1
|
Zhao Y, Zhu P, Pan L, Xie Y, Ng SW, Zhang KL. Preparation and characterization of a newly constructed multifunctional Co( ii)–organic framework: proton conduction and adsorption of Congo red in aqueous medium. CrystEngComm 2022. [DOI: 10.1039/d2ce00330a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The efficient adsorption of CR over Co-MOF 1 as well as the pH-dependent proton-conducting mechanism of the composite Co-MOF–Nafion membrane.
Collapse
Affiliation(s)
- Yanzhu Zhao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Peizhi Zhu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Lingwei Pan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Yiqing Xie
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Seik Weng Ng
- Faculty of Applied Sciences, UCSI University, Cheras, Kuala Lumpur, Malaysia
| | - Kou-Lin Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| |
Collapse
|
2
|
Li X, Li Y, Yu P, Tong Y, Ye BC. A high sensitivity electrochemical sensor based on a dual-template molecularly imprinted polymer for simultaneous determination of clenbuterol hydrochloride and ractopamine. Analyst 2021; 146:6323-6332. [PMID: 34554156 DOI: 10.1039/d1an01413g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A nitrogen-doped Fe-MOF shows a high specific surface area and excellent electrical conductivity after high temperature carbonization. A novel electrochemical sensor based on a N@Fe-MOF@C loaded dual-template molecularly imprinted polymer (DTMIP) modified glassy carbon electrode (GCE) was proposed for the rapid and ultra-sensitive simultaneous detection of clenbuterol hydrochloride (CLB) and ractopamine (RAC). N@Fe-MOF@C combined with a MIP significantly enhanced the electrical signal. Cyclic voltammetry (CV) was used to detect CLB and RAC. The electrochemical polymerization was conducted with O-phenylenediamine as the functional monomer and CLB and RAC as template molecules. The factors affecting the sensor response were optimized. Under the optimal experimental conditions, the CV current response showed a linear range of 10-12-8 × 10-9 M for both CLB and RAC, and the detection limit (LOD) for both CLB and RAC was 3.03 × 10-13 M (S/N = 3). This electrochemical sensing system has high sensitivity, selectivity, excellent reproducibility, repeatability and stability. The recoveries of the actual samples (97.4%-101.2%) and reasonable relative standard deviations (RSDs) (1.06%-3.17%) indicate the practicability of the sensor system. The system has high application value in the rapid detection of CLB and RAC in clenbuterol hydrochloride tablets, human urine and raw pork.
Collapse
Affiliation(s)
- Xiang Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China.
| | - Yangguang Li
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China.
| | - Pai Yu
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China.
| | - Yanbin Tong
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China.
| | - Bang-Ce Ye
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan, School of Chemistry and Chemical Engineering, Shihezi University, Shihezi, China. .,Institute of Engineering Biology and Health, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, Zhejiang, China
| |
Collapse
|
3
|
Li JM, Xu TY, Zhao YL, Hu XL, He KH. Two 6/10-connected Cu 12S 6 cluster-based organic frameworks: crystal structure and proton conduction. Dalton Trans 2021; 50:7484-7495. [PMID: 33970979 DOI: 10.1039/d1dt00782c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nowadays, although the exploration of proton conductive materials has ranged from traditional sulfonated polymers to novel crystalline solid materials such as MOFs, COFs, and HOFs, research on crystalline cluster-based organic framework materials is very limited. Here, a pair of homologues Cu(i)-based organic framework containing a Cu12S6 cluster, [Cu12(MES)6(H2O)3]n (1) and {[Cu12(MPS)6(H2O)4]·6H2O}n (2) (H2MES = 2-mercaptoethanesulfonate acid and H2MPS = 2-mercaptoethanesulfonate acid), were hydrothermally synthesized under the same conditions and fully investigated for their proton conduction. Their structures were characterized by means of single-crystal X-ray diffraction, elemental analysis, thermogravimetric analyses, and PXRD measurements. The two MOFs show significant structural differences in the topological fashions. MOF 1 has a three-dimensional network and can be simplified into two topology types: a 10-connected gpu structure with a Schläfli symbol (312·426·57) and a 3,12-connected new topology with a point symbol {3·42}2{310·418·519·614·74·9}. MOF 2 also has a three-dimensional framework and topology as a 6-connected pcu primitive cubic network with a Schläfli symbol {412·63}. The two MOFs show different proton conduction parameters, but both indicate temperature-dependent proton conductive features. Intriguingly, the two MOFs exhibit high water stability and their proton conductivities are 3.63 × 10-5 and 2.75 × 10-5 S cm-1 under 333 K and 98% RH, respectively. The suggested mechanism for the synthesis for 1 and 2, and their proton conductivity performance comparison has been discussed in detail. In addition, Hirshfeld surface and fingerprint analysis on the two MOFs were computed to compare contacts between the molecules, which is essential for analyzing the relationships between their hydrogen bonds and proton conductivity properties.
Collapse
Affiliation(s)
- Jia-Ming Li
- Qinzhou Key Laboratory for Development and Application of High Performance Functional Materials, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, People's Republic of China.
| | - Tian-Yang Xu
- Qinzhou Key Laboratory for Development and Application of High Performance Functional Materials, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, People's Republic of China. and School of Chemistry and Pharmacy, Guangxi Normal University, Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education), Guilin 541004, People's Republic of China
| | - Ya-Li Zhao
- Qinzhou Key Laboratory for Development and Application of High Performance Functional Materials, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, People's Republic of China.
| | - Xing-Liang Hu
- School of Chemistry and Pharmacy, Guangxi Normal University, Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education), Guilin 541004, People's Republic of China
| | - Kun-Huan He
- Qinzhou Key Laboratory for Development and Application of High Performance Functional Materials, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, People's Republic of China.
| |
Collapse
|
4
|
Xu TY, Nie HJ, Li JM, Shi ZF. Highly selective sensing of Fe 3+/Hg 2+ and proton conduction using two fluorescent Zn(ii) coordination polymers. Dalton Trans 2020; 49:11129-11141. [PMID: 32743621 DOI: 10.1039/d0dt02327b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
A pair of homologues, [Zn(Hssa)(1,4-bib)·H2O]n (1) and [Zn3(ssa)2(1,4-bib)3·4H2O]n (2), were successfully assembled using the same metals and ligands [H3ssa = 5-sulfosalicylic acid; 1,4-bib = 1,4-bis(1H-imidazol-1-yl)benzene] under solvothermal conditions. Polymer 1 is a two-dimensional (2D) sql network and polymer 2 is a three-dimensional (3D) framework. Polymer 2 can be simplified into two topology types: bct and tfc. The two polymers show significant differences in the fluorescence sensing of metal ions and proton conductivity. Their applications in detecting metal ions and proton conductivity were explored. Polymer 1 shows high sensitivity and selectivity for Fe3+, while polymer 2 can detect Hg2+ ions. The limit of detection was 1.66 μM with Fe3+ for 1 and 0.23 μM with Hg2+ for 2 in water. In addition, both 1 and 2 exhibit high water stability and proton conductivity. At 60 °C and 95% relative humidity, their conductivities were 3.45 × 10-5 and 6.26 × 10-6 S cm-1, respectively. A detailed analysis of the Hirshfeld surface and fingerprints was carried out for 1 and 2 to compare the interactions between the molecules, which is essential for analysing the relationship between their structures and material properties.
Collapse
Affiliation(s)
- Tian-Yang Xu
- Guangxi Colleges and Universities Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, People's Republic of China. and School of Chemistry and Pharmacy, Guangxi Normal University, Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education), Guilin 541004, People's Republic of China
| | - Hong-Jiao Nie
- Key Laboratory of Functional Nanomaterials and Technology in Universities of Shandong, School of Chemistry and Chemical Engineering, Linyi University, Linyi 276000, People's Republic of China.
| | - Jia-Ming Li
- Guangxi Colleges and Universities Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, People's Republic of China.
| | - Zhong-Feng Shi
- Guangxi Colleges and Universities Key Laboratory of Beibu Gulf Oil and Natural Gas Resource Effective Utilization, College of Petroleum and Chemical Engineering, Beibu Gulf University, Qinzhou 535011, People's Republic of China. and School of Chemistry and Pharmacy, Guangxi Normal University, Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources (Ministry of Education), Guilin 541004, People's Republic of China
| |
Collapse
|
5
|
Li H, Pan J, Gao C, Ma M, Lu L, Xiong Y, Dong F. Mercapto-Functionalized Porous Organosilica Monoliths Loaded with Gold Nanoparticles for Catalytic Application. Molecules 2019; 24:molecules24234366. [PMID: 31795338 PMCID: PMC6930568 DOI: 10.3390/molecules24234366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 11/25/2022] Open
Abstract
Porous organosilica monoliths have attracted much attention from both the academic and industrial fields due to their porous structure; excellent mechanical property and easily functionalized surface. A new mercapto-functionalized silicone monolith from a precursor mixture containing methyltrimethoxysilane; 3-mercaptopropyltrimethoxysilane; and 3-mercaptopropyl(dimethoxy)methylsilane prepared via a two-step acid/base hydrolysis–polycondensation process was reported. Silane precursor ratios and surfactant type were varied to control the networks of porous monolithic gels. Gold nanoparticles were loaded onto the surface of the porous organosilica monolith (POM). Versatile characterization techniques were utilized to investigate the properties of the synthesized materials with and without gold nanoparticles. Scanning electron microscopy was used to investigate the morphology of the as-synthesized porous monolith materials. Fourier transform infrared spectroscopy was applied to confirm the surface chemistry. 29Si nuclear magnetic resonance was used to investigate the hydrolysis and polycondensation of organosilane precursors. Transmission electron microscopy was carried out to prove the existence of well-dispersed gold nanoparticles on the porous materials. Ultraviolet–visible spectroscopy was utilized to evaluate the high catalytic performance of the as-synthesized Au/POM particles
Collapse
Affiliation(s)
- Hongwei Li
- Department of Polymer Materials and Engineering, Guizhou University, Guiyang 550025, China; (H.L.); (J.P.); (C.G.); (M.M.); (L.L.); (Y.X.)
| | - Junhui Pan
- Department of Polymer Materials and Engineering, Guizhou University, Guiyang 550025, China; (H.L.); (J.P.); (C.G.); (M.M.); (L.L.); (Y.X.)
| | - Chengtao Gao
- Department of Polymer Materials and Engineering, Guizhou University, Guiyang 550025, China; (H.L.); (J.P.); (C.G.); (M.M.); (L.L.); (Y.X.)
- National Engineering Research Center for Compounding and Modification of Polymer Materials, Guiyang 550025, China
| | - Mengyu Ma
- Department of Polymer Materials and Engineering, Guizhou University, Guiyang 550025, China; (H.L.); (J.P.); (C.G.); (M.M.); (L.L.); (Y.X.)
| | - Liangyu Lu
- Department of Polymer Materials and Engineering, Guizhou University, Guiyang 550025, China; (H.L.); (J.P.); (C.G.); (M.M.); (L.L.); (Y.X.)
| | - Yuzhu Xiong
- Department of Polymer Materials and Engineering, Guizhou University, Guiyang 550025, China; (H.L.); (J.P.); (C.G.); (M.M.); (L.L.); (Y.X.)
| | - Fuping Dong
- Department of Polymer Materials and Engineering, Guizhou University, Guiyang 550025, China; (H.L.); (J.P.); (C.G.); (M.M.); (L.L.); (Y.X.)
- Correspondence: ; Tel.: +86-155-1903-7121
| |
Collapse
|
6
|
Itoi H, Tazawa S, Hasegawa H, Tanabe Y, Iwata H, Ohzawa Y. Study of the pore structure and size effects on the electrochemical capacitor behaviors of porous carbon/quinone derivative hybrids. RSC Adv 2019; 9:27602-27614. [PMID: 35529188 PMCID: PMC9070858 DOI: 10.1039/c9ra05225a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 08/28/2019] [Indexed: 11/23/2022] Open
Abstract
We demonstrate the hybridization of a redox-active quinone derivative, 2,5-dichloro-1,4-benzoquinone (DCBQ), and porous carbons with different pore structures for aqueous electrochemical capacitor electrodes. The hybridization is performed in the gas phase, which enables accurate porous carbon/DCBQ weight ratios. This method is advantageous over conventional liquid phase adsorption, in terms of facile optimization of the porous carbon/DCBQ weight ratio to obtain high-performance aqueous electrochemical capacitor electrodes, dependent on the kind of porous carbons; moreover, complete adsorption in the liquid phase cannot be achieved by the conventional liquid phase adsorption method. Their electrochemical capacitor performances are evaluated using an aqueous 1 M H2SO4 electrolyte, and the adsorbed DCBQ undergoes redox reactions inducing pseudocapacitance within the pores of porous carbons. To study the effect of the pore size on the electrochemical capacitor behavior, two kinds of activated carbon (AC) with different pore sizes are examined: the microporous AC and the AC with both micro- and mesopores. Additionally, we examine ordered microporous carbon with a uniform pore size of 1.2 nm and a three-dimensionally (3D) ordered and mutually connected pore structure. The results reveal that mesopores facilitate proton conduction inside the DCBQ-constrained carbon pores, whereas the 3D-ordered and mutually connected micropores balance high volumetric capacitance enhancement with excellent rate capability. Such high proton conduction inside such constrained spaces can be explained only by the Grotthuss mechanism.
Collapse
Affiliation(s)
- Hiroyuki Itoi
- Department of Applied Chemistry, Aichi Institute of Technology Yachigusa 1247, Yakusa-cho Toyota 470-0392 Japan
| | - Shuka Tazawa
- Department of Applied Chemistry, Aichi Institute of Technology Yachigusa 1247, Yakusa-cho Toyota 470-0392 Japan
| | - Hideyuki Hasegawa
- Department of Applied Chemistry, Aichi Institute of Technology Yachigusa 1247, Yakusa-cho Toyota 470-0392 Japan
| | - Yuichiro Tanabe
- Department of Applied Chemistry, Aichi Institute of Technology Yachigusa 1247, Yakusa-cho Toyota 470-0392 Japan
| | - Hiroyuki Iwata
- Department of Electrical and Electronics Engineering, Aichi Institute of Technology Yachigusa 1247, Yakusa-cho Toyota 470-0392 Japan
| | - Yoshimi Ohzawa
- Department of Applied Chemistry, Aichi Institute of Technology Yachigusa 1247, Yakusa-cho Toyota 470-0392 Japan
| |
Collapse
|
7
|
Functionalized Periodic Mesoporous Organosilicas: Tunable Hydrophobic Solid Acids for Biomass Conversion. Molecules 2019; 24:molecules24020239. [PMID: 30634651 PMCID: PMC6359465 DOI: 10.3390/molecules24020239] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 12/28/2018] [Accepted: 01/04/2019] [Indexed: 12/15/2022] Open
Abstract
The catalytic deoxygenation of bio-based feedstocks to fuels and chemicals presents new challenges to the catalytic scientist, with many transformations either performed in or liberating water as a byproduct during reaction. The design of catalysts with tunable hydrophobicity to aid product and reactant adsorption or desorption, respectively, is vital for processes including (trans)esterification and condensation reactions employed in sustainable biodiesel production and bio-oil upgrading processes. Increasing surface hydrophobicity of catalyst materials offers a means to displace water from the catalyst active site, and minimizes potential deactivation or hydrolysis side reactions. Hybrid organic⁻inorganic porous solids offer exciting opportunities to tune surface polarity and hydrophobicity, as well as critical parameters in controlling adsorption, reactant activation, and product selectivity in liquid and vapor phase catalysis. Here, we review advances in the synthesis and application of sulfonic-acid-functionalized periodic mesoporous organosilicas (PMO) as tunable hydrophobic solid acid catalysts in reactions relevant to biorefining and biofuel production.
Collapse
|
8
|
Wu C, Liang Y, Zhu X, Zhao Q, Fang F, Zhang X, Liang Z, Zhang L, Zhang Y. Macro-mesoporous organosilica monoliths with bridged-ethylene and terminal-vinyl: High-density click functionalization for chromatographic separation. Anal Chim Acta 2018; 1038:198-205. [PMID: 30278903 DOI: 10.1016/j.aca.2018.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 06/20/2018] [Accepted: 07/02/2018] [Indexed: 11/24/2022]
Abstract
A novel kind of macro-mesoporous organosilica monolith, with not only bridged-ethylene groups incorporated into the skeleton but also terminal-vinyl groups protruded from the pore-wall, was prepared so that high-loaded double bonds were achieved. Via highly efficient "thiol-ene" click reaction of such high-loaded double bonds, the surface coverage of C18 groups on monolith could be 5.54 μmol m-2, significantly larger than that of the reported separation materials, beneficial to improvement of separation resolution, especially for peptide separation. The separation performance was evaluated using alkylbenzenes and standard peptides. Furthermore, the tryptic digests of complex sample was successfully analyzed. Because of high separation resolution of our prepared hybrid monolith, the peak capacity for 6-h gradient was achieved as 482. Coupling to LTQ Orbitrap Velos Mass Spectrometry, 22523 tryptic peptides from 4423 proteins were identified from the HeLa cells, more than that using the other long-gradient separation by the same system reported, showing great promising of such monolith for large-scale in-depth proteomic analysis.
Collapse
Affiliation(s)
- Ci Wu
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China; Inspection and Quarantine Technical Center of Dalian Entry-Exit Inspection and Quarantine Bureau, Dalian, 116100, China
| | - Yu Liang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xudong Zhu
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Qun Zhao
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Fei Fang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Xiaodan Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Zhen Liang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Lihua Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China.
| | - Yukui Zhang
- CAS Key Lab of Separation Sciences for Analytical Chemistry, National Chromatographic Research and Analysis Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| |
Collapse
|
9
|
Huo H, Xu X, Zhao T, Li Y, Jiang Y, Lin K. Hybrid mesoporous organosilicas with molecularly imprinted cavities: towards extended exposure of active amino groups in the framework wall. Dalton Trans 2018; 47:4508-4517. [DOI: 10.1039/c7dt04832g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Towards extended exposure of active sites in the framework of ordered mesoporous materials via molecularly imprinted cavities.
Collapse
Affiliation(s)
- Hang Huo
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Xianzhu Xu
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Tingting Zhao
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Yudong Li
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Yanqiu Jiang
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
| | - Kaifeng Lin
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
| |
Collapse
|