1
|
Abyzova E, Petrov I, Bril’ I, Cheshev D, Ivanov A, Khomenko M, Averkiev A, Fatkullin M, Kogolev D, Bolbasov E, Matkovic A, Chen JJ, Rodriguez RD, Sheremet E. Universal Approach to Integrating Reduced Graphene Oxide into Polymer Electronics. Polymers (Basel) 2023; 15:4622. [PMID: 38139874 PMCID: PMC10747855 DOI: 10.3390/polym15244622] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Flexible electronics have sparked significant interest in the development of electrically conductive polymer-based composite materials. While efforts are being made to fabricate these composites through laser integration techniques, a versatile methodology applicable to a broad range of thermoplastic polymers remains elusive. Moreover, the underlying mechanisms driving the formation of such composites are not thoroughly understood. Addressing this knowledge gap, our research focuses on the core processes determining the integration of reduced graphene oxide (rGO) with polymers to engineer coatings that are not only flexible and robust but also exhibit electrical conductivity. Notably, we have identified a particular range of laser power densities (between 0.8 and 1.83 kW/cm2), which enables obtaining graphene polymer composite coatings for a large set of thermoplastic polymers. These laser parameters are primarily defined by the thermal properties of the polymers as confirmed by thermal analysis as well as numerical simulations. Scanning electron microscopy with elemental analysis and X-ray photoelectron spectroscopy showed that conductivity can be achieved by two mechanisms-rGO integration and polymer carbonization. Additionally, high-speed videos allowed us to capture the graphene oxide (GO) modification and melt pool formation during laser processing. The cross-sectional analysis of the laser-processed samples showed that the convective flows are present in the polymer substrate explaining the observed behavior. Moreover, the practical application of our research is exemplified through the successful assembly of a conductive wristband for wearable devices. Our study not only fills a critical knowledge gap but also offers a tangible illustration of the potential impact of laser-induced rGO-polymer integration in materials science and engineering applications.
Collapse
Affiliation(s)
- Elena Abyzova
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina Ave, 30, 634050 Tomsk, Russia (I.B.); (D.K.)
| | - Ilya Petrov
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina Ave, 30, 634050 Tomsk, Russia (I.B.); (D.K.)
| | - Ilya Bril’
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina Ave, 30, 634050 Tomsk, Russia (I.B.); (D.K.)
| | - Dmitry Cheshev
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina Ave, 30, 634050 Tomsk, Russia (I.B.); (D.K.)
| | - Alexey Ivanov
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina Ave, 30, 634050 Tomsk, Russia (I.B.); (D.K.)
| | - Maxim Khomenko
- ILIT RAS−Branch of the FSRC “Crystallography and Photonics” RAS, 140700 Shatura, Russia
| | - Andrey Averkiev
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina Ave, 30, 634050 Tomsk, Russia (I.B.); (D.K.)
| | - Maxim Fatkullin
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina Ave, 30, 634050 Tomsk, Russia (I.B.); (D.K.)
| | - Dmitry Kogolev
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina Ave, 30, 634050 Tomsk, Russia (I.B.); (D.K.)
| | - Evgeniy Bolbasov
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina Ave, 30, 634050 Tomsk, Russia (I.B.); (D.K.)
| | - Aleksandar Matkovic
- Department Physics, Mechanics and Electrical Engineering, Montanuniversität Leoben, Franz Josef Strasse 18, 8700 Leoben, Austria
| | - Jin-Ju Chen
- School of Materials and Energy, University of Electronic Science and Technology of China, Chengdu 610054, China;
| | - Raul D. Rodriguez
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina Ave, 30, 634050 Tomsk, Russia (I.B.); (D.K.)
| | - Evgeniya Sheremet
- Research School of Chemistry & Applied Biomedical Sciences, Tomsk Polytechnic University, Lenina Ave, 30, 634050 Tomsk, Russia (I.B.); (D.K.)
| |
Collapse
|
2
|
Zhang L, Wang L, He S, Zhu C, Gong Z, Zhang Y, Wang J, Yu L, Gao K, Kang X, Song Y, Lu G, Yu HD. High-Performance Organic Electrochemical Transistor Based on Photo-annealed Plasmonic Gold Nanoparticle-Doped PEDOT:PSS. ACS APPLIED MATERIALS & INTERFACES 2023; 15:3224-3234. [PMID: 36622049 DOI: 10.1021/acsami.2c19867] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Organic electrochemical transistors (OECTs), particularly the ones based on PEDOT:PSS, are excellent candidates for chemical and biological sensing because of their unique advantages. Improving the sensitivity and stability of OECTs is crucially important for practical applications. Herein, the transconductance of OECT is improved by 8-fold to 14.9 mS by doping the PEDOT:PSS channel with plasmonic gold nanoparticles (AuNPs) using a solution-based process followed by photo annealing. In addition, the OECT also possesses high flexibility and cyclic stability. It is revealed that the doping of AuNPs increases the conductivity of PEDOT:PSS and the photo annealing improves the crystallinity of the PEDOT:PSS channel and the interaction between AuNPs and PEDOT:PSS. These changes lead to the increase in transconductance and cyclic stability. The prepared OECTs are also demonstrated to be effective in sensitive detection of glucose within a wide concentration range of 10 nM-1 mM. Our OECTs based on photo-annealed plasmonic AuNP-doped PEDOT:PSS may find great applications in chemical and biological sensing, and this strategy may be extended to prepare many other high-performance OECT-based devices.
Collapse
Affiliation(s)
- Linrong Zhang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Li Wang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Shunhao He
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Chengcheng Zhu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Zhongyan Gong
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Yulong Zhang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Junjie Wang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Liuyingzi Yu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Kun Gao
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Xing Kang
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Yaxin Song
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Gang Lu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
| | - Hai-Dong Yu
- School of Flexible Electronics (Future Technologies), Key Laboratory of Flexible Electronics, Institute of Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing, Jiangsu 211816, PR China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an, Shaanxi 710072, PR China
| |
Collapse
|
3
|
Huang J, Feng J, Xu H, Zhao H, Zhou T. Strategy to Prepare Core–Shell Microspheres for Laser Direct Writing on Polymers: Microemulsion Method. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Jiameng Huang
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Jin Feng
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Haoran Xu
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Huaiyu Zhao
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Tao Zhou
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
4
|
Seiler M, Knauft A, Gruben JJ, Frank S, Barz A, Bliedtner J, Lasagni AF. Modification of Polymeric Surfaces with Ultrashort Laser Pulses for the Selective Deposition of Homogeneous Metallic Conductive Layers. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6572. [PMID: 36233913 PMCID: PMC9573057 DOI: 10.3390/ma15196572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/17/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
In recent years, the demand for highly integrated and lightweight components has been rising sharply, especially in plastics processing. One strategy for weight-saving solutions is the development of conductive tracks and layouts directly on the polymer housing parts in order to be able to dispense with the system integration of additional printed circuit boards (PCB). This can be conducted very advantageously and flexibly with laser-based processes for functionalizing polymer surfaces. In this work, a three-step laser-based process for subsequent selective metallization is presented. Conventional injection molded components without special additives serve as the initial substrate. The Laser-Based Selective Activation (LSA) uses picosecond laser pulses to activate the plastic surface to subsequently deposit palladium. The focus is on determining the amount of deposited palladium in correlation to the laser and scan parameters. For the first time, the dependence of the metallization result on the accumulated laser fluence (Facc) is described. The treated polymer parts are characterized using optical and scanning electron microscopy as well as a contact-type profilometer.
Collapse
Affiliation(s)
- Michael Seiler
- Fachbereich SciTec, Ernst-Abbe-Hochschule Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Andreas Knauft
- Fachbereich SciTec, Ernst-Abbe-Hochschule Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Jann Jelto Gruben
- Fachbereich SciTec, Ernst-Abbe-Hochschule Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Samson Frank
- Fachbereich SciTec, Ernst-Abbe-Hochschule Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Andrea Barz
- Fachbereich SciTec, Ernst-Abbe-Hochschule Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Jens Bliedtner
- Fachbereich SciTec, Ernst-Abbe-Hochschule Jena, Carl-Zeiss-Promenade 2, 07745 Jena, Germany
| | - Andrés Fabián Lasagni
- Institut für Fertigungstechnik, Technische Universität Dresden, George-Baehr-Str. 3c, 01069 Dresden, Germany
- Fraunhofer Institut für Werkstoff und Strahltechnik IWS, Winterbergstr. 28, 01277 Dresden, Germany
| |
Collapse
|
5
|
Cheng J, Lin Z, Wu D, Liu C, Cao Z. Aramid textile with near-infrared laser-induced graphene for efficient adsorption materials. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129150. [PMID: 35642999 DOI: 10.1016/j.jhazmat.2022.129150] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/02/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Porous carbon materials show great application potential in the field of adsorption. However, the preparation process of carbon adsorption materials relies on high temperature, high energy consumption, many steps, and long time. Most of them exist in the form of powder or block, and the practical application scenarios are limited and difficult to recycle. In this study, based on in-situ carbonization of polymer precursor, we directly generated laser-induced graphene (LIG) on the surface of commercial aramid textile using a low-energy near-infrared laser in air, and prospected the application prospect of the prepared aramid/graphene textile in the field of adsorption. Under a certain laser energy, the photothermal reaction promotes the breaking of the CO and CN bonds in the surface layer of the aramid fiber, and reorganizes into a graphene structure at an instantaneous high temperature, while the overall flexible structure of the textile was not destroyed. Further, adsorption materials based on the as-prepared aramid/graphene textiles were also designed, including VOC-adsorbing textile in air and dye-adsorbing textile in water. Using low-energy near-infrared laser to directly achieve LIG writing in commercial textiles under air condition will provide an efficient, environmentally friendly, and designable direction for the large-scale fabrication of textile adsorption products.
Collapse
Affiliation(s)
- Junfeng Cheng
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Zhixiong Lin
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Dun Wu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China; National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University), Changzhou 213164, China
| | - Chunlin Liu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China; Changzhou University Huaide College, Changzhou 213016, China.
| | - Zheng Cao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
6
|
The Impact of Selected Laser-Marking Parameters and Surface Conditions on White Polypropylene Moldings. Polymers (Basel) 2022; 14:polym14091879. [PMID: 35567048 PMCID: PMC9102095 DOI: 10.3390/polym14091879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 02/01/2023] Open
Abstract
Laser marking of polymer materials is a technology that is increasingly used in industry. Polypropylene (PP) shows a low ability to absorb electromagnetic radiation in the near-infrared range (λ = 1064 nm). The paper presents the influence of the surface condition of white-colored polypropylene moldings on the efficiency of their marking with a laser beam. In addition, the operation of the commercial laser marking additive (LMA) Lifolas M 117009 UN, intended to support the process of laser marking of polyolefin surfaces, was verified. The study is an attempt to combine laser operating parameters, material, and geometric properties of PP moldings to obtain the expected quality of graphic symbols. The test samples were made by injection molding method with the use of a specially designed modular injection mold. The molding cavities were prepared with various methods of metal processing, thanks to which obtained moldings differed in surface condition. The marking effects were assessed based on colorimetric tests and digital image analysis. The 0.5 wt% LMA content resulted in obtaining a graphic sign with high contrast in comparison to the background. The gradual increase in the modifier content resulted in a further increase in contrast. These values depended on the degree of surface finish of the samples, and therefore on the roughness parameters. Samples with a rough surface finish showed higher contrast compared to surfaces with a high surface finish. It was also found that for the analyzed moldings, the laser-marking process should be performed with the use of a low head velocity (450–750 mm/s) and a high concentration of the laser beam (0.03–0.05 mm).
Collapse
|
7
|
Feng J, Xu R, Zhang J, Zheng Z, Zhou T. Pitaya-Structured Microspheres with Dual Laser Wavelength Responses for Polymer Laser Direct Writing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:14817-14833. [PMID: 35298126 DOI: 10.1021/acsami.2c01454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A unique pitaya-structured graphene/TiO2@PS microsphere with dual laser wavelength responses is designed and prepared via a facile approach of polymer melt blending. The graphene/TiO2 particles ("pitaya seeds") are homogeneously distributed in the polystyrene ("pitaya pulp") of the microspheres with an average size of 1.5 μm. The graphene in microspheres serves not only as a laser absorber that has responses to both 355 nm UV and 1064 nm NIR lasers but also as a reducing agent of TiO2 during laser direct writing (LDW). As expected, benefiting from the unique pitaya-structured structure, the graphene/TiO2@PS microsphere can remarkably improve the performance of both NIR and UV LDW of polymers. The results of characterizations reveal that the black color caused by NIR LDW is due to the generation of the amorphous carbon and the color change after UV LDW is owing to the formation of black sp/sp2 carbon compounds. Meanwhile, some TiO2 in microspheres is reduced into the black/gray titanium oxides of Ti2+ and Ti3+ after NIR and UV LDW, respectively. The above co-contribution endows the graphene/TiO2@PS microspheres with an outstanding color-changing ability. This pitaya-structured microsphere will have a profound effect on polymers' laser direct writing.
Collapse
Affiliation(s)
- Jin Feng
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Rui Xu
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Jihai Zhang
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Zhuo Zheng
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| | - Tao Zhou
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute, Sichuan University, Chengdu 610065, China
| |
Collapse
|
8
|
Yang J, Xiang M, Zhu Y, Yang Z, Ou J. Influences of carbon nanotubes/polycarbonate composite on enhanced local laser marking properties of polypropylene. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04123-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
9
|
Modification of Laser Marking Ability and Properties of Polypropylene Using Silica Waste as a Filler. MATERIALS 2021; 14:ma14226961. [PMID: 34832359 PMCID: PMC8619905 DOI: 10.3390/ma14226961] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/10/2021] [Accepted: 11/15/2021] [Indexed: 11/29/2022]
Abstract
Polypropylene (PP) belongs to the group of polymers characterized by low susceptibility to absorption of electromagnetic radiation in the infrared range (λ = 1064 nm). This research consisted of assessing the possibility of using silica waste from the metallurgic industry as an additive for PP laser marking. The modifier was introduced into the polymer matrix in the range from 1 to 10 wt%. The effects of laser radiation were assessed based on colorimetric tests and microscopic surface analysis. The mechanical properties of the composites were determined during the static tensile tests. The thermal properties were investigated via differential scanning calorimetry. It was found that the introduction of silica waste into polypropylene allows for the effective marking of sample surfaces with the use of a laser beam. The greatest contrast between the graphic symbol and the background was obtained for silica contents of 3 and 5 wt%, with the use of a low-speed laser head and a strong concentration of the laser beam. The application of silica caused an increase in the modulus of elasticity and the tensile strength of the composite samples. Increases in the crystallization temperature and the degree of crystallinity of the polymer matrix were also observed. It was found that silica waste can act as multifunctional additive for polypropylene.
Collapse
|
10
|
Cao Z, Lu G, Gao H, Xue Z, Luo K, Wang K, Cheng J, Guan Q, Liu C, Luo M. Preparation and Laser Marking Properties of Poly(propylene)/Molybdenum Sulfide Composite Materials. ACS OMEGA 2021; 6:9129-9140. [PMID: 33842782 PMCID: PMC8028170 DOI: 10.1021/acsomega.1c00255] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/18/2021] [Indexed: 05/07/2023]
Abstract
In this study, using molybdenum sulfide (MoS2) as laser-sensitive particles and poly(propylene) (PP) as the matrix resin, laser-markable PP/MoS2 composite materials with different MoS2 contents ranging from 0.005 to 0.2% were prepared by melt-blending. A comprehensive analysis of the laser marking performance of PP/MoS2 composites was carried out by controlling the content of laser additives, laser current intensity, and the scanning speed of laser marking. The color difference test shows that the best laser marking performance of the composite can be obtained at the MoS2 content of 0.02 wt %. The surface morphology of the PP/MoS2 composite material was observed after laser marking using a metallographic microscope, an optical microscope, and a scanning electron microscope (SEM). During the laser marking process, the laser energy was absorbed and converted into heat energy to cause high-temperature melting, pyrolysis, and carbonization of PP on the surface of the PP/MoS2 composite material. The black marking from carbonized materials was formed in contrast to the white matrix. Using X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy, and Raman spectroscopy, the composite materials before and after laser marking were tested and characterized. The PP/MoS2 composite material was pyrolyzed to form amorphous carbonized materials. The effect of the laser-sensitive MoS2 additive on the mechanical properties of composite materials was investigated. The results show that the PP/MoS2 composite has the best laser marking property when the MoS2 loading content is 0.02 wt %, the laser marking current intensity is 11 A, and the laser marking speed is 800 mm/s, leading to a clear and high-contrast marking pattern.
Collapse
Affiliation(s)
- Zheng Cao
- Key
Laboratory of High Performance Fibers & Products, Ministry of
Education, Donghua University, Shanghai 201620, P. R. China
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
- Changzhou
University Huaide College, Changzhou 213016, P. R. China
- National
Experimental Demonstration Center for Materials Science and Engineering
(Changzhou University), Changzhou 213164, P. R. China
- ;
| | - Guangwei Lu
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Hongxin Gao
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Zhiyu Xue
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Keming Luo
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Kailun Wang
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Junfeng Cheng
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
| | - Qingbao Guan
- Key
Laboratory of High Performance Fibers & Products, Ministry of
Education, Donghua University, Shanghai 201620, P. R. China
| | - Chunlin Liu
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, P. R. China
- Changzhou
University Huaide College, Changzhou 213016, P. R. China
- National
Experimental Demonstration Center for Materials Science and Engineering
(Changzhou University), Changzhou 213164, P. R. China
| | - Ming Luo
- School
of Materials Engineering, Changshu Institute
of Technology, Changshu, Jiangsu 215500, P. R. China
| |
Collapse
|
11
|
Cheng J, You X, Li H, Zhou J, Lin Z, Wu D, Liu C, Cao Z, Pu H. Laser irradiation method to prepare polyethylene porous fiber membrane with ultrahigh xylene gas filtration capacity. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124395. [PMID: 33191024 DOI: 10.1016/j.jhazmat.2020.124395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/15/2020] [Accepted: 10/25/2020] [Indexed: 05/23/2023]
Abstract
In recent years, volatile organic compound (VOC) gases have caused potential harm to people's health. This study reveals the preparation of polyethylene porous fiber membrane with excellent low-concentration VOCs filtration performance via laser irradiation technology. A neodymium-doped yttrium aluminum garnet (Nd:YAG) pulsed laser beam was used to scan the laser-sensitive low-density polyethylene/carbon black (LDPE/CB) fibers prepared by nanolayer coextrusion in the air. The controllable thermal energy generated by laser irradiation makes the surface of the fiber membrane to produce a porous carbon layer in situ. Laser power and scanning speed are important parameters for controlling laser-induced carbonization. The results indicate that the rich "fluffy" carbon structures on the surface of the porous fiber membrane can efficiently adsorb xylene gas. This study can provide a positive reference for the large-scale preparation of polyolefin porous fiber membrane with VOCs filtration by simple and efficient laser irradiation method.
Collapse
Affiliation(s)
- Junfeng Cheng
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Xinghua You
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Hao Li
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Jun Zhou
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Zhixiong Lin
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Dun Wu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China; National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University), Changzhou 213164, China
| | - Chunlin Liu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China; Changzhou University Huaide College, Jingjiang 214500, China.
| | - Zheng Cao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, China
| | - Hongting Pu
- Key Laboratory of Advanced Civil Engineering Materials, School of Materials Science & Engineering, Tongji University, Shanghai 201804, China.
| |
Collapse
|
12
|
Cheng J, Li H, Zhou J, Lin Z, Wu D, Liu C, Cao Z. Laser induced porous electrospun fibers for enhanced filtration of xylene gas. JOURNAL OF HAZARDOUS MATERIALS 2020; 399:122976. [PMID: 32526437 DOI: 10.1016/j.jhazmat.2020.122976] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 05/16/2020] [Accepted: 05/16/2020] [Indexed: 05/23/2023]
Abstract
With the development of industry, the harm caused by volatile organic compound (VOC) gases to the human body has received much attention. This study reveals as the first attempt to apply laser irradiation technique to the preparation of porous electrospun fibers with excellent low-concentration VOC gases adsorption properties. The laser-sensitive polycarbonate (PC) fibers prepared from electrospinning was treated in air by scanning with a neodymium-doped yttrium aluminum garnet (Nd: YAG) pulsed laser beam to achieve porous structure. During the laser irradiation process, a series of changes such as melting, thermal degradation, and carbonization of the polymer fibers can change the surface structure. The morphology of the porous structure is related to the degree of laser-induced carbonization, and the laser current is an important parameter for determining the degree of laser-induced carbonization of a particular polymer. The results indicate that porous carbon structures can be created on the surface of the fiber membrane by controlling the degree of laser-induced carbonization, and a highly xylene gas adsorption efficiency is exhibited. This study may provide useful insights for developing electrospun porous fibers with VOC adsorption by simple, effective and environmentally friendly laser post-processing process.
Collapse
Affiliation(s)
- Junfeng Cheng
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Hao Li
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Jun Zhou
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Zhixiong Lin
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, China
| | - Dun Wu
- National Experimental Demonstration Center for Materials Science and Engineering (Changzhou University), Changzhou, 213164, China
| | - Chunlin Liu
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, China; Changzhou University Huaide College, Changzhou, 213016, China.
| | - Zheng Cao
- Jiangsu Key Laboratory of Environmentally Friendly Polymeric Materials, School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
13
|
Lu G, Wu Y, Zhang Y, Wang K, Gao H, Luo K, Cao Z, Cheng J, Liu C, Zhang L, Qi J. Surface Laser-Marking and Mechanical Properties of Acrylonitrile-Butadiene-Styrene Copolymer Composites with Organically Modified Montmorillonite. ACS OMEGA 2020; 5:19255-19267. [PMID: 32775929 PMCID: PMC7409255 DOI: 10.1021/acsomega.0c02803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/14/2020] [Indexed: 05/23/2023]
Abstract
In this study, organically modified montmorillonite (OMMT) was prepared by modifying MMT with a cationic surfactant cetyltrimethylammonium bromide (CTAB). The obtained OMMT of different loading contents (1, 2, 4, 6, and 8 wt %) was melt-blended with poly(acrylonitrile-co-butadiene-co-styrene) (ABS) to prepare a series of ABS/OMMT composites, which were laser marked using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser beam of 1064 nm under different laser current processes. X-ray diffraction (XRD), color difference spectrometer, optical microscope, water contact angle tests, scanning electron microscope (SEM), and Raman spectroscopy were carried out to characterize the morphology, structure, and properties of the laser-patterned ABS composites. The effects of the addition of OMMT and the laser marking process on the mechanical properties of ABS/OMMT composites were investigated through mechanical property tests. The results show that the obtained ABS/OMMT composites have enhanced laser marking performance, compared to the ABS. When the OMMT content is 2 wt % and the laser current intensity is 9 A, the marking on ABS composites has the highest contrast (ΔE = 36.38) and sharpness, and the quick response (QR) code fabricated can be scanned and identified with a mobile app. SEM and water contact angle tests showed that the holes, narrow cracks, and irregular protrusion are formed on the composite surface after laser marking, resulting in a more hydrophobic surface and an increased water contact angle. Raman spectroscopy and XRD indicate that OMMT can absorb the near-infrared laser energy, undergo photo thermal conversion, and cause the pyrolysis and carbonization of ABS to form black marking, and the crystal structure itself does not change significantly. When the 2 wt % of OMMT is loaded, the tensile strength, elongation at break, and impact strength of ABS/OMMT are increased by 15, 20, and 14%, respectively, compared to ABS. Compared with the unmarked ABS/OMMT, the defects including holes and cracks generated on the surface of the marked one lead to the decreased mechanical property. The desirable combination of high contrast laser marking performance and mechanical properties can be achieved at an OMMT loading content of 2 wt % and a laser current intensity of 9 A. This research work provides a simple, economical, and environmentally friendly method for laser marking of engineering materials such as ABS.
Collapse
Affiliation(s)
- Guangwei Lu
- Jiangsu Key Laboratory
of Environmentally Friendly Polymeric Materials, School of Materials
Science and Engineering, Jiangsu Collaborative Innovation Center of
Photovoltaic Science and Engineering, Changzhou
University, Changzhou 213164, Jiangsu, P.R. China
| | - Yinqiu Wu
- Jiangsu Key Laboratory
of Environmentally Friendly Polymeric Materials, School of Materials
Science and Engineering, Jiangsu Collaborative Innovation Center of
Photovoltaic Science and Engineering, Changzhou
University, Changzhou 213164, Jiangsu, P.R. China
| | - Yang Zhang
- Jiangsu Key Laboratory
of Environmentally Friendly Polymeric Materials, School of Materials
Science and Engineering, Jiangsu Collaborative Innovation Center of
Photovoltaic Science and Engineering, Changzhou
University, Changzhou 213164, Jiangsu, P.R. China
| | - Kailun Wang
- Jiangsu Key Laboratory
of Environmentally Friendly Polymeric Materials, School of Materials
Science and Engineering, Jiangsu Collaborative Innovation Center of
Photovoltaic Science and Engineering, Changzhou
University, Changzhou 213164, Jiangsu, P.R. China
| | - Hongxin Gao
- Jiangsu Key Laboratory
of Environmentally Friendly Polymeric Materials, School of Materials
Science and Engineering, Jiangsu Collaborative Innovation Center of
Photovoltaic Science and Engineering, Changzhou
University, Changzhou 213164, Jiangsu, P.R. China
| | - Keming Luo
- Jiangsu Key Laboratory
of Environmentally Friendly Polymeric Materials, School of Materials
Science and Engineering, Jiangsu Collaborative Innovation Center of
Photovoltaic Science and Engineering, Changzhou
University, Changzhou 213164, Jiangsu, P.R. China
| | - Zheng Cao
- Jiangsu Key Laboratory
of Environmentally Friendly Polymeric Materials, School of Materials
Science and Engineering, Jiangsu Collaborative Innovation Center of
Photovoltaic Science and Engineering, Changzhou
University, Changzhou 213164, Jiangsu, P.R. China
- Key Laboratory of High Performance Fibers
& Products, Ministry of Education, Donghua
University, Shanghai 201620, P. R. China
- Changzhou
University Huaide College, Changzhou 213016, P. R. China
- National Experimental Demonstration Center for Materials Science
and Engineering (Changzhou University), Changzhou 213164, P. R. China
| | - Junfeng Cheng
- Jiangsu Key Laboratory
of Environmentally Friendly Polymeric Materials, School of Materials
Science and Engineering, Jiangsu Collaborative Innovation Center of
Photovoltaic Science and Engineering, Changzhou
University, Changzhou 213164, Jiangsu, P.R. China
| | - Chunlin Liu
- Jiangsu Key Laboratory
of Environmentally Friendly Polymeric Materials, School of Materials
Science and Engineering, Jiangsu Collaborative Innovation Center of
Photovoltaic Science and Engineering, Changzhou
University, Changzhou 213164, Jiangsu, P.R. China
- Changzhou
University Huaide College, Changzhou 213016, P. R. China
| | - Lei Zhang
- Key Laboratory of Optic-electric Sensing
and Analytical Chemistry for Life Science, MOE; College of Chemistry
and Molecular Engineering, Qingdao University
of Science and Technology, No. 53 Zhengzhou Rd, Qingdao 266042, P. R. China
| | - Juan Qi
- Jiangsu Key Laboratory
of Environmentally Friendly Polymeric Materials, School of Materials
Science and Engineering, Jiangsu Collaborative Innovation Center of
Photovoltaic Science and Engineering, Changzhou
University, Changzhou 213164, Jiangsu, P.R. China
- School
of Chemical Engineering, Xuzhou College of Industrial Technology, No.1 Xiangwang Road, Xuzhou 221140, P. R. China
| |
Collapse
|
14
|
Zhang C, Dai Y, Lu G, Cao Z, Cheng J, Wang K, Wen X, Ma W, Wu D, Liu C. Facile Fabrication of High-Contrast and Light-Colored Marking on Dark Thermoplastic Polyurethane Materials. ACS OMEGA 2019; 4:20787-20796. [PMID: 31858065 PMCID: PMC6906935 DOI: 10.1021/acsomega.9b03232] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 11/14/2019] [Indexed: 05/23/2023]
Abstract
In this work, using ferroferric oxide (Fe3O4) and zirconium oxide (ZrO2) as laser-sensitive particles and thermoplastic polyurethane (TPU) as the matrix resin, a series of TPU/Fe3O4/ZrO2 composites were prepared by melt blending, and the effect of the laser marking additive content, composition, and laser marking parameters on the laser marking properties of composites was investigated. The laser marking mechanism of Fe3O4/ZrO2 additives and the role of each component in TPU laser marking were studied by metallographic microscopy, color difference test, scanning electron microscopy, and Raman spectroscopy. Fe3O4 nanoparticles as a laser sensitizer component, on the one hand, can act as a pigment to make the TPU substrate black and, on the other hand, can absorb laser energy to contribute to the formation of laser markings on TPU composite surfaces. In addition, the introduction of ZrO2 nanoparticles can help absorb the laser energy, while the contrast can be improved to enhance the laser marking performance of the TPU composite. Through thermogravimetric analysis, the changes in the thermally stable properties of TPU composites before and after laser marking were investigated, and the results indicated that Fe3O4/ZrO2 nanoparticles can absorb the laser energy, causing melting and pyrolysis of the TPU backbone at a high temperature, to produce a gaseous product resulting in foaming. Finally, the high-contrast and light-colored markings were formed on the black TPU composite surface. This work provides a facile method for producing high-contrast and light-colored markings on the dark TPU composite surface.
Collapse
Affiliation(s)
- Cheng Zhang
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Yankai Dai
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Guangwei Lu
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Zheng Cao
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
- Changzhou
University Huaide College, Changzhou 213016, China
- The
State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Junfeng Cheng
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Kailun Wang
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Xiaoqian Wen
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Wenzhong Ma
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Dun Wu
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Chunlin Liu
- Jiangsu
Key Laboratory of Environmentally Friendly Polymeric Materials, School
of Materials Science and Engineering, Jiangsu Collaborative Innovation
Center of Photovoltaic Science and Engineering, Changzhou University, Changzhou 213164, Jiangsu, China
- Changzhou
University Huaide College, Changzhou 213016, China
- National
Experimental Demonstration Center for Materials Science and Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
15
|
Feng J, Zhang J, Zheng Z, Zhou T. New Strategy to Achieve Laser Direct Writing of Polymers: Fabrication of the Color-Changing Microcapsule with a Core-Shell Structure. ACS APPLIED MATERIALS & INTERFACES 2019; 11:41688-41700. [PMID: 31601102 DOI: 10.1021/acsami.9b15214] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
This paper proposed an efficient and environmentally friendly strategy to prepare a new color-changing microcapsule with a core-shell structure for laser direct writing of polymers, and only the physical melt blending of polymers was employed. The laser absorber (SnO2) and the easily carbonized polymer (PC) were designed as the "core" and the "shell" of the microcapsule, respectively. The microcapsules were in situ formed during melt blending. Scanning electron microscopy, transmission electron microscopy, and energy-dispersive spectrometry confirmed the successful preparation of SnO2/PC microcapsules with a core-shell structure. Their average diameter was 2.2 μm, and the "shell" thickness was 0.21-0.24 μm. As expected, these SnO2/PC microcapsules endowed polymers with an outstanding performance of near-infrared (NIR) laser direct writing. Raman spectroscopy and X-ray photoelectron spectroscopy indicated that the color change was ascribed to the polymer carbonization because of the instantaneous high temperature caused by the SnO2 absorption of NIR laser energy. Optical microscopy observed a thick carbonization layer of 234 μm. Moreover, Raman depth imaging revealed the carbonization distribution, confirming that the amorphous carbon produced by the carbonization of the PC "shell" is the key factor of SnO2/PC microcapsules to provide polymers an outstanding performance of laser direct writing. This color-changing microcapsule has no selectivity to polymers because of providing a black color source (the carbonization of PC) itself, ensuring the high contrast and precision of patterns or texts after laser direct writing for all general-purpose polymers. We believe that this novel strategy to achieve laser direct writing of polymers will have broad application prospects.
Collapse
Affiliation(s)
- Jin Feng
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| | - Jihai Zhang
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| | - Zhuo Zheng
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| | - Tao Zhou
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| |
Collapse
|
16
|
Cheng J, Zhou J, Zhang C, Cao Z, Wu D, Liu C, Zou H. Enhanced laser marking of polypropylene induced by “core-shell” ATO@PI laser-sensitive composite. Polym Degrad Stab 2019. [DOI: 10.1016/j.polymdegradstab.2019.06.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
17
|
Zhang J, Feng J, Jia L, Zhang H, Zhang G, Sun S, Zhou T. Laser-Induced Selective Metallization on Polymer Substrates Using Organocopper for Portable Electronics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13714-13723. [PMID: 30888140 DOI: 10.1021/acsami.9b01856] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Our work proposed a facile strategy for selective fabrication of the precise metalized patterns onto polymer substrates through the laser direct structuring (LDS) technology using organocopper compounds. Copper oxalate (CuC2O4) and copper acetylacetonate [Cu(acac)2] which can be used as laser sensitizers were first introduced into an acrylonitrile-butadiene-styrene (ABS) matrix for preparing LDS materials. After the activation with 1064 nm pulsed near-infrared laser, the Cu0 (metal copper) was generated from CuC2O4 and Cu(acac)2 and then served as catalyst species for the electroless copper plating (ECP). A series of characterizations were conducted to investigate the morphology and analyze the surface chemistry of ABS/CuC2O4 and ABS/Cu(acac)2 composites. Specially, the X-ray photoelectron spectroscopy analysis indicated that 58.3% Cu2+ in ABS/CuC2O4 was reduced to Cu0, while this value was 63.9% for ABS/Cu(acac)2. After 30 min ECP, the conductivities of copper circuit on ABS/CuC2O4 and ABS/Cu(acac)2 composites were 1.22 × 107 and 1.58 × 107 Ω-1·m-1, respectively. Moreover, the decorated patterns and near-field communication circuit were demonstrated by this LDS technology. We believe that this study paves the way for developing organocopper-based LDS materials, which have the potential for industrial applications.
Collapse
Affiliation(s)
- Jihai Zhang
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
- Institut National de la Recherche Scientifique-Énergie Materiaux et Télécommunications , Varennes, Quebec J3X 1S2 , Canada
| | - Jin Feng
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| | - Liyang Jia
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| | - Huiyuan Zhang
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| | - Gaixia Zhang
- Institut National de la Recherche Scientifique-Énergie Materiaux et Télécommunications , Varennes, Quebec J3X 1S2 , Canada
| | - Shuhui Sun
- Institut National de la Recherche Scientifique-Énergie Materiaux et Télécommunications , Varennes, Quebec J3X 1S2 , Canada
| | - Tao Zhou
- State Key Laboratory of Polymer Materials Engineering of China, Polymer Research Institute , Sichuan University , Chengdu 610065 , China
| |
Collapse
|
18
|
Liu C, Lu Y, Xiong Y, Zhang Q, Shi A, Wu D, Liang H, Chen Y, Liu G, Cao Z. Recognition of laser-marked quick response codes on polypropylene surfaces. Polym Degrad Stab 2018. [DOI: 10.1016/j.polymdegradstab.2017.11.015] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|