1
|
Shen M, Ni C, Yuan J, Zhou X. Phage-ELISA for ultrasensitive detection of Salmonella enteritidis. Analyst 2025; 150:567-575. [PMID: 39817488 DOI: 10.1039/d4an01121j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
The M13 phage carries approximately 5 copies of the pIII protein, each of which is capable of displaying a single-chain variable fragment (scFv) that targets a specific antigen. This feature enables the M13 phage to be widely employed in the construction of scFv libraries, thereby facilitating the identification of antibodies with high specificity and affinity for target antigens. In this study, mice were immunized three times with Salmonella enteritidis (strain C50041) to induce diverse antibodies. The variable region sequences were subsequently amplified by PCR using genome extracted from the mice's splenic cells and fused to the pIII protein to construct the scFv phage display library (C50041-M13-scFv). Through biopanning with the C50041-M13-scFv library, a phage clone (C50041-scFv-4) exhibiting high affinity for the target bacteria was successfully obtained. Moreover, the scFv antibody (scFv-4) derived from C50041-scFv-4 was expressed in a prokaryotic expression system and validated to possess high specificity and affinity for C50041 through in vitro adsorption assays. Additionally, a phage-ELISA method was established: initially, bacteria were immobilized on the bottom surface of a 96-well plate. Next, the positive clone C50041-scFv-4 was introduced to specifically bind to the host cells. Finally, horseradish peroxidase (HRP)-conjugated anti-pVIII antibodies were used to detect the pVIII proteins of the bound phage clones. Owing to the capacity of multiple C50041-scFv-4 probes to simultaneously bind to a single target Salmonella and each phage clone's ability to accommodate hundreds of HRP-labeled antibodies, the proposed phage-ELISA demonstrated remarkable sensitivity (104 CFU mL-1) for detecting Salmonella enteritidis samples. This sensitivity surpasses that of traditional ELISA by one order of magnitude in this study. Our phage-ELISA technology exhibits broad applicability across various biological species and provides an improved and robust platform for pathogen detection including bacteria and viruses.
Collapse
Affiliation(s)
- Mangmang Shen
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China.
| | - Chang Ni
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China.
| | - Jiasheng Yuan
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China.
| | - Xin Zhou
- College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China.
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou University, Yangzhou 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
2
|
Maneira C, Chamas A, Lackner G. Engineering Saccharomyces cerevisiae for medical applications. Microb Cell Fact 2025; 24:12. [PMID: 39789534 PMCID: PMC11720383 DOI: 10.1186/s12934-024-02625-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 12/17/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND During the last decades, the advancements in synthetic biology opened the doors for a profusion of cost-effective, fast, and ecologically friendly medical applications priorly unimaginable. Following the trend, the genetic engineering of the baker's yeast, Saccharomyces cerevisiae, propelled its status from an instrumental ally in the food industry to a therapy and prophylaxis aid. MAIN TEXT In this review, we scrutinize the main applications of engineered S. cerevisiae in the medical field focusing on its use as a cell factory for pharmaceuticals and vaccines, a biosensor for diagnostic and biomimetic assays, and as a live biotherapeutic product for the smart in situ treatment of intestinal ailments. An extensive view of these fields' academic and commercial developments as well as main hindrances is presented. CONCLUSION Although the field still faces challenges, the development of yeast-based medical applications is often considered a success story. The rapid advances in synthetic biology strongly support the case for a future where engineered yeasts play an important role in medicine.
Collapse
Affiliation(s)
- Carla Maneira
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany
| | - Alexandre Chamas
- Department of Microbial Pathogenicity Mechanisms, Leibniz Institute for Natural Product Research and Infection Biology, 07745, Jena, Germany
- Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, 07743, Jena, Germany
| | - Gerald Lackner
- Chair of Biochemistry of Microorganisms, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326, Kulmbach, Germany.
| |
Collapse
|
3
|
Ding S, Chen X, Yu B, Liu Z. Electrochemical biosensors for clinical detection of bacterial pathogens: advances, applications, and challenges. Chem Commun (Camb) 2024; 60:9513-9525. [PMID: 39120607 DOI: 10.1039/d4cc02272f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Bacterial pathogens are responsible for a variety of human diseases, necessitating their prompt detection for effective diagnosis and treatment of infectious diseases. Over recent years, electrochemical methods have gained significant attention owing to their exceptional sensitivity and rapidity. This review outlines the current landscape of electrochemical biosensors employed in clinical diagnostics for the detection of bacterial pathogens. We categorize these biosensors into four types: amperometry, potentiometry, electrochemical impedance spectroscopy, and conductometry, targeting various bacterial components, including toxins, virulence factors, metabolic activity, and events related to bacterial adhesion and invasion. We discuss the merits and challenges associated with electrochemical methods, underscoring their rapid response, high sensitivity, and specificity, while acknowledging the necessity for skilled operators and potential interference from biological and environmental factors. Furthermore, we examine future prospects and potential applications of electrochemical biosensors in clinical diagnostics. While electrochemical biosensors offer a promising avenue for detecting bacterial pathogens, further research in optimizing the robustness and surmounting the challenges hindering their seamless integration into clinical practice is imperative.
Collapse
Affiliation(s)
- Shengyong Ding
- Research Center of Biomedical Sensing Engineering Technology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Pharmacy, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250014, People's Republic of China
| | - Xiaodi Chen
- Department of Clinical Laboratory, Jinan Maternity and Child Care Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Bin Yu
- Research Center of Biomedical Sensing Engineering Technology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhiyuan Liu
- Research Center of Biomedical Sensing Engineering Technology, School of Basic Medical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
- Neural Engineering Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| |
Collapse
|
4
|
Ratajczak K, Grel H, Olejnik P, Jakiela S, Stobiecka M. Current progress, strategy, and prospects of PD-1/PDL-1 immune checkpoint biosensing platforms for cancer diagnostics, therapy monitoring, and drug screening. Biosens Bioelectron 2023; 240:115644. [PMID: 37660460 DOI: 10.1016/j.bios.2023.115644] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
Recent technological advancements in testing and monitoring instrumentation have greatly contributed to the progress in cancer treatment by surgical, chemotherapeutic and radiotherapeutic interventions. However, the mortality rate still remains high, calling for the development of new treatment strategies with higher efficacy. Extensive efforts driven in this direction have included broadening of early cancer screening and applying innovative theranostic nanotechnologies. They have been supported by platforms introduced to enable the detection and monitoring of cancer biomarkers, inhibitors, and other agents, able to slow down cancer progression and prevent metastasis. Despite of the well-recognized principles of the immune checkpoint blockade, the efficacy of immunotherapy achieved so far does not meet the well-founded expectations. For a successful cancer treatment, highly sensitive, robust, and inexpensive multiplex biosensors have to be designed to aid in the biomarkers monitoring and in the development of new inhibitors. In this review, we provide an overview of the efforts undertaken to aid in the development and monitoring of anticancer immunotherapy, based on the programmed cell-death immune checkpoint (PD-1/PDL-1) blockade, by designing biosensors for the detection of relevant cancer biomarkers and their inhibitors screening. This review also emphasizes alternative targets made by exosomes carrying PD-L1 overexpressed in cancer cells and passed into the excreted exosomes. Evaluated are also novel targeted drug delivery nanocarriers, providing simultaneous biosensing, thereby contributing to the emerging immune checkpoint cancer therapy. On the basis of the current trends and the emerging technologies, future perspectives of cancer diagnostics and treatment monitoring using biosensing platforms are projected.
Collapse
Affiliation(s)
- Katarzyna Ratajczak
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Hubert Grel
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Piotr Olejnik
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland
| | - Slawomir Jakiela
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| | - Magdalena Stobiecka
- Department of Physics and Biophysics, Warsaw University of Life Sciences (SGGW), 159 Nowoursynowska Street, 02776, Warsaw, Poland.
| |
Collapse
|
5
|
Farokhinejad F, Li J, Hugo LE, Howard CB, Wuethrich A, Trau M. Detection of Dengue Virus 2 with Single Infected Mosquito Resolution Using Yeast Affinity Bionanofragments and Plasmonic SERS Nanoboxes. Anal Chem 2022; 94:14177-14184. [PMID: 36194728 DOI: 10.1021/acs.analchem.2c02012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Dengue disease is an emerging global threat triggered by dengue virus (DENV) transmission, primarily by the mosquito Aedes aegypti. The accurate surveillance and sensitive detection of DENV in mosquito populations are critical for the protection of human populations worldwide that are in the habitat of these mosquito species. There are four DENV serotypes with DENV2 reported to cause the most severe complications. There are limited ultrasensitive methods to early detect DENV2 mosquito infection and prevent human infection. Herein, we report an innovative nanobased immunoassay platform for early, specific, and ultrasensitive detection of DENV2-secreted nonstructural 1 (NS1) protein biomarker in single infected mosquitoes with the limit of detection of 500 fg of recombinant DENV2 NS1. The high sensitivity and DENV2 serotype specificity of the platform are the result of using nanomixing, plasmonic SERS nanoboxes, and yeast affinity bionanofragments displaying single-chain variable fragments (nanoyeast scFvs). Nanoyeast scFvs used for high affinity capture of DENV2 NS1 provided an innovative and cost-efficient alternative to monoclonal antibodies and differentiated DENV2 NS1 from other DENV serotypes and Zika virus NS1. The platform used electrohydrodynamically driven nanomixing to enhance NS1 capture by the nanoyeast scFvs while reducing nonspecific interactions. High sensitivity detection of captured DENV2 NS1 was achieved using NS1-specific surface-enhanced Raman scattering (SERS) nanotags. These nanotechnologies provide a significant innovation for early DENV2 detection in single infected mosquitoes, improving the accurate surveillance of mosquito habitats and preventing infection and severe disease arising from DENV2 transmission.
Collapse
Affiliation(s)
- Fahimeh Farokhinejad
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Junrong Li
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Leon E Hugo
- Mosquito Control Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Christopher B Howard
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Alain Wuethrich
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Matt Trau
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, Queensland 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
6
|
Farokhinejad F, Lane RE, Lobb RJ, Edwardraja S, Wuethrich A, Howard CB, Trau M. Generation of Nanoyeast Single-Chain Variable Fragments as High-Avidity Biomaterials for Dengue Virus Detection. ACS Biomater Sci Eng 2021; 7:5850-5860. [PMID: 34738789 DOI: 10.1021/acsbiomaterials.1c01001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Bioengineered yeast bio-nanomaterials termed nanoyeasts displaying antibody single-chain variable fragments (scFvs) against diagnostic targets are a promising alternative to monoclonal antibodies (mAbs). A potential limitation for translating nanoyeasts into diagnostic tools is batch-to-batch variability. Herein, we demonstrate a systematic approach for cost-efficient production of highly specific nanoyeasts that enabled accurate dengue virus (DENV) detection by immunoassay (2.5% CV). Yeasts bioengineered to surface express DENV-specific scFvs (up to 66% of the total cell population) were fragmented into nanoyeast fractions trialing sonication, bead beating, and high-pressure disruption methods. Nanoyeast fractions from sonication had optimal target binding, uniform particle size (±89 nm), were stable, and retained diagnostic activity for 7 days at 37 °C compared to traditional mAbs that lost activity after 1 day at 37 °C. We engineered a panel of nanoyeast scFvs targeting DENV nonstructural protein 1 (NS1): (i) specific for serotyping DENV 1-4 and (ii) cross-reactive anti-DENV scFvs that are suitable for "yes/no" diagnostic applications. We demonstrate highly specific nanoyeast scFvs for serotyping DENV. We show that nanoyeast scFvs specifically detect NS1 in simulated patient plasma with a limit of detection of 250 ng/mL, the concentration found in infected patients.
Collapse
Affiliation(s)
- Fahimeh Farokhinejad
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rebecca E Lane
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Richard J Lobb
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Selvakumar Edwardraja
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Alain Wuethrich
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Christopher B Howard
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Matt Trau
- Centre of Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
7
|
Li J, Wuethrich A, Edwardraja S, Lobb RJ, Puttick S, Rose S, Howard CB, Trau M. Amplification-Free SARS-CoV-2 Detection Using Nanoyeast-scFv and Ultrasensitive Plasmonic Nanobox-Integrated Nanomixing Microassay. Anal Chem 2021; 93:10251-10260. [PMID: 34264067 PMCID: PMC8290924 DOI: 10.1021/acs.analchem.1c01657] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 07/06/2021] [Indexed: 02/06/2023]
Abstract
The implementation of accurate and sensitive molecular detection for the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is paramount to effectively control the ongoing coronavirus disease 2019 (COVID-19) pandemic. In this regard, we herein propose the specific and highly sensitive SARS-CoV-2 detection based on nanoyeast single-chain-variable fragment (scFv) and ultrasensitive plasmonic nanobox-integrated nanomixing microassay. Importantly, this designed platform showcases the utility of nanoyeast-scFvs as specific capture reagents targeting the receptor-binding domain (RBD) of the virus and as monoclonal antibody alternatives suitable for cost-effective mass production and frequent testing. By capitalizing on single-particle active nanoboxes as plasmonic nanostructures for surface-enhanced Raman scattering (SERS), the microassay utilizes highly sensitive Raman signals to indicate virus infection. The developed microassay further integrated nanomixing for accelerating molecular collisions. Through the synergistic working of nanoyeast-scFv, plasmonic nanoboxes, and nanomixing, the highly specific and sensitive SARS-CoV-2 detection is achieved as low as 17 virus/μL without any molecular amplification. We successfully demonstrate SARS-CoV-2 detection in saliva samples of simulated patients at clinically relevant viral loads, suggesting the possibility of this platform for accurate and noninvasive patient screening.
Collapse
Affiliation(s)
- Junrong Li
- Centre
for Personalized Nanomedicine, Australian
Institute for Bioengineering and Nanotechnology, The University of
Queensland, Brisbane, QLD 4072, Australia
| | - Alain Wuethrich
- Centre
for Personalized Nanomedicine, Australian
Institute for Bioengineering and Nanotechnology, The University of
Queensland, Brisbane, QLD 4072, Australia
| | - Selvakumar Edwardraja
- Centre
for Personalized Nanomedicine, Australian
Institute for Bioengineering and Nanotechnology, The University of
Queensland, Brisbane, QLD 4072, Australia
| | - Richard J. Lobb
- Centre
for Personalized Nanomedicine, Australian
Institute for Bioengineering and Nanotechnology, The University of
Queensland, Brisbane, QLD 4072, Australia
| | - Simon Puttick
- Probing
Biosystems Future Science Platform, Commonwealth
Scientific and Industrial Research Organization, Brisbane, QLD 4029, Australia
| | - Stephen Rose
- Probing
Biosystems Future Science Platform, Commonwealth
Scientific and Industrial Research Organization, Brisbane, QLD 4029, Australia
| | - Christopher B. Howard
- Centre
for Personalized Nanomedicine, Australian
Institute for Bioengineering and Nanotechnology, The University of
Queensland, Brisbane, QLD 4072, Australia
| | - Matt Trau
- Centre
for Personalized Nanomedicine, Australian
Institute for Bioengineering and Nanotechnology, The University of
Queensland, Brisbane, QLD 4072, Australia
- School
of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
8
|
Complexity of seemingly simple lipid nanodiscs. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1862:183420. [DOI: 10.1016/j.bbamem.2020.183420] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 06/26/2020] [Accepted: 07/07/2020] [Indexed: 12/15/2022]
|
9
|
Vahed M, Ramezani F, Tafakori V, Mirbagheri VS, Najafi A, Ahmadian G. Molecular dynamics simulation and experimental study of the surface-display of SPA protein via Lpp-OmpA system for screening of IgG. AMB Express 2020; 10:161. [PMID: 32880759 PMCID: PMC7471224 DOI: 10.1186/s13568-020-01097-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 08/26/2020] [Indexed: 11/10/2022] Open
Abstract
Staphylococcal protein A (SpA) is a major virulence factor of Staphylococcus aureus. S. aureus is able to escape detection by the immune system by the surface display of protein A. The SpA protein is broadly used to purify immunoglobulin G (IgG) antibodies. This study investigates the fusion ability of Lpp'-OmpA (46-159) to anchor and display five replicate domains of protein A with 295 residues length (SpA295) of S. aureus on the surface of Escherichia coli to develop a novel bioadsorbent. First, the binding between Lpp'-OmpA-SPA295 and IgGFc and the three-dimensional structure was investigated using molecular dynamics simulation. Then high IgG recovery from human serum by the surface-displayed system of Lpp'-OmpA-SPA295 performed experimentally. In silico analysis was demonstrated the binding potential of SPA295 to IgG after expression on LPP-OmpA surface. Surface-engineered E. coli displaying SpA protein and IgG-binding assay with SDS-PAGE analysis exhibited high potential of the expressed complex on the E. coli surface for IgG capture from human serum which is applicable to conventional immune precipitation.
Collapse
Affiliation(s)
- M. Vahed
- Department of Toxico/Pharmacology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Niayesh Highway, Valiasr Ave, Tehran, 6153-14155 Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Niayesh Highway, Valiasr Ave, Tehran, 14155-1817 Iran
| | - F. Ramezani
- Physiology Research Center, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - V. Tafakori
- Department of Cell & Molecular Sciences, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - V. S. Mirbagheri
- PhD Student in Fisheries Products Processing Group, Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
| | - A. Najafi
- Department of Environmental and Industrial Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O.BOX: 14965/161, Tehran, 1497716316 Iran
- Present Address: Department of Cell and Molecular Biology, Uppsala University, P.O. Box 256, 751 05 Uppsala, Sweden
| | - G. Ahmadian
- Department of Environmental and Industrial Biotechnology, National Institute of Genetic Engineering and Biotechnology (NIGEB), P.O.BOX: 14965/161, Tehran, 1497716316 Iran
| |
Collapse
|
10
|
Wuethrich A, Rajkumar AR, Shanmugasundaram KB, Reza KK, Dey S, Howard CB, Sina AAI, Trau M. Single droplet detection of immune checkpoints on a multiplexed electrohydrodynamic biosensor. Analyst 2019; 144:6914-6921. [PMID: 31657376 DOI: 10.1039/c9an01450k] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Monitoring soluble immune checkpoints in circulating fluids has the potential for minimally-invasive diagnostics and personalised therapy in precision medicine. Yet, the sensitive detection of multiple immune checkpoints from small volumes of liquid biopsy samples is challenging. In this study, we develop a multiplexed immune checkpoint biosensor (MICB) for parallel detection of soluble immune checkpoints PD-1, PD-L1, and LAG-3. MICB integrates a microfluidic sandwich immunoassay using engineered single chain variable fragments and alternating current electrohydrodynamic in situ nanofluidic mixing for promoting biosensor-target interaction and reducing non-specific non-target binding. MICB provides advantages of simultaneous analysis of up to 28 samples in <2 h, requires as little as a single sample drop (i.e., 20 μL) per target immune checkpoint, and applies high-affinity yeast cell-derived single chain variable fragments as a cost-effective alternative to monoclonal antibodies. We investigate the assay performance of MICB and demonstrate its capability for accurate immune checkpoint detection in simulated patient serum samples at clinically-relevant levels. MICB provides a dynamic range of 5 to 200 pg mL-1 for PD-1 and PD-L1, and 50 to 1000 pg mL-1 for LAG-3 with a coefficient of variation <13.8%. Sensitive immune checkpoint detection was achieved with limits of detection values of 5 pg mL-1 for PD-1, 5 pg mL-1 for PD-L1, and 50 pg mL-1 for LAG-3. The multiplexing capability, sensitivity, and relative assay simplicity of MICB make it capable of serving as a bioanalytical tool for immune checkpoint therapy monitoring.
Collapse
Affiliation(s)
- Alain Wuethrich
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Khondakar KR, Dey S, Wuethrich A, Sina AAI, Trau M. Toward Personalized Cancer Treatment: From Diagnostics to Therapy Monitoring in Miniaturized Electrohydrodynamic Systems. Acc Chem Res 2019; 52:2113-2123. [PMID: 31293158 DOI: 10.1021/acs.accounts.9b00192] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Historically, cancer was seen and treated as a single disease. Over the years, this image has shifted, and it is now generally accepted that cancer is a complex and dynamic disease that engages multiple progression pathways in each patient. The shift from treating cancer as single disease to tailoring the therapy based on the individual's characteristic cancer profile promises to improve the clinical outcome and has also given rise to the field of personalized cancer treatment. To advise a suitable therapy plan and adjust personalized treatment, a reliable and fast diagnostic strategy is required. The advances in nanotechnology, microfluidics, and biomarker research have spurred the development of powerful miniaturized diagnostic systems that show high potential for use in personalized cancer treatment. These devices require only minute sample volumes and have the capability to create instant cancer snapshots that could be used as tool for cancer risk indication, early detection, tumor classification, and recurrence. Miniaturized systems can combine a whole sample-to-answer workflow including sample handling, preparation, analysis, and detection. As such, this concept is also often referred to as "lab-on-a-chip". An inherit challenge of monitoring personalized cancer treatment using miniaturized systems is that cancer biomarkers are often only detectable at trace concentrations present in a complex biological sample rich in interfering molecules, necessitating highly specific and sensitive biosensing strategies. To address the need for trace level detection, highly sensitive fluorescence, absorbance, surface-enhanced Raman spectroscopy (SERS), electrochemical, mass spectrometric, and chemiluminescence approaches were developed. To reduce sample matrix interferences, ingenious device modifications including coatings and nanoscopic fluid flow manipulation have been developed. Of the latter, our group has exploited the use of alternating current electrohydrodynamic (ac-EHD) fluid flows as an efficient strategy to reduce nonspecific nontarget biosensor binding and speed-up assay times. ac-EHD provides fluid motion induced by an electric field with the ability to generate surface shear forces in nanometer distance to the biosensing surface (known as nanoshearing phenomenon). This is ideally suited to increase the collision frequency of cancer biomarkers with the biosensing surface and shear off nontarget molecules thereby minimizing nonspecific binding. In this Account, we review recent advancements in miniaturized diagnostic system development with potential use in personalized cancer treatment and monitoring. We focus on integrated microfluidic structures for controlled sample flow manipulation followed by on-device biomarker interrogation. We further highlight the progress in our group, emphasis fundamentals and applications of ac-EHD-enhanced miniaturized systems, and outline promising detection concepts for comprehensive cancer biomarker profiling. The advances are discussed based on the type of cancer biomarkers and cover circulating tumor cells, proteins, extracellular vesicles, and nucleic acids. The potential of miniaturized diagnostic systems for personalized cancer treatment and monitoring is underlined with representative examples including device illustrations. In the final section, we critically discuss the future of personalized diagnostics and what challenges should be addressed to make these devices clinically translatable.
Collapse
Affiliation(s)
- Kamil Reza Khondakar
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College
and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Shuvashis Dey
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College
and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Alain Wuethrich
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College
and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Abu Ali Ibn Sina
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College
and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
| | - Matt Trau
- Centre for Personalised Nanomedicine, Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Corner College
and Cooper Roads (Bldg 75), Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
12
|
Rezaei M, Ghaderi A. Monoclonal Antibody Production Against Vimentin by Whole Cell Immunization in a Mouse Model. IRANIAN JOURNAL OF BIOTECHNOLOGY 2019; 16:e1802. [PMID: 30805388 PMCID: PMC6371635 DOI: 10.21859/ijb.1802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 12/30/2017] [Accepted: 01/10/2018] [Indexed: 11/27/2022]
Abstract
Background Pancreatic carcinoma is the fourth-leading cause of cancer death in the United States and due to its late presentation, only few patients would be candidates for the curative treatment of pancreactomy. Monoclonal antibodies have brought hope to targeted therapy. Objectives To identify new biomarkers, a panel of monoclonal antibodies was generated against newly established cell line, Faraz-ICR from a patient with pancreatic acinar cell carcinoma. Material and Methods Balb/c female mice were immunized with Faraz-ICR cell line and their spleenocytes fused with SP2/0 myeloma cell line. Highly reactive hybridoma producing antibodies against Faraz-ICR was detected using ELISA, immunofluorescence staining and flow cytometry. Western blot and 2D immunoblot were utilized for further characterization of the target antibodies. Results Among highly reactive clones, the reactivity of 7C11 clone was assessed in comparison to other epithelial tumors. The antibody isotype was IgM that reacted with a 55 kDa protein in western blot analysis. To further characterize the target antigen, immunoproteome of the Faraz-ICR cell line was performed. By LC-MS analysis, the target of 7C11 clone was identified to be vimentin. Conclusions Pancreatic cancer is a highly lethal malignancy with no reliable biomarker for early detection and diagnosis. In this study, by establishing a pancreatic acinar carcinoma cell line, a panel of monoclonal antibodies was generated to identify specific or associated cancer targets. Furthermore, 7C11 mAb was introduced that can specifically recognizes vimentin as a tumor marker. This antibody may serve as a new tool for prognostic and therapeutic strategies.
Collapse
Affiliation(s)
- Marzieh Rezaei
- Shiraz Institute for Cancer Research, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Ghaderi
- Department of Immunology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
13
|
Reza K, Sina AAI, Wuethrich A, Grewal YS, Howard CB, Korbie D, Trau M. A SERS microfluidic platform for targeting multiple soluble immune checkpoints. Biosens Bioelectron 2019; 126:178-186. [DOI: 10.1016/j.bios.2018.10.044] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 09/28/2018] [Accepted: 10/18/2018] [Indexed: 10/28/2022]
|
14
|
Li J, Wang J, Grewal YS, Howard CB, Raftery LJ, Mahler S, Wang Y, Trau M. Multiplexed SERS Detection of Soluble Cancer Protein Biomarkers with Gold–Silver Alloy Nanoboxes and Nanoyeast Single-Chain Variable Fragments. Anal Chem 2018; 90:10377-10384. [DOI: 10.1021/acs.analchem.8b02216] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Junrong Li
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Jing Wang
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yadveer S. Grewal
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Christopher B. Howard
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Lyndon J. Raftery
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Stephen Mahler
- Centre for Advanced Imaging, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Yuling Wang
- Department of Molecular Sciences, ARC Centre of Excellence for Nanoscale BioPhotonics, Faculty of Science and Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Matt Trau
- Centre for Personalized Nanomedicine, Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland 4072, Australia
| |
Collapse
|
15
|
Redesigning of Microbial Cell Surface and Its Application to Whole-Cell Biocatalysis and Biosensors. Appl Biochem Biotechnol 2017; 185:396-418. [PMID: 29168153 DOI: 10.1007/s12010-017-2662-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Accepted: 11/14/2017] [Indexed: 12/13/2022]
Abstract
Microbial cell surface display technology can redesign cell surfaces with functional proteins and peptides to endow cells some unique features. Foreign peptides or proteins are transported out of cells and immobilized on cell surface by fusing with anchoring proteins, which is an effective solution to avoid substance transfer limitation, enzyme purification, and enzyme instability. As the most frequently used prokaryotic and eukaryotic protein surface display system, bacterial and yeast surface display systems have been widely applied in vaccine, biocatalysis, biosensor, bioadsorption, and polypeptide library screening. In this review of bacterial and yeast surface display systems, different cell surface display mechanisms and their applications in biocatalysis as well as biosensors are described with their strengths and shortcomings. In addition to single enzyme display systems, multi-enzyme co-display systems are presented here. Finally, future developments based on our and other previous reports are discussed.
Collapse
|