1
|
Mansouri S, Alharbi Y, Alqahtani A. Nanomaterials Connected to Bioreceptors to Introduce Efficient Biosensing Strategy for Diagnosis of the TORCH Infections: A Critical Review. Crit Rev Anal Chem 2024:1-18. [PMID: 38193140 DOI: 10.1080/10408347.2023.2301649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
TORCH infection is a significant risk factor for severe fetal damage, especially congenital malformations. Screening pregnant women for TORCH pathogens could reduce the incidence of adverse pregnancy outcomes and prevent birth defects. Hence, timely identification and inhibition of TORCH infections are effective ways to successfully prevent them in pregnant women. Recently, the superiority of biosensors in TORCH pathogen sensing has been emphasized due to their intrinsic benefits, such as rapid response time, portability, cost-effectiveness, much friendlier preparation and determination steps. With the introduction of advanced nanomaterials into biosensing, the diagnostic properties of biosensors have significantly improved. This study core presents and debates the current progress in biosensing systems for TORCH pathogens using various artificial and natural receptors. The incorporation of nanomaterials into various transduction systems can enhance diagnostic performance. The key performance characteristics of optical and electrochemical biosensors, such as response time, limit of detection (LOD), and linear detection range, are systematically discussed, along with the current TORCH pathogens used for constructing biosensors. Finally, the major problems that exist for converting scientific investigation into product development are also outlined.
Collapse
Affiliation(s)
- Sofiene Mansouri
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Laboratory of Biophysics and Medical Technologies, University of Tunis El Manar, Higher Institute of Medical Technologies of Tunis, Tunis, Tunisia
| | - Yousef Alharbi
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
| | - Abdulrahman Alqahtani
- Department of Biomedical Technology, College of Applied Medical Sciences in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al-Kharj, Saudi Arabia
- Department of Medical Equipment Technology, College of Applied, Medical Science, Majmaah University, Majmaah City, Saudi Arabia
| |
Collapse
|
2
|
Govindaraj M, Srivastava A, Muthukumaran MK, Tsai PC, Lin YC, Raja BK, Rajendran J, Ponnusamy VK, Arockia Selvi J. Current advancements and prospects of enzymatic and non-enzymatic electrochemical glucose sensors. Int J Biol Macromol 2023; 253:126680. [PMID: 37673151 DOI: 10.1016/j.ijbiomac.2023.126680] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/19/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023]
Abstract
This review discusses the most current developments and future perspectives in enzymatic and non-enzymatic glucose sensors, which have notably evolved over the preceding quadrennial period. Furthermore, a thorough exploration encompassed the sensor's intricate fabrication processes, the diverse range of materials employed, the underlying principles of detection, and an in-depth assessment of the sensors' efficacy in detecting glucose levels within essential bodily fluids such as human blood serums, urine, saliva, and interstitial fluids. It is worth noting that the accurate quantification of glucose concentrations within human blood has been effectively achieved by utilizing classical enzymatic sensors harmoniously integrated with optical and electrochemical transduction mechanisms. Monitoring glucose levels in various mediums has attracted exceptional attention from industrial to academic researchers for diabetes management, food quality control, clinical medicine, and bioprocess inspection. There has been an enormous demand for the creation of novel glucose sensors over the past ten years. Research has primarily concentrated on succeeding biocompatible and enhanced sensing abilities related to the present technologies, offering innovative avenues for more effective glucose sensors. Recent developments in wearable optical and electrochemical sensors with low cost, high stability, point-of-care testing, and online tracking of glucose concentration levels in biological fluids can aid in managing and controlling diabetes globally. New nanomaterials and biomolecules that can be used in electrochemical sensor systems to identify glucose concentration levels are developed thanks to advances in nanoscience and nanotechnology. Both enzymatic and non-enzymatic glucose electrochemical sensors have garnered much interest recently and have made significant strides in detecting glucose levels. In this review, we summarise several categories of non-enzymatic glucose sensor materials, including composites, non-precious transition metals and their metal oxides, hydroxides, precious metals and their alloys, carbon-based materials, conducting polymers, metal-organic framework (MOF)-based electrocatalysts, and wearable device-based glucose sensors deeply.
Collapse
Affiliation(s)
- Muthukumar Govindaraj
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India; Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan
| | - Ananya Srivastava
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Magesh Kumar Muthukumaran
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Pei-Chien Tsai
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Computational Biology, Institute of Bioinformatics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan.
| | - Bharathi Kannan Raja
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India
| | - Jerome Rajendran
- Department of Electrical Engineering and Computer Science, The University of California, Irvine, CA 92697, United States
| | - Vinoth Kumar Ponnusamy
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Center for Emerging Contaminants Research, National Sun Yat-sen University, Kaohsiung 804, Taiwan; Research Center for Precision Environmental Medicine, Kaohsiung Medical University (KMU), Kaohsiung City 807, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital (KMUH), Kaohsiung Medical University, Kaohsiung City 807, Taiwan; Department of Chemistry, National Sun Yat-sen University (NSYSU), Kaohsiung City 804, Taiwan.
| | - J Arockia Selvi
- Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur 603203, Tamil Nadu, India.
| |
Collapse
|
3
|
Wang Y, Jiao J, Chu M, Jin Z, Liu Y, Song D, Yu TT, Yang G, Wang Y, Ma H, Pang H, Wang X. A three-dimensional composite film-modified electrode based on polyoxometalates and ionic liquid-decorated carbon nanotubes for the determination of L-tyrosine in food. Mikrochim Acta 2023; 190:413. [PMID: 37740757 DOI: 10.1007/s00604-023-05967-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/26/2023] [Indexed: 09/25/2023]
Abstract
A stable and innovative composite film-modified electrode based on Dawson polyoxometalates H8P2Mo16V2O62 (P2Mo16V2) and ionic liquid (BMIMBr)-decorated carbon nanotubes, annotated as PEI/(P2Mo16V2/BMIMBr-CNTs)8, has been constructed by using the layer-by-layer self-assembly (LBL) method for the determination of L-tyrosine. The combination of three active components not only offers higher conductivity to facilitate rapid electron transfer, but also avoids the accumulation of P2Mo16V2 to expand the contact area and increase the reactive active sites. The modified electrode exhibits outstanding sensing performance for determination of Tyr with wide linear determination range of 5.8×10-7 M ~ 1.2×10-4 M, low determination limit of 1.7×10-7M (S/N=3), high selectivity for common interferences, and excellent stability at the potential of +0.78 V (vs. Ag/AgCl (3 M KCl)). The relative standard deviation (RSD) of 4.3% for five groups of parallel experiments shows the satisfactory repeatability of PEI/(P2Mo16V2/BMIMBr-CNTs)8. In addition, for determination of Tyr, the PEI/(P2Mo16V2/BMIMBr-CNTs)8 shows good recoveries of 98.8-99.8% in meat floss, which can be feasible in practical application.
Collapse
Affiliation(s)
- Ying Wang
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Jia Jiao
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
- The School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150040, People's Republic of China
| | - Mingyue Chu
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Zhongxin Jin
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Yikun Liu
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Daozheng Song
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Ting-Ting Yu
- College of Chemical Engineering, Harbin Institute of Petroleum, Harbin, 150028, People's Republic of China
| | - Guixin Yang
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China.
| | - Yingji Wang
- College of Pharmacy, Harbin Medical University, Harbin, 150081, People's Republic of China.
| | - Huiyuan Ma
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China.
| | - Haijun Pang
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| | - Xinming Wang
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, People's Republic of China
| |
Collapse
|
4
|
Jiang H, Xia C, Lin J, Garalleh HA, Alalawi A, Pugazhendhi A. Carbon nanomaterials: A growing tool for the diagnosis and treatment of diabetes mellitus. ENVIRONMENTAL RESEARCH 2023; 221:115250. [PMID: 36646201 DOI: 10.1016/j.envres.2023.115250] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/20/2022] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Diabetes mellitus is a growing disease that affects people of different ages due to deficiencies in insulin action and secretion. Diabetes causing long-term hyperglycemia damages, destroys, and fails essential organs, including kidneys, eyes, hearts, nerves, and blood vessels. The involvement of pathogenic factors makes diabetes mellitus a severe disease. The autoimmune process results in insulin deficiency by destroying the beta-cells in the pancreas. This leads to insulin resistance. As a result of defects and abnormalities in fat, carbohydrate, and protein synthesis, insulin does not work as it should on the target tissues. As diabetes mellitus becomes, more severe, long-term and effective treatment becomes necessary. A wide range of nanomaterials can be used to treat diabetes mellitus in patients. In addition to being potential imaging, diagnostic, and treatment agents for diabetes mellitus, carbon nanomaterials (CNMs) are another group of nanoparticles that exhibit potential interest. The CNMs acts as implantable nanosensor to track and detect blood glucose level in patients with diabetes. CNMS are possible drug carriers that can treat diabetes mellitus selectively, precisely, and effectively. Diabetes mellitus can be diagnosed and treated with CNMs due to their structural specificity and high drug-loading efficiency. The present review explores CNMs for their types, synthesis, and anti-diabetic properties. This review aims to provide a detailed view of the new technology that can be used to decipher the mechanism of CNMs in diabetes mellitus.
Collapse
Affiliation(s)
- Han Jiang
- PET-CT Center, Fujian Medical University Union Hospital, Fuzhou, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Junqing Lin
- Department of Interventional Radiology, Fujian Medical University Union Hospital, Fuzhou, China.
| | - Hakim Al Garalleh
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia
| | - Amr Alalawi
- Department of Mathematical Science, College of Engineering, University of Business and Technology-Dahban, Jeddah, 21361, Saudi Arabia
| | - Arivalagan Pugazhendhi
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, India.
| |
Collapse
|
5
|
Biowaste-Derived Heteroatom-Doped Porous Carbon as a Sustainable Electrocatalyst for Hydrogen Evolution Reaction. Catalysts 2023. [DOI: 10.3390/catal13030542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
Heteroatom-doped porous carbon material (H-PCM) was synthesized using Anacardium occidentale (cashew) nut’s skin by a simple pyrolysis route. The resulting H-PCM was thoroughly characterized by various analytical techniques such as field emission scanning electron microscopy (FE-SEM) with energy-dispersive X-ray (EDX) spectroscopy, high-resolution transmittance electron microscopy (HRTEM), X-ray diffraction (XRD), Raman spectroscopy, nitrogen adsorption–desorption isotherms, X-ray photoelectron spectroscopy (XPS), and attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy. The obtained results strongly demonstrated that the synthesized H-PCM exhibited a porous nature, continuous sponge-like and sheet-like smooth morphology, and a moderate degree of graphitization/crystallinity with oxygen-, nitrogen-, and sulfur-containing functionalities in the carbon matrix. After the structural confirmation, as-prepared H-PCM has used a sustainable electrocatalyst for hydrogen evolution reaction (HER) because the metal-free carbonaceous catalysts are one of the most promising candidates. The H-PCM showed excellent HER activities with a lowest Tafel slope of 75 mV dec−1 and durable stability in 0.5 M H2SO4 aqueous solution. Moreover, this work provides a versatile and effective strategy for designing excellent metal-free electrocatalysts from the cheapest biowaste/biomass for large-scale production of hydrogen gas through electrochemical water splitting.
Collapse
|
6
|
Wang Y, Luo X, Lu W, Huang B, Yang Y. Fabrication of Flower-like Rhodium-Doped β-Ni(OH) 2 as an Efficient Electrocatalyst for Methanol Oxidation Reaction in Alkaline Media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:423-432. [PMID: 36548983 DOI: 10.1021/acs.langmuir.2c02673] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
In this study, β-Ni(OH)2 with a unique flower-like morphology was synthesized through a hydrothermal method. The doping of Rh in β-Ni(OH)2 was achieved by a reduction method. The as-synthesized catalysts were characterized by X-ray diffraction, transmission electron microscopy, and X-ray photoelectron spectroscopy for the crystal structure, morphology, composition, and chemical state analysis. The electrochemical tests revealed that the doping of Rh can significantly increase the electrocatalytic performance of β-Ni(OH)2 in 1.0 M KOH solution. The methanol oxidation peak current density of Rh-doped β-Ni(OH)2 reached 95 mA cm-2 with a Tafel slope of 40 mV dec-1. The reason for these improvements is that Rh can suppress the phase transformation of NiOOH from β to α. Meanwhile, the electronic structure change of nickel in β-Ni(OH)2 and the defect ratio increase caused by Rh doping are beneficial to methanol oxidation reaction (MOR) catalytic activity. Furthermore, the synergistic effect between Rh and Ni(OH)2 improved the surface activity of β-NiOOH. The doping of Rh in β-Ni(OH)2 is initiative in this work, which provides a new strategy to design highly efficient and cost-effective MOR electrocatalysts for alkaline DMFCs.
Collapse
Affiliation(s)
- Yafeng Wang
- State Key Lab of Solidification Processing, Northwestern Polytechnical University, Xi'an710072, PR China
| | - Xian Luo
- State Key Lab of Solidification Processing, Northwestern Polytechnical University, Xi'an710072, PR China
| | - Wenjie Lu
- State Key Lab of Solidification Processing, Northwestern Polytechnical University, Xi'an710072, PR China
| | - Bin Huang
- State Key Lab of Solidification Processing, Northwestern Polytechnical University, Xi'an710072, PR China
| | - Yanqing Yang
- State Key Lab of Solidification Processing, Northwestern Polytechnical University, Xi'an710072, PR China
| |
Collapse
|
7
|
Palanisamy S, Anjali R, Jeneeta S, Mohandoss S, Keerthana D, Shin IS, You S, Prabhu NM. An effective bio-inspired synthesis of platinum nanoparticles using Caulerpa sertularioides and investigating their antibacterial and antioxidant activities. Bioprocess Biosyst Eng 2023; 46:105-118. [PMID: 36534143 DOI: 10.1007/s00449-022-02816-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 11/14/2022] [Indexed: 12/23/2022]
Abstract
In this study, we report the synthesis of platinum nanoparticles (Cs-PtNPs) using an aqueous extract of Caulerpa sertularioides as a reducing agent. Cs-PtNPs were characterized by UV-Vis spectroscopy, fourier transform infrared (FT-IR) spectroscopy, X-ray diffraction (XRD), field emission electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDAX), high-resolution transmission electron microscopy (HR-TEM) and dynamic light scattering (DLS) analysis. Cs-PtNPs are spherical with a particle size of 6-22 nm. Cs-PtNPs have been shown to have highly effective antioxidant activities with 74% for DPPH, 63% for reducing power, and 59% for total antioxidant at 1 mg/ml, and results were compared with standard L-ascorbic acid. Furthermore, the Cs-PtNPs demonstrated excellent antibacterial activity against the Gram-negative bacteria, Vibrio parahaemolyticus with the highest zone of inhibition (18 mm) at 50 µg/ml. Moreover, Artemia nauplii showed less toxicity when treated with Cs-PtNPs at 150 µg/ml, indicating that the Cs-PtNPs are less toxic and environment friendly.
Collapse
Affiliation(s)
- Subramanian Palanisamy
- East Coast Life Sciences Institute, Gangneung-Wonju National University, 120 Gangneung, Gangwon, 210-720, Republic of Korea
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon, 210-702, Republic of Korea
| | - Ravichandran Anjali
- Disease Control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
| | - Solomon Jeneeta
- Disease Control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
| | - Sonaimuthu Mohandoss
- School of Chemical Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Dhanapal Keerthana
- Disease Control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India
| | - Il-Shik Shin
- East Coast Life Sciences Institute, Gangneung-Wonju National University, 120 Gangneung, Gangwon, 210-720, Republic of Korea
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon, 210-702, Republic of Korea
| | - SangGuan You
- East Coast Life Sciences Institute, Gangneung-Wonju National University, 120 Gangneung, Gangwon, 210-720, Republic of Korea.
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120 Gangneung, Gangwon, 210-702, Republic of Korea.
| | - Narayanasamy Marimuthu Prabhu
- Disease Control and Prevention Lab, Department of Animal Health and Management, Alagappa University, Karaikudi, Tamil Nadu, 630 003, India.
| |
Collapse
|
8
|
Ramesh M, Janani R, Deepa C, Rajeshkumar L. Nanotechnology-Enabled Biosensors: A Review of Fundamentals, Design Principles, Materials, and Applications. BIOSENSORS 2022; 13:40. [PMID: 36671875 PMCID: PMC9856107 DOI: 10.3390/bios13010040] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 05/14/2023]
Abstract
Biosensors are modern engineering tools that can be widely used for various technological applications. In the recent past, biosensors have been widely used in a broad application spectrum including industrial process control, the military, environmental monitoring, health care, microbiology, and food quality control. Biosensors are also used specifically for monitoring environmental pollution, detecting toxic elements' presence, the presence of bio-hazardous viruses or bacteria in organic matter, and biomolecule detection in clinical diagnostics. Moreover, deep medical applications such as well-being monitoring, chronic disease treatment, and in vitro medical examination studies such as the screening of infectious diseases for early detection. The scope for expanding the use of biosensors is very high owing to their inherent advantages such as ease of use, scalability, and simple manufacturing process. Biosensor technology is more prevalent as a large-scale, low cost, and enhanced technology in the modern medical field. Integration of nanotechnology with biosensors has shown the development path for the novel sensing mechanisms and biosensors as they enhance the performance and sensing ability of the currently used biosensors. Nanoscale dimensional integration promotes the formulation of biosensors with simple and rapid detection of molecules along with the detection of single biomolecules where they can also be evaluated and analyzed critically. Nanomaterials are used for the manufacturing of nano-biosensors and the nanomaterials commonly used include nanoparticles, nanowires, carbon nanotubes (CNTs), nanorods, and quantum dots (QDs). Nanomaterials possess various advantages such as color tunability, high detection sensitivity, a large surface area, high carrier capacity, high stability, and high thermal and electrical conductivity. The current review focuses on nanotechnology-enabled biosensors, their fundamentals, and architectural design. The review also expands the view on the materials used for fabricating biosensors and the probable applications of nanotechnology-enabled biosensors.
Collapse
Affiliation(s)
- Manickam Ramesh
- Department of Mechanical Engineering, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | - Ravichandran Janani
- Department of Physics, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | - Chinnaiyan Deepa
- Department of Artificial Intelligence & Data Science, KIT-Kalaignarkarunanidhi Institute of Technology, Coimbatore 641402, Tamil Nadu, India
| | - Lakshminarasimhan Rajeshkumar
- Department of Mechanical Engineering, KPR Institute of Engineering and Technology, Coimbatore 641407, Tamil Nadu, India
| |
Collapse
|
9
|
Su X, Zhang Y, Jia Z, Zhang S, Gao Y, Huang Y, Xu C, Liu E. In-situ synthesis of metasequoia-leaf-like Cu/Cu2O/Ni(OH)2 on a glassy carbon electrode for efficient non-enzymatic glucose sensing. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
10
|
Palanisami M, Kaur K, Sahu BK, Kataria S, Chandel M, Sharma A, Elumalai S, Ramaraj R, Shanmugam V. Excellent enzymeless anti-oxidant sensor for fruit juice and wine using nano gold/metal selenide urchins decorated 2D-composite. Microchem J 2022. [DOI: 10.1016/j.microc.2022.108078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
11
|
Label-free electrochemical detection of glucose and glycated hemoglobin (HbA1c). Biosens Bioelectron 2022; 221:114907. [DOI: 10.1016/j.bios.2022.114907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 11/15/2022]
|
12
|
Magerusan L, Pogacean F, Pruneanu S. Eco-friendly synthesis of sulphur-doped graphenes with applicability in caffeic acid electrochemical assay. Bioelectrochemistry 2022; 148:108228. [PMID: 35970121 DOI: 10.1016/j.bioelechem.2022.108228] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 08/05/2022] [Accepted: 08/06/2022] [Indexed: 11/28/2022]
Abstract
A new electrode based on glassy carbon modified with a sulphur-doped graphene material was successfully developed and applied for caffeic acid (CA) voltammetric detection and quantification. The structural features of sulphur-doped graphene (exfGR-S) characterized by different physicochemical and analytical techniques are presented. Cyclic voltammetry (CV) technique was employed to evaluate the electrochemical behavior of both bare glassy carbon (GCE) and modified GCE/exfGr-S electrodes towards CA oxidation. The study revealed that the modified electrode exhibits superior electrochemical performances compared to the bare electrode, with a broad CA detecting range (from 0.1 to 100.0 µM), a low detection limit 3.03 × 10-8 M), excellent anti-interference capabilities, as well as good stability and repeatability. The developed electrochemical sensor appears to be a promising candidate for real sample quality control analysis since it successfully displayed its ability to directly detect CA in commercially available coffee product without any pretreatment.
Collapse
Affiliation(s)
- Lidia Magerusan
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, RO, 400293 Cluj-Napoca, Romania.
| | - Florina Pogacean
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, RO, 400293 Cluj-Napoca, Romania
| | - Stela Pruneanu
- National Institute for Research and Development of Isotopic and Molecular Technologies, Donat Street, No. 67-103, RO, 400293 Cluj-Napoca, Romania
| |
Collapse
|
13
|
Yamuna A, Karikalan N, Lee TY. Effect of the Ni 3TeO 6 phase in a Ni 2Te 3O 8/expanded graphite composite on the electrochemical monitoring of metribuzin residue in soil and water samples. JOURNAL OF HAZARDOUS MATERIALS 2022; 435:128988. [PMID: 35487004 DOI: 10.1016/j.jhazmat.2022.128988] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/11/2022] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Growing food demand and climate change have led to the development of various pest control agents to increase crop yields. Although pesticides help meet the food demand, they cause harm to human health and the environment. Metribuzin (MTBZ) is one of the common herbicides used for controlling weeds. Therefore, monitoring MTBZ residues in soil and water bodies is essential for decreasing risk to the environment and human health. This paper reports a highly selective and sensitive electrochemical sensor electrode based on a Ni3TeO6-phase-integrated Ni2Te3O8/expanded graphite (referred to here as NTO-eGR) composite for the detection of MTBZ. The NTO-eGR composite was prepared by a one-step low-temperature hydrothermal method and characterized by X-ray diffraction, Raman spectroscopy, X-ray photoelectron spectroscopy, and electron microscopy techniques. The Ni3TeO6 phase was found to be an active component in the NTO/eGR composite, which exhibited satisfactory analytical performance in MTBZ detection with a sensitivity of 1.454 µA µM-1 cm-2. Moreover, the NTO-eGR electrode exhibited high selectivity to MTBZ even in the presence of a five-fold excess of interfering species in water and soil samples. The studies on practical applicability revealed that NTO-eGR exhibits good reproducibility with a relative standard deviation of 2.67% (n = 5). Moreover, good recoveries of greater than 90% were achieved in the determination of MTBZ in soil and water samples. Hence, the NTO-eGR sensor electrode is highly suitable for the rapid on-site determination of MTBZ.
Collapse
Affiliation(s)
- Annamalai Yamuna
- Department of Biomedical Engineering and Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Natarajan Karikalan
- Department of Biomedical Engineering and Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Tae Yoon Lee
- Department of Biomedical Engineering and Department of Convergence System Engineering, Chungnam National University, Daejeon 34134, Republic of Korea; Department of Technology Education, Chungnam National University, Daejeon 34134, Republic of Korea.
| |
Collapse
|
14
|
Shu H, Peng S, Lai T, Cui X, Ren J, Chen T, Xiao X, Wang Y. Nickel foam electrode decorated with Fe-CdIn2O4 nanoparticles as an effective electrochemical sensor for non-enzymatic glucose detection. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
15
|
Drissi W, Chelaghmia ML, NACEF MOUNA, Affoune A, Satha H, Kihal R, Fisli H, Boukharouba C, Pontié M. In situ growth of Ni(OH)<sub>2 </sub>nanoparticles on 316L stainless steel foam: An efficient three‐dimensional non‐enzymatic glucose electrochemical sensor in real human blood serum samples. ELECTROANAL 2022. [DOI: 10.1002/elan.202100701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
| | | | - MOUNA NACEF
- Laboratoire danalyses industrielles et genie des materiaux ALGERIA
| | | | | | | | | | - Chahira Boukharouba
- Université 8 Mai 1945 Guelma Faculté des Sciences et de la Technologie ALGERIA
| | | |
Collapse
|
16
|
Green fabrication of Pt nanoparticles via tea-polyphenols for hydrogen peroxide detection. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
How to fit a response current-concentration curve? Part (Ⅱ): Synergy of heterogeneous PANI@Ni(OH)2/NF towards high performance glucose sensing and a general semi-empirical model. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Falahi S, Jaafar A, Petrenko I, Zarejousheghani M, Ehrlich H, Rahimi P, Joseph Y. High-Performance Three-Dimensional Spongin-Atacamite Biocomposite for Electrochemical Nonenzymatic Glucose Sensing. ACS APPLIED BIO MATERIALS 2022; 5:873-880. [PMID: 35050590 DOI: 10.1021/acsabm.1c01248] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The design of sensitive and cost-effective biocomposite materials with high catalytic activity for the effective electrooxidation of glucose plays a key role in developing enzyme-free glucose sensors. The porous three-dimensional (3D) spongin scaffold of marine sponge origin provides an excellent template for the growth of atacamite crystals and improves the activity of atacamite as a catalyst. By using the design of experiment method, the influence of different parameters on the electrode efficiency was optimized. The optimized sensor based on spongin-atacamite showed distinguished performance toward glucose with two linear ranges of 0.4-200 μM and 0.2-10 mM and high sensitivities of 3908.4 and 600.5 μA mM-1 cm-2, respectively. Importantly, the designed sensor exhibited strong selectivity and favorable stability, reproducibility, and repeatability. The performance in the real application was estimated by glucose detection in spiked human blood serum samples, which verified its great potential as a reliable platform for enzyme-free glucose sensing.
Collapse
Affiliation(s)
- Sedigheh Falahi
- Institute of Electronic and Sensor Materials, Faculty of Materials Science and Materials Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Alaa Jaafar
- Institute of Electronic and Sensor Materials, Faculty of Materials Science and Materials Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Iaroslav Petrenko
- Institute of Electronic and Sensor Materials, Faculty of Materials Science and Materials Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Mashaalah Zarejousheghani
- Freiberg Water Research Center, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Hermann Ehrlich
- Institute of Electronic and Sensor Materials, Faculty of Materials Science and Materials Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Parvaneh Rahimi
- Institute of Electronic and Sensor Materials, Faculty of Materials Science and Materials Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany.,Freiberg Water Research Center, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| | - Yvonne Joseph
- Institute of Electronic and Sensor Materials, Faculty of Materials Science and Materials Technology, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany.,Freiberg Water Research Center, Technische Universität Bergakademie Freiberg, 09599 Freiberg, Germany
| |
Collapse
|
19
|
Yan L, Chu D, Chu XQ, Ge D, Chen X. Co/CoO nanoparticles armored by N-doped nanoporous carbon polyhedrons towards glucose oxidation in high-performance non-enzymatic sensors. NEW J CHEM 2022. [DOI: 10.1039/d2nj02490j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Co/CoO nanoparticles armored by porous N-doped carbon polyhedrons were successfully prepared from ZIF-67 via a pyrolysis-reorganization method, demonstrating excellent sensing performance towards glucose oxidation.
Collapse
Affiliation(s)
- Li Yan
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211800, P. R. China
| | - Dandan Chu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211800, P. R. China
| | - Xue-Qiang Chu
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211800, P. R. China
| | - Danhua Ge
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211800, P. R. China
| | - Xiaojun Chen
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 211800, P. R. China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Nanjing, 210042, P. R. China
| |
Collapse
|
20
|
Khan MAR, Al Mamun MS, Habib MA, Islam AN, Mahiuddin M, Karim KMR, Naime J, Saha P, Dey SK, Ara MH. A review on gold nanoparticles: Biological synthesis, characterizations, and analytical applications. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022] Open
|
21
|
Yamuna A, Chen TW, Akilarasan M, Chen SM, Lou BS. Electrochemical determination of glucose in blood serum and sweat samples by the strontium doped Co3O4. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Bhuvaneswari C, Ganesh Babu S. Nanoarchitecture and surface engineering strategy for the construction of 3D hierarchical CuS-rGO/g-C3N4 nanostructure: An ultrasensitive and highly selective electrochemical sensor for the detection of furazolidone drug. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
23
|
Ettadili F, Aghris S, Laghrib F, Farahi A, Saqrane S, Bakasse M, Lahrich S, El Mhammedi M. Recent advances in the nanoparticles synthesis using plant extract: Applications and future recommendations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131538] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Hu Q, Qin J, Wang XF, Ran GY, Wang Q, Liu GX, Ma JP, Ge JY, Wang HY. Cu-Based Conductive MOF Grown in situ on Cu Foam as a Highly Selective and Stable Non-Enzymatic Glucose Sensor. Front Chem 2021; 9:786970. [PMID: 34912785 PMCID: PMC8666423 DOI: 10.3389/fchem.2021.786970] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022] Open
Abstract
A non-enzymatic electrochemical sensor for glucose detection is executed by using a conductive metal–organic framework (MOF) Cu-MOF, which is built from the 2,3,6,7,10,11-hexahydroxytriphenylene (HHTP) ligand and copper acetate by hydrothermal reaction. The Cu-MOF demonstrates superior electrocatalytic activity for glucose oxidation under alkaline pH conditions. As an excellent non-enzymatic sensor, the Cu-MOF grown on Cu foam (Cu-MOF/CF) displays an ultra-low detection limit of 0.076 μM through a wide concentration range (0.001–0.95 mM) and a strong sensitivity of 30,030 mA μM−1 cm−2. Overall, the Cu-MOF/CF exhibits a low detection limit, high selectivity, excellent stability, fast response time, and good practical application feasibility for glucose detection and can promote the development of MOF materials in the field of electrochemical sensors.
Collapse
Affiliation(s)
- Qin Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Jie Qin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xiao-Feng Wang
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Guang-Ying Ran
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Qiang Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China
| | - Guang-Xiang Liu
- School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, China
| | - Jian-Ping Ma
- School of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, China
| | - Jing-Yuan Ge
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, China
| | - Hai-Ying Wang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu, China.,School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, China
| |
Collapse
|
25
|
Khan MAR, Mamun MSA, Ara MH. Review on platinum nanoparticles: Synthesis, characterization, and applications. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106840] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
26
|
He K, Qin Y, Wang J. Facile fabrication of binder-free photoelectrode for sensitive glucose sensing. NANOTECHNOLOGY 2021; 33:055501. [PMID: 34673549 DOI: 10.1088/1361-6528/ac31e6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
A novel carbon nitride particle-decorated three-dimensional porous nickel foam (CN/NF) was fabricated by a simple thermal polymerization deposition method for photoelectrochemical glucose detection. In this PEC sensing system, the synergetic effect of the photoactive CN and conductive current collector NF with multi-charge transfer channels contributed to the efficient separation of photoexcited charge carriers. The CN/NF electrode showed an excellent response for glucose detection and good anti-interference properties. A wide linear detection up to 1000μM and sensitivity of 460.2μA cm-2mM-1were obtained. This work provides a new strategy for designing binder-free electrodes for PEC sensing.
Collapse
Affiliation(s)
- Kui He
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, 523808, People's Republic of China
| | - Yimo Qin
- Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| | - Juan Wang
- Guangdong Provincial Key Laboratory of Distributed Energy Systems, Dongguan University of Technology, Dongguan, 523808, People's Republic of China
- Shanghai University of Electric Power, Shanghai 200090, People's Republic of China
| |
Collapse
|
27
|
Ghosh A, Ganguly D, Sundara R. A new approach to in-situ uniform growth of Fe3O4 nanoparticles over thermally exfoliated rGO sheet for the non-enzymatic and enzymatic detection of glucose. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115386] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
28
|
Graphene oxide template based synthesis of NiCo2O4 nanosheets for high performance non-enzymatic glucose sensor. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126600] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
29
|
Yamuna A, Jiang TY, Chen SM. Preparation of K + intercalated MnO 2-rGO composite for the electrochemical detection of nitroaniline in industrial wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125054. [PMID: 33445046 DOI: 10.1016/j.jhazmat.2021.125054] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 12/16/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
This work reports the electrochemical detection of highly hazardous material 4-Nitroaniline (4-NA) based on the metal oxide-rGO composite materials. The potassium intercalated MnO2-rGO composite material was prepared by a simple one-pot reduction method. The K+ intercalation on K-MnO2-rGO was confirmed by X-ray photoelectron spectroscopy (XPS) and Raman analysis. The amorphous nature of prepared material was scrutinized by high-resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) pattern analysis. The elemental compositions are done by energy dispersive X-ray Analysis (EDX) mapping. The prepared composite material K-MnO2-rGO was used to determine the 4-NA by differential pulse voltammetry (DPV). The electroanalytical performances of fabricated K-MnO2-rGO/SPCE were compared with the K-MnO2 and rGO in pH 7. The developed 4-NA sensor showed good sensitivity (2.85 µA µM-1 cm-2), linear range (0.001-10.53 µM), and LOD (0.7 nM). Furthermore, the K-MnO2-rGO/SPCE exhibited high selectivity with the other potential interfering nitro compounds in river water and pond water samples. Therefore the developed sensor can be applied for the determination of noxious pollutants in real-time monitoring devices.
Collapse
Affiliation(s)
- Annamalai Yamuna
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Ting-Yu Jiang
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, No.1, Section 3, Chung-Hsiao East Road, Taipei 106, Taiwan, ROC.
| |
Collapse
|
30
|
Carbon cloth-supported nanorod-like conductive Ni/Co bimetal MOF: A stable and high-performance enzyme-free electrochemical sensor for determination of glucose in serum and beverage. Food Chem 2021; 349:129202. [PMID: 33582540 DOI: 10.1016/j.foodchem.2021.129202] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/19/2021] [Accepted: 01/24/2021] [Indexed: 11/21/2022]
Abstract
In this work, we propose a electrochemical enzyme-free glucose sensor by direct growth of conductive Ni/Co bimetal MOF on carbon cloth [Ni/Co(HHTP)MOF/CC] via a facile hydrothermal method. Due to excellent conductivity between Ni/Co(HHTP)MOF and CC, synergic catalytic effect of Ni and Co elements, the Ni/Co(HHTP)MOF/CC not only provides larger surface area and more effective active sites, but also boosts the charge transports and electro-catalytic performance. Under optimized conditions, the Ni/Co(HHTP)MOF/CC shows excellent activity with a linear range of 0.3 μM-2.312 mM, a low detection limit of 100 nM (S/N = 3), a fast response time of 2 s and a high sensitivity of 3250 μA mM-1 cm-2. Furthermore, the Ni/Co(HHTP)MOF/CC was successfully applied for the detection of glucose in real serum and beverages with competitive performances. This facile and cost-effective method provides a novel strategy for monitoring of glucose in biological and food samples.
Collapse
|
31
|
Chen Q, Chu D, Yan L, Lai H, Chu XQ, Ge D, Chen X. Enhanced non-enzymatic glucose sensing based on porous ZIF-67 hollow nanoprisms. NEW J CHEM 2021. [DOI: 10.1039/d1nj01138c] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Porous ZIF-67 hollow nanoprisms based non-enzymatic glucose sensor was successfully prepared using Co5(OH)2(OAc)8·2H2O as a precursor by a diffusion-controlled strategy, which exhibited wide linear range and high sensitivity.
Collapse
Affiliation(s)
- Qiwen Chen
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Dandan Chu
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Li Yan
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Haichen Lai
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Xue-Qiang Chu
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Danhua Ge
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| | - Xiaojun Chen
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- P. R. China
| |
Collapse
|
32
|
Wang F, Ding X, Niu X, Liu X, Wang W, Zhang J. Green preparation of core-shell Cu@Pd nanoparticles with chitosan for glucose detection. Carbohydr Polym 2020; 247:116647. [PMID: 32829791 DOI: 10.1016/j.carbpol.2020.116647] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 12/13/2022]
Abstract
Although core-shell structure is favored by many applications, preparing it with green way is rarely been reported. Herein, a core-shell structured Cu@Pd-CS nanocomposite is greenly fabricated utilizing a natural chitosan and applied to glucose detection. As-obtained Cu@Pd-CS nanoparticles were characterized by transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and powder X-ray diffraction (XRD). When applied to glucose detection, the Cu@Pd-CS exhibits good stability, sensitivity and anti-interference. Moreover, it has a good linear relationship in glucose concentrations range of 0.1-1 mM with the sensitivity of 1.53 μA mM-1 cm-2 and 1-10 mM with the sensitivity of 23.00 μA mM-1 cm-2. This work proves the practicability of building metal-based core-shell structure nanoparticles with green resources and glucose detection application.
Collapse
Affiliation(s)
- Fengxia Wang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China.
| | - Xu Ding
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China
| | - Xiaobo Niu
- College of Life Science, Northwest Normal University, Lanzhou 730070, China
| | - Xianyi Liu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Wei Wang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China
| | - Ji Zhang
- College of Life Science, Northwest Normal University, Lanzhou 730070, China; Bioactive Products Engineering Research Center for Gansu Distinctive Plants, Lanzhou 730070, China.
| |
Collapse
|
33
|
Bag S, Baksi A, Nandam SH, Wang D, Ye X, Ghosh J, Pradeep T, Hahn H. Nonenzymatic Glucose Sensing Using Ni 60Nb 40 Nanoglass. ACS NANO 2020; 14:5543-5552. [PMID: 32267141 DOI: 10.1021/acsnano.9b09778] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Despite being researched for nearly five decades, chemical application of metallic glass is scarcely explored. Here we show electrochemical nonenzymatic glucose-sensing ability of nickel-niobium (Ni60Nb40) amorphous alloys in alkaline medium. Three different Ni60Nb40 systems with the same elemental composition, but varying microstructures are created following different synthetic routes and tested for their glucose-sensing performance. Among melt-spun ribbon, nanoglass, and amorphous-crystalline nanocomposite materials, nanoglass showed the best performance in terms of high anodic current density, sensitivity (20 mA cm-2 mM-1), limit of detection (100 nM glucose), stability, reproducibility (above 5000 cycles), and sensing accuracy among nonenzymatic glucose sensors involving amorphous alloys. When annealed under vacuum, only the heat-treated nanoglass retained a similar electrochemical-sensing property, while the other materials failed to yield desired results. In nanoglass, a network of glassy interfaces, compared to melt-spun ribbon, is plausibly responsible for the enhanced sensitivity.
Collapse
Affiliation(s)
- Soumabha Bag
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Ananya Baksi
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Sree Harsha Nandam
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Di Wang
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- Karlsruhe Nano Micro Facility, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Xinglong Ye
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
| | - Jyotirmoy Ghosh
- Department of Science and Technology (DST) Unit of Nanoscience and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Thalappil Pradeep
- Department of Science and Technology (DST) Unit of Nanoscience and Thematic Unit of Excellence (TUE), Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Horst Hahn
- Institute of Nanotechnology, Karlsruhe Institute of Technology, 76344 Eggenstein-Leopoldshafen, Germany
- KIT-TUD Joint Research Laboratory Nanomaterials, FB 11, TU Darmstadt, 64206 Darmstadt, Germany
| |
Collapse
|
34
|
Zeng S, Wei Q, Long H, Meng L, Ma L, Cao J, Li H, Yu Z, Lin CT, Zhou K, Sharel Pei E. Annealing temperature regulating the dispersity and composition of nickel-carbon nanoparticles for enhanced glucose sensing. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.113827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
35
|
Ge D, Yang Y, Ni X, Dong J, Qiu Q, Chu XQ, Chen X. Self-template formation of porous Co3O4 hollow nanoprisms for non-enzymatic glucose sensing in human serum. RSC Adv 2020; 10:38369-38377. [PMID: 35517558 PMCID: PMC9057297 DOI: 10.1039/d0ra06453j] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/08/2020] [Indexed: 12/15/2022] Open
Abstract
A novel type of porous Co3O4 hollow nanoprism (HNP) was successfully prepared using tetragonal cobalt acetate hydroxide [Co5(OH)2(OAc)8·2H2O] as precursor by a facile solvothermal process and a subsequent calcination treatment. The morphology and structure of the Co3O4 HNPs were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD) and N2 adsorption–desorption measurements. An enzyme-free glucose sensor was constructed based on the Co3O4 HNPs, and the electrochemical performance was tested by cyclic voltammetry (CV) and chronoamperometry. The as-prepared sensor exhibited a good electrocatalytic activity for glucose oxidation at the applied potential of 0.6 V in alkaline solution, with a high sensitivity of 19.83 μA mM−1 cm−2 and a high upper limit of 30 mM, which provide the potential for direct determination of blood glucose without any dilution pretreatment. The Co3O4 HNPs had a porous and tubular structure with a large amount of accessible active sites, which enhanced the mass diffusion and accelerated the electron transfer. Moreover, the sensor also demonstrated a desirable stability, selectivity and reproducibility, and could verify the non-enzymatic analysis of glucose in real samples. Co3O4 hollow nanoprisms based non-enzymatic glucose sensor were prepared by a self-template process, exhibiting wide linear range, good selectivity and stability, which can directly monitoring blood glucose without any dilution pretreatment.![]()
Collapse
Affiliation(s)
- Danhua Ge
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- PR China
| | - Yunqi Yang
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- PR China
| | - Xiao Ni
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- PR China
| | - Jinnan Dong
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- PR China
| | - Qianying Qiu
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- PR China
| | - Xue-Qiang Chu
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- PR China
| | - Xiaojun Chen
- College of Chemistry and Molecular Engineering
- Nanjing Tech University
- Nanjing
- PR China
| |
Collapse
|
36
|
Ravi K, Advani JH, Bankar BD, Singh AS, Biradar AV. Sustainable route for the synthesis of flower-like Ni@N-doped carbon nanosheets from bagasse and its catalytic activity towards reductive amination of nitroarenes with bio-derived aldehydes. NEW J CHEM 2020. [DOI: 10.1039/d0nj04673f] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Waste derived N-doped carbon for one pot domino catalytic transformation starting from nitroarenes and carbonyl compounds directed towards the preparation of imines and benzimidazole products.
Collapse
Affiliation(s)
- Krishnan Ravi
- Inorganic Materials and Catalysis Division
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Jacky H. Advani
- Inorganic Materials and Catalysis Division
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Balasaheb D. Bankar
- Inorganic Materials and Catalysis Division
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Amravati S. Singh
- Inorganic Materials and Catalysis Division
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Ankush V. Biradar
- Inorganic Materials and Catalysis Division
- CSIR-Central Salt and Marine Chemicals Research Institute
- Bhavnagar-364 002
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|
37
|
Subash VS, Alagumalai K, Chen SM, Shanmugam R, Shiuan HJ. Ultrasonication assisted synthesis of NiO nanoparticles anchored on graphene oxide: an enzyme-free glucose sensor with ultrahigh sensitivity. NEW J CHEM 2020. [DOI: 10.1039/d0nj02127j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
In recent years, the cost-effective fabrication of inorganic materials has received considerable attention from researchers working in various fields.
Collapse
Affiliation(s)
- Vetri Selvi Subash
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Krishnapandi Alagumalai
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Ragurethinam Shanmugam
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Huang Ji Shiuan
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| |
Collapse
|
38
|
Feng Y, Xiang D, Qiu Y, Li L, Li Y, Wu K, Zhu L. MOF‐Derived Spinel NiCo
2
O
4
Hollow Nanocages for the Construction of Non‐enzymatic Electrochemical Glucose Sensor. ELECTROANAL 2019. [DOI: 10.1002/elan.201900558] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Yun Feng
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, School of ChemistryNortheast Normal University, Changchun 130024 Jilin China
| | - Dong Xiang
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, School of ChemistryNortheast Normal University, Changchun 130024 Jilin China
| | - Yaru Qiu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, School of ChemistryNortheast Normal University, Changchun 130024 Jilin China
| | - Li Li
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, School of ChemistryNortheast Normal University, Changchun 130024 Jilin China
| | - Yusheng Li
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, School of ChemistryNortheast Normal University, Changchun 130024 Jilin China
| | - Keyan Wu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, School of ChemistryNortheast Normal University, Changchun 130024 Jilin China
| | - Liande Zhu
- Key Laboratory of Nanobiosensing and Nanobioanalysis at Universities of Jilin Province, School of ChemistryNortheast Normal University, Changchun 130024 Jilin China
| |
Collapse
|
39
|
Zhai Z, Leng B, Yang N, Yang B, Liu L, Huang N, Jiang X. Rational Construction of 3D-Networked Carbon Nanowalls/Diamond Supporting CuO Architecture for High-Performance Electrochemical Biosensors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901527. [PMID: 31074930 DOI: 10.1002/smll.201901527] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Revised: 04/24/2019] [Indexed: 05/27/2023]
Abstract
Tremendous demands for highly sensitive and selective nonenzymatic electrochemical biosensors have motivated intensive research on advanced electrode materials with high electrocatalytic activity. Herein, the 3D-networked CuO@carbon nanowalls/diamond (C/D) architecture is rationally designed, and it demonstrates wide linear range (0.5 × 10-6 -4 × 10-3 m), high sensitivity (1650 µA cm-2 mm-1 ), and low detection limit (0.5 × 10-6 m), together with high selectivity, great long-term stability, and good reproducibility in glucose determination. The outstanding performance of the CuO@C/D electrode can be ascribed to the synergistic effect coming from high-electrocatalytic-activity CuO nanoparticles and 3D-networked conductive C/D film. The C/D film is composed of carbon nanowalls and diamond nanoplatelets; and owing to the large surface area, accessible open surfaces, and high electrical conduction, it works as an excellent transducer, greatly accelerating the mass- and charge-transport kinetics of electrocatalytic reaction on the CuO biorecognition element. Besides, the vertical aligned diamond nanoplatelet scaffolds could improve structural and mechanical stability of the designed electrode in long-term performance. The excellent CuO@C/D electrode promises potential application in practical glucose detection, and the strategy proposed here can also be extended to construct other biorecognition elements on the 3D-networked conductive C/D transducer for various high-performance nonenzymatic electrochemical biosensors.
Collapse
Affiliation(s)
- Zhaofeng Zhai
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No.72 Wenhua Road, Shenyang, 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, No.72 Wenhua Road, Shenyang, 110016, China
| | - Bing Leng
- Department of Plastic Surgery, The First Affiliated Hospital of China Medical University, No.155 North Nanjing Street, Shenyang, 110001, China
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, No.9-11 Paul-Bonatz-Str., Siegen, 57076, Germany
| | - Bing Yang
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No.72 Wenhua Road, Shenyang, 110016, China
| | - Lusheng Liu
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No.72 Wenhua Road, Shenyang, 110016, China
| | - Nan Huang
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No.72 Wenhua Road, Shenyang, 110016, China
| | - Xin Jiang
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research (IMR), Chinese Academy of Sciences (CAS), No.72 Wenhua Road, Shenyang, 110016, China
- Institute of Materials Engineering, University of Siegen, No.9-11 Paul-Bonatz-Str., Siegen, 57076, Germany
| |
Collapse
|
40
|
Mohamed MA, Atty SA, Asran AM, Boukherroub R. One-pot green synthesis of reduced graphene oxide decorated with β-Ni(OH)2-nanoflakes as an efficient electrochemical platform for the determination of antipsychotic drug sulpiride. Microchem J 2019. [DOI: 10.1016/j.microc.2019.03.057] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
41
|
Liu K, Duan X, Yuan M, Xu Y, Gao T, Li Q, Zhang X, Huang M, Wang J. How to fit a response current-concentration curve? A semi-empirical investigation of non-enzymatic glucose sensor based on PANI-modified nickel foam. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
42
|
Sedighi A, Montazer M, Mazinani S. Synthesis of wearable and flexible NiP 0.1-SnO x/PANI/CuO/cotton towards a non-enzymatic glucose sensor. Biosens Bioelectron 2019; 135:192-199. [PMID: 31026773 DOI: 10.1016/j.bios.2019.04.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 03/03/2019] [Accepted: 04/05/2019] [Indexed: 11/15/2022]
Abstract
Ni-SnOx, PANI and CuO nanoparticles were synthesized on cotton fabric through chemical methods to make a new flexible high-performance non-enzymatic glucose sensor. FESEM, XRD, XPS, EDS and ATR analysis were employed to characterize the structure and the morphology of the nanomaterials. The high electrochemical performance of nickel and copper oxide and hydroxide on a conductive template leads to fabrication of a wearable and flexible cotton electrode with an excellent electrocatalytic activity to oxidize glucose. This hybrid system on the fabric as an electrode indicates a detection limit of 130 nM with wide linear range of 0.001-10 mM. The sensitivity was measured to be 1625 and 1325 μA mM-1 cm-2 for the ranges of 0.001-1 and 1-10 mM, respectively. Long-term stability, appropriate selectivity and reusability for many times make possibility for utilizing the fabricated sensor in the practical applications. The fabric is a wide linear range electrode with low detection limit to sense glucose concentration in the body fluids as well as the human blood that can be presumably suggested for designing other similar flexible types of sensor.
Collapse
Affiliation(s)
- Ali Sedighi
- Nanotechnology Institute, Textile Department, Amirkabir University of Technology, Tehran, Iran
| | - Majid Montazer
- Textile Department, Amirkabir Nanotechnology Research Institute (ANTRI), Amirkabir University of Technology, Tehran, Iran.
| | - Saeedeh Mazinani
- New Technologies Research Center (NTRC), Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
43
|
Shen N, Xu H, Zhao W, Zhao Y, Zhang X. Highly Responsive and Ultrasensitive Non-Enzymatic Electrochemical Glucose Sensor Based on Au Foam. SENSORS 2019; 19:s19051203. [PMID: 30857279 PMCID: PMC6427456 DOI: 10.3390/s19051203] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/28/2019] [Accepted: 03/06/2019] [Indexed: 11/23/2022]
Abstract
Glucose concentration is an important physiological index, therefore methods for sensitive detection of glucose are important. In this study, Au foam was prepared by electrodeposition with a dynamic gas template on an Au nanoparticle/Si substrate. The Au foam showed ultrasensitivity, high selectivity, and long-term stability in the quantitative detection of glucose. The foam was used as an electrode, and the amperometric response indicated excellent catalytic activity in glucose oxidation, with a linear response across the concentration range 0.5 μM to 12 mM, and a limit of detection of 0.14 μM. High selectivity for interfering molecules at six times the normal level and long-term stability for 30 days were obtained. The results for electrochemical detection with Au foam of glucose in human serum were consistent with those obtained with a sensor based on surface-enhanced Raman spectroscopy and a commercial sensor. This proves that this method can be used with real samples. These results show that Au foam has great potential for use as a non-enzymatic glucose sensor.
Collapse
Affiliation(s)
- Nannan Shen
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China.
- College of Science, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Haijun Xu
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China.
- College of Science, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Weichen Zhao
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China.
- College of Science, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yongmei Zhao
- Engineering Research Center for Semiconductor Integrated Technology, Institute of Semiconductors, Chinese Academy of Sciences, Beijing 100083, China.
| | - Xin Zhang
- Beijing Bioprocess Key Laboratory, Beijing University of Chemical Technology, Beijing 100029, China.
- College of Science, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
44
|
Ramachandran R, Chen TW, Chen SM, Baskar T, Kannan R, Elumalai P, Raja P, Jeyapragasam T, Dinakaran K, Gnana kumar GP. A review of the advanced developments of electrochemical sensors for the detection of toxic and bioactive molecules. Inorg Chem Front 2019. [DOI: 10.1039/c9qi00602h] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The recent developments made regarding the novel, cost-effective, and environmentally friendly nanocatalysts for the electrochemical sensing of biomolecules, pesticides, nitro compounds and heavy metal ions are discussed in this review article.
Collapse
Affiliation(s)
| | - Tse-Wei Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Shen-Ming Chen
- Electroanalysis and Bioelectrochemistry Lab
- Department of Chemical Engineering and Biotechnology
- National Taipei University of Technology
- Taipei 106
- Republic of China
| | - Thangaraj Baskar
- School of Food and Biological Engineering
- Jiangsu University
- Zhenjiang – 212013
- P.R. China
| | - Ramanjam Kannan
- Department of Chemistry
- Sri Kumaragurupara Swamigal Arts College
- Thoothukudi
- India
| | - Perumal Elumalai
- Centre for Green Energy Technology
- Madanjeet School of Green Energy Technologies
- Pondicherry University
- Puducherry – 605 014
- India
| | - Paulsamy Raja
- Department of Chemistry
- Vivekananda College of Arts and Science
- Kanyakumari – 629 004
- India
| | | | | | - George peter Gnana kumar
- Department of Physical Chemistry
- School of Chemistry
- Madurai Kamaraj University
- Madurai-625 021
- India
| |
Collapse
|
45
|
Liu Y, Wang J, Tian Q, Liu M, Wang X, Li P, Li W, Cai N, Chen W, Yu F. Papillae-like morphology of Ni/Ni(OH)2 hybrid crystals by stepwise electrodeposition for synergistically improved HER. CrystEngComm 2019. [DOI: 10.1039/c9ce00304e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The stepwise electrodeposition of Ni/Ni(OH)2 dual composition resulted in 3D hierarchical nanoarrays with a papillae-like hybrid crystal structure.
Collapse
|
46
|
Wang F, Niu X, Wang W, Jing W, Huang Y, Zhang J. Green synthesis of Pd nanoparticles via extracted polysaccharide applied to glucose detection. J Taiwan Inst Chem Eng 2018. [DOI: 10.1016/j.jtice.2018.08.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
47
|
Huang BR, Wang MJ, Kathiravan D, Kurniawan A, Zhang HH, Yang WL. Interfacial Effect of Oxygen-Doped Nanodiamond on CuO and Micropyramidal Silicon Heterostructures for Efficient Nonenzymatic Glucose Sensor. ACS APPLIED BIO MATERIALS 2018; 1:1579-1586. [DOI: 10.1021/acsabm.8b00454] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | | | | | | | | | - Wen-Luh Yang
- Department of Electronic Engineering, Feng Chia University, Taichung, Taiwan
| |
Collapse
|
48
|
Microwave-assisted synthesis of Pd 3Ag nanocomposite via nature polysaccharide applied to glucose detection. Int J Biol Macromol 2018; 118:2065-2070. [PMID: 30009896 DOI: 10.1016/j.ijbiomac.2018.07.071] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/05/2018] [Accepted: 07/12/2018] [Indexed: 01/11/2023]
Abstract
In this work, a green strategy is performed to fabricate Pd3Ag nanoparticles (NPs) using plant-extracted polysaccharide (Lilium brownie polysaccharide, LBP). As-obtained Pd3Ag nanocomposite (Pd3Ag-LBP/C) is surveyed including transmission election microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and powder X-ray diffraction (XRD). The result of glucose detection application shows that the Pd3Ag-LBP/C glassy carbon electrode (GCE) exhibits good stability and sensitivity. It can completely cover the normal blood glucose concentration (3-8 mM) with high sensitivity of 77.20 μA mM-1 cm-2. This work undoubtedly has positive effects on green synthesis development. It not only proves the practicability of building nanomaterials by polysaccharide, but also offers an environmentally friendly way for fabricating other nanomaterials.
Collapse
|
49
|
Jiao J, Zuo J, Pang H, Tan L, Chen T, Ma H. A dopamine electrochemical sensor based on Pd-Pt alloy nanoparticles decorated polyoxometalate and multiwalled carbon nanotubes. J Electroanal Chem (Lausanne) 2018. [DOI: 10.1016/j.jelechem.2018.09.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
50
|
Polyaniline@CuNi nanocomposite: A highly selective, stable and efficient electrode material for binder free non-enzymatic glucose sensor. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.07.165] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|