule Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Yao Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Chunhui Yi
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemical Engineering and Technology, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Ming Xu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemistry, Tiangong University, Tianjin, 300387, People's Republic of China
| | - Jinxia Xu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research On Separation Membranes, School of Chemistry, Tiangong University, Tianjin, 300387, People's Republic of China
| |
Collapse
|
18
|
Dai S, Kajiwara T, Ikeda M, Romero-Muñiz I, Patriarche G, Platero-Prats AE, Vimont A, Daturi M, Tissot A, Xu Q, Serre C. Ultrasmall Cu Nanoclusters in Zirconium Metal‐Organic Frameworks for the Photoreduction of CO2. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202211848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shan Dai
- École Normale Supérieure: Ecole Normale Superieure Chimie FRANCE
| | - Takashi Kajiwara
- Kyoto University: Kyoto Daigaku National Institute of Advanced Industrial Science and Technology JAPAN
| | - Miyuki Ikeda
- Kyoto University: Kyoto Daigaku National Institute of Advanced Industrial Science and Technology JAPAN
| | - Ignacio Romero-Muñiz
- Universidad Autonoma de Madrid Departamento de Química Inorgánica, Facultad de Ciencias SPAIN
| | - Gilles Patriarche
- Paris-Saclay University: Universite Paris-Saclay Centre de Nanosciences et de Nanotechnologies FRANCE
| | - Ana E. Platero-Prats
- Universidad Autonoma de Madrid Departamento de Química Inorgánica, Facultad de Ciencias SPAIN
| | - Alexandre Vimont
- ENSICAEN: Ecole Nationale Superieure d'Ingenieurs de Caen Laboratoire Catalyse et Spectrochimie FRANCE
| | - Marco Daturi
- ENSICAEN: Ecole Nationale Superieure d'Ingenieurs de Caen Laboratoire Catalyse et Spectrochimie FRANCE
| | - Antoine Tissot
- Institut des Matériaux Poreux de Paris - UMR 8004 CNRS ENS ESPCI ENS Département de Chimie 24 Rue Lhomond 75005 Paris FRANCE
| | - Qiang Xu
- Kyoto University: Kyoto Daigaku JAPAN
| | - Christian Serre
- École Normale Supérieure: Ecole Normale Superieure Département de Chimie FRANCE
| |
Collapse
|
19
|
Mehmandoust M, Erk EE, Soylak M, Erk N, Karimi F. Metal–Organic Framework Based Electrochemical Immunosensor for Label-Free Detection of Glial Fibrillary Acidic Protein as a Biomarker. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c01445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mohammad Mehmandoust
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06100 Ankara, Turkey
| | - Erknaz Ecehan Erk
- Institute of Neurological Sciences and Psychiatry, Hacettepe University 06230 Ankara, Turkey
| | - Mustafa Soylak
- Faculty of Sciences, Department of Chemistry, Erciyes University, 38039 Kayseri, Turkey
- Technology Research & Application Center (TAUM), Erciyes University, 38039 Kayseri, Turkey
- Turkish Academy of Sciences (TUBA), Cankaya, 06700 Ankara, Turkey
| | - Nevin Erk
- Faculty of Pharmacy, Department of Analytical Chemistry, Ankara University, 06100 Ankara, Turkey
| | - Fatemeh Karimi
- Department of Chemical Engineering, Laboratory of Nanotechnology, Quchan University of Technology, 9477177870 Quchan, Iran
| |
Collapse
|
20
|
Xu J, Ma J, Peng Y, Cao S, Zhang S, Pang H. Applications of metal nanoparticles/metal-organic frameworks composites in sensing field. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.05.041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
21
|
Jiang L, Wang H, Rao Z, Zhu J, Li G, Huang Q, Wang Z, Liu H. In situ electrochemical reductive construction of metal oxide/metal-organic framework heterojunction nanoarrays for hydrogen peroxide sensing. J Colloid Interface Sci 2022; 622:871-879. [PMID: 35561607 DOI: 10.1016/j.jcis.2022.04.095] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/11/2022] [Accepted: 04/17/2022] [Indexed: 11/25/2022]
Abstract
Transition metal oxide/metal-organic framework heterojunctions (TMO@MOF) that combine the large specific surface area of MOFs with TMOs' high catalytic activity and multifunctionality, show excellent performances in various catalytic reactions. Nevertheless, the present preparation approaches of TMO@MOF heterojunctions are too complex to control, stimulating interests in developing simple and highly controllable methods for preparing such heterojunction. In this study, we propose an in situ electrochemical reduction approach to fabricating Cu2O nanoparticle (NP)@CuHHTP heterojunction nanoarrays with a graphene-like conductive MOF CuHHTP (HHTP is 2,3,6,7,10,11-hexahydroxytriphenylene). We have discovered that size-controlled Cu2O nanoparticles could be in situ grown on CuHHTP by applying different electrochemical reduction potentials. Also, the obtained Cu2O NP@CuHHTP heterojunction nanoarrays show high H2O2 sensitivity of 8150.6 μA·mM-1·cm2 and satisfactory detection performances in application of measuring H2O2 concentrations in urine and serum samples. This study offers promising guidance for the synthesis of MOF-based heterojunctions for early cancer diagnosis.
Collapse
Affiliation(s)
- Lipei Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Haitao Wang
- Key Laboratory for Green Chemical Process of Ministry of Education, Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education, School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Zhuang Rao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Jiannan Zhu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Guangfang Li
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Qin Huang
- Department of Rehabilitation Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology (HUST), Wuhan 430022, PR China
| | - Zhengyun Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| |
Collapse
|
22
|
Palakollu VN, Chen D, Tang JN, Wang L, Liu C. Recent advancements in metal-organic frameworks composites based electrochemical (bio)sensors. Mikrochim Acta 2022; 189:161. [PMID: 35344127 DOI: 10.1007/s00604-022-05238-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 02/19/2022] [Indexed: 12/28/2022]
Abstract
Metal-organic frameworks (MOFs) are a novel class of crystalline materials which find widespread applications in the field of microporous conductors, catalysis, separation, biomedical engineering, and electrochemical sensing. With a specific emphasis on the MOF composites for electrochemical sensor applications, this review summarizes the recent construction strategies on the development of conductive MOF composites (post-synthetic modification of MOFs, in situ synthesis of functional materials@MOFs composites, and incorporating electroactive ligands). The developed composites are revealed to have excellent electrochemical sensing activity better than their pristine forms. Notably, the applicable functionalized MOFs to electrochemical sensing/biosensing of various target species are discussed. Finally, we highlight the perspectives and challenges in the field of electrochemical sensors and biosensors for potential directions of future development.
Collapse
Affiliation(s)
- Venkata Narayana Palakollu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.,Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen University, 3688 Nanhai Ave, Shenzhen, 518060, People's Republic of China
| | - Dazhu Chen
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Jiao-Ning Tang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Lei Wang
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Chen Liu
- Shenzhen Key Laboratory of Polymer Science and Technology, Guangdong Research Center for Interfacial Engineering of Functional Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| |
Collapse
|
23
|
Gao F, Tu X, Yu Y, Gao Y, Zou J, Liu S, Qu F, Li M, Lu L. Core-shell Cu@C@ZIF-8 composite: a high-performance electrode material for electrochemical sensing of nitrite with high selectivity and sensitivity. NANOTECHNOLOGY 2022; 33:225501. [PMID: 34826829 DOI: 10.1088/1361-6528/ac3da7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Herein, an efficient electrochemical sensing platform is proposed for selective and sensitive detection of nitrite on the basis of Cu@C@Zeolitic imidazolate framework-8 (Cu@C@ZIF-8) heterostructure. core-shell Cu@C@ZIF-8 composite was synthesized by pyrolysis of Cu-metal-organic framework@ZIF-8 (Cu-MOF@ZIF-8) in Ar atmosphere on account of the difference of thermal stability between Cu-MOF and ZIF-8. For the sensing system of Cu@C@ZIF-8, ZIF-8 with proper pore size allows nitrite diffuse through the shell, while big molecules cannot, which ensures high selectivity of the sensor. On the other hand, Cu@C as electrocatalyst promotes the oxidation of nitrite, thereby resulting high sensitivity of the sensor. Accordingly, the Cu@C@ZIF-8 based sensor presents excellent performance for nitrite detection, which achieves a wide linear response range of 0.1-300.0μM, and a low limit of detection of 0.033μM. In addition, the Cu@C@ZIF-8 sensor possesses excellent stability and reproducibility, and was employed to quantify nitrite in sausage samples with recoveries of 95.45%-104.80%.
Collapse
Affiliation(s)
- Feng Gao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Science, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu Shandong 273165, People's Republic of China
| | - Xiaolong Tu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Science, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Yongfang Yu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Science, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Yansha Gao
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Science, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Jin Zou
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Science, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Shuwu Liu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Science, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Fengli Qu
- College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu Shandong 273165, People's Republic of China
| | - Minfang Li
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Science, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| | - Limin Lu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Institute of Functional Materials and Agricultural Applied Chemistry, College of Science, Jiangxi Agricultural University, Nanchang 330045, People's Republic of China
| |
Collapse
|
24
|
Kajal N, Singh V, Gupta R, Gautam S. Metal organic frameworks for electrochemical sensor applications: A review. ENVIRONMENTAL RESEARCH 2022; 204:112320. [PMID: 34740622 DOI: 10.1016/j.envres.2021.112320] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/01/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks (MOFs) are broadly known as porous coordination polymers, synthesized by metal-based nodes and organic linkers. MOFs are used in various fields like catalysis, energy storage, sensors, drug delivery etc., due to their versatile properties (tailorable pore size, high surface area, and exposed active sites). This review presents a detailed discussion of MOFs as an electrochemical sensor and their enhancement in the selectivity and sensitivity of the sensor. These sensors are used for the detection of heavy metal ions like Cd2+, Pb2+, Hg2+, and Cu2+ from groundwater. Various types of organic pollutants are also detected from the water bodies using MOFs. Furthermore, electrochemical sensing of antibiotics, phenolic compounds, and pesticides has been explored. In addition to this, there is also a detailed discussion of metal nano-particles and metal-oxide based composites which can sense various compounds like glucose, amino acids, uric acid etc. The review will be helpful for young researchers, and an inspiration to future research as challenges and future opportunities of MOF-based electrochemical sensors are also reported.
Collapse
Affiliation(s)
- Navdeep Kajal
- Advanced Functional Materials Lab., Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India
| | - Vishavjeet Singh
- Advanced Functional Materials Lab., Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India
| | - Ritu Gupta
- Advanced Functional Materials Lab., Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India
| | - Sanjeev Gautam
- Advanced Functional Materials Lab., Dr. S. S. Bhatnagar University Institute of Chemical Engineering & Technology, Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
25
|
Cui B, Fu G. Process of metal-organic framework (MOF)/covalent-organic framework (COF) hybrids-based derivatives and their applications on energy transfer and storage. NANOSCALE 2022; 14:1679-1699. [PMID: 35048101 DOI: 10.1039/d1nr07614k] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The fossil-fuel shortage and severe environmental issues have posed ever-increasing demands on clean and renewable energy sources, for which the exploration of electrocatalysts has been a big challenge toward energy transfer and storage. Some indispensable features of electrocatalysts, such as large surface area, controlled structure, high porosity, and effective functionalization, have been proved to be critical for the improvement of electrocatalytic activities. Recently, the rapid expansion of metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), and porous-organic polymers has provided extensive opportunities for the development of various electrocatalysts. Moreover, combining diverse descriptions of porous-organic frameworks (such as MOFs and COFs) can generate amazing and fantastic properties, affording the formed MOF/COF (including core-shell MOF@MOF and MOF@COF and layer-on-layer MOF-on-MOF or COF-on-MOF) heterostructures wide applications in diverse fields, especially in clean energy and energy transfer. To further boosts electronic conductivity, catalytic performances, and energy storage abilities, these MOF/COF hybrid materials have been widely utilized as versatile precursors for the manufacture of transition metal catalysts embedded within mesoporous carbon nitrides (M@CNx) and porous carbon nitride frameworks (CNx) via a facile pyrolysis process. Given that these M@CNx and CNx hybrids are composed of abundant catalytic centers, rich functionalities, and large specific surface areas, vast applications in energy transfer and energy storage fields can be realized. In this mini-review, we summarize the preparation strategies of MOF/COF-based hybrids, as well as their derivatives, nanostructure formation mechanism of M@CNx and CNx hybrids from MOF/COF-based hybrid materials, and their applications as catalysts for driving diverse reactions and electrode materials for energy storage. Further, current challenges and future prospects of applying these derivatives into energy conversion and storage devices are also discussed.
Collapse
Affiliation(s)
- Bingbing Cui
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, China.
| | - Guodong Fu
- School of Chemistry and Chemical Engineering, Southeast University, Jiangning District, Nanjing, Jiangsu Province 211189, China.
| |
Collapse
|
26
|
Tuan Le H, Thuy Nhi Le K, Phuong Ngo Q, Thanh Tran D, Hoon Kim N, Hee Lee J. Mo and Zn-Dual doped Cu xO nanocrystals confined High-Conductive Cu arrays as novel sensitive sensor for neurotransmitter detection. J Colloid Interface Sci 2022; 606:1031-1041. [PMID: 34487926 DOI: 10.1016/j.jcis.2021.08.106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/10/2021] [Accepted: 08/15/2021] [Indexed: 11/27/2022]
Abstract
The development of sensitive and selective sensors using facile and low-cost methods for detecting neurotransmitter molecules is a critical factor in the health care system in regard to early diagnosis. In this research, an electrocatalyst derived from Mo,Zn dual-doped CuxO nanocrystals-based layer coating over one-dimensional copper nanowire arrays (Mo,Zn-CuxO/CuNWs) was successfully designed using a facile electrodeposition approach and used as an electrochemical sensor for non-enzymatic dopamine (DA) neurotransmitter detection. The synergistic effect caused by the dual-doping effect along with its excellent conductivity produced a large electroactive surface area and an improved hetero-charge transfer, thereby boosting DA sensing ability with a low limit detection of 0.32 µM, wide-range of detection (0.5 µM - 3.9 mM), long-term stability (5 weeks), and high selectivity in phosphate buffer solution (pH 7.4). Also, the sensor accurately determined DA in real blood serum-spiked solutions. The achieved results evidenced that the Mo,Zn-CuxO/CuNWs derived sensor is highly suitable for DA detection. Therefore, it also opens new windows for the development of low-cost, accurate, high-performance, and stable sensors for other neurotransmitter sensing for the purposes of better health care and early diagnosis.
Collapse
Affiliation(s)
- Huu Tuan Le
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Kha Thuy Nhi Le
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Quynh Phuong Ngo
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Duy Thanh Tran
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea
| | - Nam Hoon Kim
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea.
| | - Joong Hee Lee
- Department of Nano Convergence Engineering, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea; Carbon Composite Research Center, Department of Polymer-Nano Science and Technology, Jeonbuk National University, Jeonju, Jeonbuk 54896, Republic of Korea.
| |
Collapse
|
27
|
Nabi S, Sofi FA, Rashid N, Ingole PP, Bhat MA. Metal–organic framework functionalized sulphur doped graphene: a promising platform for selective and sensitive electrochemical sensing of acetaminophen, dopamine and H 2O 2. NEW J CHEM 2022. [DOI: 10.1039/d1nj04041c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a simple in situ self-assembly approach for crafting a heteroatom doped graphene supported MOF nanocomposite with excellent potential for selective and sensitive electrochemical sensing of clinically important molecules.
Collapse
Affiliation(s)
- Shazia Nabi
- Department of Chemistry, University of Kashmir, Srinagar-190006, J & K, India
| | - Feroz Ahmad Sofi
- Department of Chemistry, University of Kashmir, Srinagar-190006, J & K, India
| | - Nusrat Rashid
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, New Delhi, 110016, India
| | - Pravin P. Ingole
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, New Delhi, 110016, India
| | - Mohsin Ahmad Bhat
- Department of Chemistry, University of Kashmir, Srinagar-190006, J & K, India
| |
Collapse
|
28
|
Mei H, Xie J, Li Z, Lou C, Lei G, Liu X, Zhang J. Rational design of ZnO@ZIF-8 nanoarrays for improved electrochemical detection of H2O2. CrystEngComm 2022. [DOI: 10.1039/d1ce01704g] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Core–shell ZnO@ZIF-8 nanoarrays demonstrate remarkable electrochemical performance for detection of H2O2.
Collapse
Affiliation(s)
- Houshan Mei
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China
| | - Jiayue Xie
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China
| | - Zishuo Li
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China
| | - Chengming Lou
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China
| | - Guanglu Lei
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China
| | - Xianghong Liu
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China
| | - Jun Zhang
- College of Physics, Center for Marine Observation and Communications, Qingdao University, Qingdao 266071, China
| |
Collapse
|
29
|
Rizwan M, Selvanathan V, Rasool A, Qureshi MAUR, Iqbal DN, Kanwal Q, Shafqat SS, Rasheed T, Bilal M. Metal-Organic Framework-Based Composites for the Detection and Monitoring of Pharmaceutical Compounds in Biological and Environmental Matrices. WATER, AIR, AND SOIL POLLUTION 2022; 233:493. [PMID: 36466935 PMCID: PMC9685123 DOI: 10.1007/s11270-022-05904-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/13/2022] [Indexed: 05/10/2023]
Abstract
The production of synthetic drugs is considered a huge milestone in the healthcare sector, transforming the overall health, aging, and lifestyle of the general population. Due to the surge in production and consumption, pharmaceutical drugs have emerged as potential environmental pollutants that are toxic with low biodegradability. Traditional chromatographic techniques in practice are time-consuming and expensive, despite good precision. Alternatively, electroanalytical techniques are recently identified to be selective, rapid, sensitive, and easier for drug detection. Metal-organic frameworks (MOFs) are known for their intrinsic porous nature, high surface area, and diversity in structural design that provides credible drug-sensing capacities. Long-term reusability and maintaining chemo-structural integrity are major challenges that are countered by ligand-metal combinations, optimization of synthetic conditions, functionalization, and direct MOFs growth over the electrode surface. Moreover, chemical instability and lower conductivities limited the mass commercialization of MOF-based materials in the fields of biosensing, imaging, drug release, therapeutics, and clinical diagnostics. This review is dedicated to analyzing the various combinations of MOFs used for electrochemical detection of pharmaceutical drugs, comprising antibiotics, analgesics, anticancer, antituberculosis, and veterinary drugs. Furthermore, the relationship between the composition, morphology and structural properties of MOFs with their detection capabilities for each drug species is elucidated.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Department of Chemistry, University of Lahore, Lahore, 54000 Punjab Pakistan
| | - Vidhya Selvanathan
- Solar Energy Research Institute (SERI), Universiti Kebangsaan Malaysia (UKM), 43600 Bangi, Selangor Darul Ehsan Malaysia
| | - Atta Rasool
- School of Chemistry, University of the Punjab, Lahore, Pakistan
| | | | - Dure Najaf Iqbal
- Department of Chemistry, University of Lahore, Lahore, 54000 Punjab Pakistan
| | - Qudsia Kanwal
- Department of Chemistry, University of Lahore, Lahore, 54000 Punjab Pakistan
| | - Syed Salman Shafqat
- Department of Chemistry, Division of Science and Technology, University of Education, Lahore, 54000 Pakistan
| | - Tahir Rasheed
- Interdisciplinary Research Centre for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261 Saudi Arabia
| | - Muhammad Bilal
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, 60695 Poznan, PL Poland
| |
Collapse
|
30
|
Zhao L, Niu G, Gao F, Lu K, Sun Z, Li H, Stenzel M, Liu C, Jiang Y. Gold Nanorods (AuNRs) and Zeolitic Imidazolate Framework-8 (ZIF-8) Core-Shell Nanostructure-Based Electrochemical Sensor for Detecting Neurotransmitters. ACS OMEGA 2021; 6:33149-33158. [PMID: 34901666 PMCID: PMC8655944 DOI: 10.1021/acsomega.1c05529] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 11/12/2021] [Indexed: 05/04/2023]
Abstract
The development of novel electrode materials for rapid and sensitive detection of neurotransmitters in the human body is of great significance for early disease diagnosis and personalized therapy. Herein, gold nanorod@zeolitic imidazolate framework-8 (AuNR@ZIF-8) core-shell nanostructures were prepared by controlled encapsulation of gold nanorods within a ZIF-8 assembly. The designed AuNR@ZIF-8 nanostructures have uniform morphology, good dispersion, a large specific surface area, and an average size of roughly 175 nm. Compared with individual ZIF-8 and AuNR-modified electrodes, the obtained core-shell-structured AuNR@ZIF-8 nanocomposite structure-modified electrode shows excellent electrocatalytic performance in the determination of dopamine (DA) and serotonin (ST). The designed AuNR@ZIF-8 exhibited a wide linear range of 0.1-50 μM and low detection limit (LOD, 0.03 μM, S/N = 3) for the determination of DA, as well as a linear range of 0.1-25 μM and low LOD (0.007 μM, S/N = 3) for monitoring ST. The improved performance is attributed to the synergistic effect of the high conductivity of AuNRs and multiple catalytic sites of ZIF-8. The good electroanalytical ability of AuNR@ZIF-8 for detection of DA and ST can provide a guide to efficiently and rapidly monitor other neurotransmitters and construct novel electrochemical sensors.
Collapse
Affiliation(s)
- Li Zhao
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Guiming Niu
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
- Shenzhen
Research Institute of Shandong University, Shenzhen, Guangdong 518057, P. R. China
| | - Fucheng Gao
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Kaida Lu
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Zhiwei Sun
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Hui Li
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
| | - Martina Stenzel
- School
of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Chao Liu
- Department
of Oromaxillofacial Head and Neck Oncology, Shanghai Jiao Tong University School of Medicine Affiliated Ninth
People’s Hospital, Shanghai 200011, P. R. China
| | - Yanyan Jiang
- Liquid-Solid
Structural Evolution & Processing of Materials (Ministry of Education),
School of Materials Science and Engineering, Shandong University, Jinan, Shandong 250061, P. R. China
- Shenzhen
Research Institute of Shandong University, Shenzhen, Guangdong 518057, P. R. China
| |
Collapse
|
31
|
Wang X, Wang Y, Ying Y. Recent advances in sensing applications of metal nanoparticle/metal–organic framework composites. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116395] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
32
|
Chai L, Pan J, Hu Y, Qian J, Hong M. Rational Design and Growth of MOF-on-MOF Heterostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100607. [PMID: 34245231 DOI: 10.1002/smll.202100607] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/16/2021] [Indexed: 06/13/2023]
Abstract
Multiporous metal-organic frameworks (MOFs) have emerged as a subclass of highly crystalline inorganic-organic materials, which are endowed with high surface areas, tunable pores, and fascinating nanostructures. Heterostructured MOF-on-MOF composites are recently becoming a research hotspot in the field of chemistry and materials science, which focus on the assembly of two or more different homogeneous or heterogeneous MOFs with various structures and morphologies. Compared with one single MOF, the dual MOF-on-MOF composites exhibit unprecedented tunability, hierarchical nanostructure, synergistic effect, and enhanced performance. Due to the difference of inorganic metals and organic ligands, the lattice parameters in a, b, and c directions in the single crystal cells could bring about subtle or large structural difference. It will result in the composite material with distinct growth methods to obtain secondary MOF grown from the initial MOF. In this review, the authors wish to mainly outline the latest synthetic strategies of heterostructured MOF-on-MOFs and their derivatives, including ordered epitaxial growth, random epitaxial growth, etc., which show the tutorial guidelines for the further development of various MOF-on-MOFs.
Collapse
Affiliation(s)
- Lulu Chai
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, China
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Junqing Pan
- State Key Laboratory of Chemical Resource Engineering, Beijing Engineering Center for Hierarchical Catalysts, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yue Hu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325000, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| | - Maochun Hong
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, 350002, China
| |
Collapse
|
33
|
Ling JL, Chen K, Wu CD. Interwrapping Distinct Metal-Organic Frameworks in Dual-MOFs for the Creation of Unique Composite Catalysts. RESEARCH 2021; 2021:9835935. [PMID: 34409301 PMCID: PMC8286356 DOI: 10.34133/2021/9835935] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/09/2021] [Indexed: 11/06/2022]
Abstract
Incorporating metal nanoparticles (MNPs) inside metal-organic frameworks (MOFs) demonstrates superior catalytic properties in numerous reactions; however, the size and distribution of MNPs could not be well controlled, resulting in low product selectivity in catalysis by undergoing different catalytic reaction pathways. We report herein a facile strategy for integrating lattice-mismatched MOFs together to fabricate homogeneously distributed “dual-MOFs,” which are the ideal precursors for the preparation of MNPs@MOFs with unique catalytic properties. As a proof of concept, we successfully synthesize a dual-MOF HKUST-1/ZIF-8 for in situ creation of redox-active Cu NPs inside hierarchical porous ZIF-8 under controlled pyrolytic conditions. Combining the advantages of size-tunable Cu NPs in the molecular sieving matrix of ZIF-8, Cu@ZIF-8 demonstrates high activity and selectivity for transformation of alkynes into alkenes without overhydrogenation, which surpasses most of the catalysts in the literature. Therefore, this work paves a new pathway for developing highly efficient and selective heterogeneous catalysts to produce highly value-added chemicals.
Collapse
Affiliation(s)
- Jia-Long Ling
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Kai Chen
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| | - Chuan-De Wu
- State Key Laboratory of Silicon Materials, Department of Chemistry, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
34
|
Nath A, Asha KS, Mandal S. Conductive Metal-Organic Frameworks: Electronic Structure and Electrochemical Applications. Chemistry 2021; 27:11482-11538. [PMID: 33857340 DOI: 10.1002/chem.202100610] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Indexed: 12/14/2022]
Abstract
Smarter and minimization of devices are consistently substantial to shape the energy landscape. Significant amounts of endeavours have come forward as promising steps to surmount this formidable challenge. It is undeniable that material scientists were contemplating smarter material beyond purely inorganic or organic materials. To our delight, metal-organic frameworks (MOFs), an inorganic-organic hybrid scaffold with unprecedented tunability and smart functionalities, have recently started their journey as an alternative. In this review, we focus on such propitious potential of MOFs that was untapped over a long time. We cover the synthetic strategies and (or) post-synthetic modifications towards the formation of conductive MOFs and their underlying concepts of charge transfer with structural aspects. We addressed theoretical calculations with the experimental outcomes and spectroelectrochemistry, which will trigger vigorous impetus about intrinsic electronic behaviour of the conductive frameworks. Finally, we discussed electrocatalysts and energy storage devices stemming from conductive MOFs to meet energy demand in the near future.
Collapse
Affiliation(s)
- Akashdeep Nath
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| | - K S Asha
- School of Chemistry and Biochemistry, M. S. Ramaiah College of Arts Science and Commerce, Bangaluru, 560054, India
| | - Sukhendu Mandal
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram, Kerala, 695551, India
| |
Collapse
|
35
|
Liu KG, Sharifzadeh Z, Rouhani F, Ghorbanloo M, Morsali A. Metal-organic framework composites as green/sustainable catalysts. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213827] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Mohanta D, Mahanta A, Mishra SR, Jasimuddin S, Ahmaruzzaman M. Novel SnO 2@ZIF-8/gC 3N 4 nanohybrids for excellent electrochemical performance towards sensing of p-nitrophenol. ENVIRONMENTAL RESEARCH 2021; 197:111077. [PMID: 33794171 DOI: 10.1016/j.envres.2021.111077] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Herein, a novel synthetic strategy has been proposed to prepare engineered SnO2@ZIF-8/gC3N4 nanohybrids for electrochemical sensing of p-nitrophenol (p-NP). The electrochemical properties were investigated using cyclic voltammetry (CV), chronoamperometry (CA), and differential pulse voltammetry (DPV). The developed nanohybrid sensor displayed an excellent electrochemical performance towards sensing of p-NP with a detection limit of 0.565 μM. The sensitivity of the prepared nanohybrid was found to be 2.63 μAcm-2μM-1. Moreover, the newly fabricated sensor exhibited remarkable selectivity (over tenfold excess) in the presence of common interferents. The simultaneous detection of isomers of nitrophenol is difficult using the developed sensor. However, other common interferents, such as phenol and aminophenol have negligible effects on the sensitivity of SnO2@ZIF-8/gC3N4 towards the detection of p-nitrophenol. Further, the newly developed sensor showed consistency of sensing response up to 30 days. Thus, implementation of SnO2@ZIF-8/gC3N4 nanohybrids as a p-NP electrochemical sensor offers the advantages of simplicity, selectivity, and stability.
Collapse
Affiliation(s)
- Dipyaman Mohanta
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India
| | - Abhinandan Mahanta
- Department of Chemistry, Assam University, Silchar, Assam, 788010, India
| | - Soumya Ranjan Mishra
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India
| | - Sk Jasimuddin
- Department of Chemistry, Assam University, Silchar, Assam, 788010, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, Assam, 788010, India.
| |
Collapse
|
37
|
Xing Y, Zhang T, Lu N, Xu Z, Song Y, Liu Y, Liu M, Zhao P, Zhang Z, Yan X. Catalytic amplification based on hierarchical heterogeneity bimetal-organic nanostructures with peroxidase-like activity. Anal Chim Acta 2021; 1173:338713. [PMID: 34172151 DOI: 10.1016/j.aca.2021.338713] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 10/21/2022]
Abstract
In this paper, integrating heterometallic units and nanostructures into metal-organic frameworks (MOFs) were applied to improve the sensitivity of detecting hydrogen peroxide (H2O2) in neutral solution. The bimetal-MOFs (CuCo-BDC) and GO composite (CuCo-BDC/GO) were first synthesized via an ordinary one-step solvothermal synthesis. The CuCo-BDC/GO with admirable peroxidase-like catalytic activity could be applied to detect H2O2. The results have low detection limit of 69 nM (S/N = 3) and a wide linear detection range, from 100 nM to 3.5 mM. This is superior to recently published biosensors based on noble metal nanomaterials, which confirms CuCo-BDC/GO as the MOF electrocatalysts with high performance. The remarkable electroanalytical performance of CuCo-BDC/GO is due to the presence of numerous open metal active sites, the synergistic effect of Cu2+ and Co2+, hierarchical structure with high-specific surface areas and the marvelous electrochemical properties of GO. Therefore, CuCo-BDC/GO is a powerful candidate for detecting H2O2 in electrochemical biosensing fields. Moreover, H2O2 detection in real samples can be done with the CuCo-BDC/GO, including human serum samples. Therefore, the novel CuCo-BDC/GO is a promising catalyst that can be applied in biotechnological and environmental applications.
Collapse
Affiliation(s)
- Yue Xing
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Tingting Zhang
- Qingdao Cancer Institute, Qingdao University, Qingdao, 266071, China
| | - Nannan Lu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhiqian Xu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yu Song
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yu Liu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Meihan Liu
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Puyu Zhao
- College of Chemistry, Jilin University, Changchun, 130012, China
| | - Zhiquan Zhang
- College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Xiaoyi Yan
- College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
38
|
Li H, Zhu F, Xiang J, Wang F, Liu Q, Chen X. In situ growth of ZIF-8 on gold nanoparticles/magnetic carbon nanotubes for the electrochemical detection of bisphenol A. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2338-2344. [PMID: 33970976 DOI: 10.1039/d1ay00324k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We herein report a facile and scalable strategy for the fabrication of a metal-organic framework (MOF) based composite by in situ growing ZIF-8 on gold nanoparticle (AuNP) loaded magnetic carbon nanotubes (mCNTs). AuNPs were firstly loaded on PEI (polyethylenimine) modified mCNTs by electrostatic forces, and then AuNPs/mCNTs were encapsulated into the ZIF-8 frame through in situ self-assembling of zinc ions and 2-methylimidazole. The morphology, spectroscopy and structural properties of the AuNP/mCNT@ZIF-8 nanocomposites were systematically characterized. The conductivity-strain tests revealed that the in situ insertion of AuNPs/mCNTs in ZIF-8 could not only shorten the electron transfer distance between active sites and mCNTs, but also increase the dispersion of mCNTs, which would benefit the electron and mass transfer. Besides, by adopting the AuNP/mCNT@ZIF-8 nanocomposite-modified glassy carbon electrode (GCE) as the working electrode, a novel electrochemical sensor was successfully developed for the detection of bisphenol A (BPA). A linear range of BPA detection from 1 μM to 100 μM with a limit of detection of 690 nM was favorably obtained. Moreover, the developed sensor exhibited satisfactory reproducibility and superior stability with excellent anti-interference ability, and was successfully applied in the detection of BPA in real samples.
Collapse
Affiliation(s)
- Hexiang Li
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, China.
| | - Fawei Zhu
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, China.
| | - Jun Xiang
- Hunan Institute of Food Quality Supervision Inspection and Research, The Hunan Provincial Key Laboratory of Food Safety Monitoring and Early Warning, Changsha 410111, Hunan, China
| | - Fangbin Wang
- Hunan Institute of Food Quality Supervision Inspection and Research, The Hunan Provincial Key Laboratory of Food Safety Monitoring and Early Warning, Changsha 410111, Hunan, China
| | - Qi Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, China. and Hunan Institute of Food Quality Supervision Inspection and Research, The Hunan Provincial Key Laboratory of Food Safety Monitoring and Early Warning, Changsha 410111, Hunan, China
| | - Xiaoqing Chen
- College of Chemistry and Chemical Engineering, Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, China.
| |
Collapse
|
39
|
Yao Y, Han X, Yang X, Zhao J, Chai C. Detection of Hydrazine at
MXene
/
ZIF
‐8 Nanocomposite Modified Electrode
†. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000398] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yanqing Yao
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Xuhui Han
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Xuanhe Yang
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Jia Zhao
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
| | - Chunpeng Chai
- School of Materials Science and Engineering, Beijing Institute of Technology Beijing 100081 China
| |
Collapse
|
40
|
Chen Y, Li S, Lv S, Huang Y. A novel synthetic route for MOF-derived CuO-CeO2 catalyst with remarkable methanol steam reforming performance. CATAL COMMUN 2021. [DOI: 10.1016/j.catcom.2020.106215] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
|
41
|
Wani AA, Bhat MM, Sofi FA, Bhat SA, Ingole PP, Rashid N, Bhat MA. Nano-spinel cobalt decorated sulphur doped graphene: an efficient and durable electrocatalyst for oxygen evolution reaction and non-enzymatic sensing of H 2O 2. NEW J CHEM 2021. [DOI: 10.1039/d1nj02383g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
We report the synthesis of a nano-spinel cobalt decorated sulphur doped reduced graphene oxide (Co@S–rGO) composite exhibiting excellent electrocatalytic performance and electrochemical stability toward oxygen evolution reaction in an alkaline medium.
Collapse
Affiliation(s)
- Adil Amin Wani
- Department of Chemistry, University of Kashmir, Hazratbal Srinagar, India
| | | | - Feroz Ahmad Sofi
- Department of Chemistry, University of Kashmir, Hazratbal Srinagar, India
| | - Sajad Ahmad Bhat
- Department of Chemistry, University of Kashmir, Hazratbal Srinagar, India
| | - Pravin P. Ingole
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Nusrat Rashid
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi-110016, India
| | - Mohsin Ahmad Bhat
- Department of Chemistry, University of Kashmir, Hazratbal Srinagar, India
| |
Collapse
|
42
|
Wu MX, Wang Y, Zhou G, Liu X. Core-Shell MOFs@MOFs: Diverse Designability and Enhanced Selectivity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:54285-54305. [PMID: 33231416 DOI: 10.1021/acsami.0c16428] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Metal-Organic frameworks (MOFs), especially MOF-based composites, performed an irreplaceable role in the material fields. By virtue of the tailorability of MOFs, core-shell MOFs@MOFs composites with diverse designability and enhanced selectivity have inspired infinite scientific interest. This review will highlight an up-to-date overview of the designability and enhanced selectivity of core-shell MOFs@MOFs composites, covering the synthetic strategies of an epitaxial growth method, postsynthetic modification, and one-pot synthesis as well as the synergistic selective performance of the synthesized MOFs@MOFs in catalysis, adsorption and separation, and molecular recognition. Finally, the potential development trend and challenges toward core-shell MOFs@MOFs are addressed.
Collapse
Affiliation(s)
- Ming-Xue Wu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Guohui Zhou
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| | - Xiaomin Liu
- College of Chemistry and Chemical Engineering, Qingdao University, Qingdao 266071, Shandong, P. R. China
| |
Collapse
|
43
|
Liu S, Lai C, Liu X, Li B, Zhang C, Qin L, Huang D, Yi H, Zhang M, Li L, Wang W, Zhou X, Chen L. Metal-organic frameworks and their derivatives as signal amplification elements for electrochemical sensing. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213520] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
44
|
Rani S, Sharma B, Malhotra R, Kumar S, Varma RS, Dilbaghi N. Sn-MOF@CNT nanocomposite: An efficient electrochemical sensor for detection of hydrogen peroxide. ENVIRONMENTAL RESEARCH 2020; 191:110005. [PMID: 32926892 DOI: 10.1016/j.envres.2020.110005] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 05/11/2020] [Accepted: 07/25/2020] [Indexed: 06/11/2023]
Abstract
A novel approach for the assembly of Sn-based metal organic framework (Sn-MOF) via solvothermal method and its composite (Sn-MOF@CNT) with electroactive material, carbon nanotubes (CNT) by sonochemical means, is described that is useful for hydrogen peroxide sensing; large surface area and pore volume of Sn-MOF were exploited where in the crystallinity of the Sn-MOF was preserved upon inclusion of CNT over its surface. The surface morphology and structural analysis of Sn-MOF and its composite form, Sn-MOF@CNT, were determined analytically through Fourier-transform infrared spectroscopy (FT-IR), X-ray powder diffraction (XRD), Scanning electron microscopy (SEM), Brunauer-Emmett-Teller and Energy-dispersive X-ray spectroscopy (EDX). The developed Sn-MOF@CNT sensor was expansively used to determine and optimize the effect of scan rate, concentration and detection limits including the EDX and SEM analysis of used Sn-MOF@CNT nanocomposite's post hydrogen peroxide sensing. The electrochemical sensing with Sn-MOF@CNT revealed a lower limit of detection ~4.7 × 10-3 μM with wide linear range between 0.2 μM and 2.5 mM. This study has explored a new strategy for the deposition of CNT over Sn-MOF via a simple sonochemical methodology for successful electrochemical detection of H2O2, an approach that can be imitated for other applications.
Collapse
Affiliation(s)
- Sushma Rani
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Bharti Sharma
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Rajesh Malhotra
- Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Palacky University, Šlechtitelů 27, 783 71, Olomouc, Czech Republic.
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India.
| |
Collapse
|
45
|
Yu X, Li X, Zhang S, Jia Y, Xu Z, Li X, Chen Z, Li Y. Ultrasensitive electrochemical detection of neuron-specific enolase based on spiny core-shell Au/Cu xO@CeO 2 nanocubes. Bioelectrochemistry 2020; 138:107693. [PMID: 33291001 DOI: 10.1016/j.bioelechem.2020.107693] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 10/27/2020] [Accepted: 11/01/2020] [Indexed: 02/07/2023]
Abstract
As a specific biomarker, neuron-specific enolase (NSE) is an essential clinical indicator for diagnosing small cell lung cancer. In this paper, a sandwich-type electrochemical immunosensor was designed for the quantitative detection of NSE. AuPt nanoblock spherical nanoarchitectonics (AuPt NSNs), a bimetallic nanoparticle with a rugged morphology, were utilized as the substrate, which could enhance the electronic conduction and increase the immobilization capacity of the primary antibody (Ab1). Moreover, through a simple hydrothermal method, Au/CuxO@CeO2 was prepared as a spiny core-shell nanocube with cerium dioxide (CeO2) and gold nanoparticles (Au NPs) loading. The combination of Cu2O, CuO, and CeO2 showed favorable catalytic activity toward hydrogen peroxide (H2O2). Furthermore, the deposition of Au NPs on the spiny surface structure enhanced the specific surface area and biocompatibility, thereby rendering it more effective for loading the second antibody (Ab2). As the label material, the Au/CuxO@CeO2 achieved signal amplification and sensitive detection with the immunosensor. Under optimal conditions, the designed immunosensor possessed a broad linear range of 50 fg mL-1 to 100 ng mL-1 and a limit of detection of 31.3 fg mL-1, along with satisfactory performance in sensitivity, selectivity, and stability.
Collapse
Affiliation(s)
- Xiaodong Yu
- School of Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Xinjin Li
- School of Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| | - Shuan Zhang
- School of Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yilei Jia
- School of Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Zhen Xu
- School of Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Xiangye Li
- School of Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Zhiwei Chen
- School of Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China
| | - Yueyun Li
- School of Chemical Engineering, Shandong University of Technology, Zibo 255049, PR China.
| |
Collapse
|
46
|
Guo H, Fan T, Yao W, Yang W, Wu N, Liu H, Wang M, Yang W. Simultaneous determination of 4-aminophenol and acetaminophen based on high electrochemical performance of ZIF-67/MWCNT-COOH/Nafion composite. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105262] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
47
|
Wang R, Zhang P, Zhan T, Yu X, Wen Y, Liu X, Gao H, Wang P, She X. In situ growth of ZIF-67 on ultrathin CoAl layered double hydroxide nanosheets for electrochemical sensing toward naphthol isomers. J Colloid Interface Sci 2020; 576:313-321. [DOI: 10.1016/j.jcis.2020.05.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 05/09/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022]
|
48
|
Chen L, Zhang X, Cheng X, Xie Z, Kuang Q, Zheng L. The function of metal-organic frameworks in the application of MOF-based composites. NANOSCALE ADVANCES 2020; 2:2628-2647. [PMID: 36132385 PMCID: PMC9417945 DOI: 10.1039/d0na00184h] [Citation(s) in RCA: 88] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 05/07/2020] [Indexed: 05/25/2023]
Abstract
In the last two decades, metal-organic frameworks (MOFs), as a class of porous crystalline materials formed by organic linkers coordinated-metal ions, have attracted increasing attention due to their unique structures and wide applications. Compared to single components, various well-designed MOF-based composites combining MOFs with other functional materials, such as nanoparticles, quantum dots, natural enzymes and polymers with remarkably enhanced or novel properties have recently been reported. To efficiently and directionally synthesize high-performance MOF-based composites for specific applications, it is vital to understand the structural-functional relationships and role of MOFs. In this review, preparation methods of MOF-based composites are first summarized and then the relationship between the structure and performance is determined. The functions of MOFs in practical use are classified and discussed through various examples, which may help chemists to understand the structural-functional relationship in MOF-based composites from a new perspective.
Collapse
Affiliation(s)
- Luning Chen
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China +86-592-2183047
| | - Xibo Zhang
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China +86-592-2183047
| | - Xiqing Cheng
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China +86-592-2183047
| | - Zhaoxiong Xie
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China +86-592-2183047
| | - Qin Kuang
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China +86-592-2183047
| | - Lansun Zheng
- Department of Chemistry, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University Xiamen 361005 P. R. China +86-592-2183047
| |
Collapse
|
49
|
Xiao YH, Gu ZG, Zhang J. Surface-coordinated metal-organic framework thin films (SURMOFs) for electrocatalytic applications. NANOSCALE 2020; 12:12712-12730. [PMID: 32584342 DOI: 10.1039/d0nr03115a] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The design and development of highly efficient electrocatalysts are very important in energy storage and conversion. As a kind of inorganic organic hybrid material, metal-organic frameworks (MOFs) have been used as electrocatalysts in electrocatalytic reactions due to their structural diversities and fascinating functionalities. Particularly, MOF thin films are coordinated on substrate surfaces by a liquid phase epitaxial (LPE) layer by layer (LBL) growth method (called surface-coordinated MOF thin films, SURMOFs), and recently have been studied in various applications due to their precisely controlled thickness, preferred growth orientation and homogeneous surface. In this review, we will summarize the preparation and electrocatalysis of SURMOFs and their derived thin films (SURMOF-D). The SURMOF based thin films possess diverse topological structures and flexible properties, providing abundant catalytically active sites and fast charge transfer for efficient electrocatalytic performance in the oxygen evolution reaction (OER), oxygen reduction reaction (ORR), hydrogen evolution reaction (HER), carbon dioxide reduction reaction (CRR), supercapacitors, tandem electrocatalysis and so on. The research challenges and problems of SURMOFs for electrocatalytic applications are also discussed at the end of the review.
Collapse
Affiliation(s)
- Yi-Hong Xiao
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, P.R. China.
| | | | | |
Collapse
|
50
|
Metal-organic framework-based materials as an emerging platform for advanced electrochemical sensing. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213222] [Citation(s) in RCA: 225] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|