1
|
Yang B, Rutkowski N, Elisseeff J. The foreign body response: emerging cell types and considerations for targeted therapeutics. Biomater Sci 2023; 11:7730-7747. [PMID: 37904536 DOI: 10.1039/d3bm00629h] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
The foreign body response (FBR) remains a clinical challenge in the field of biomaterials due to its ability to elicit a chronic and sustained immune response. Modulating the immune response to materials is a modern paradigm in tissue engineering to enhance repair while limiting fibrous encapsulation and implant isolation. Though the classical mediators of the FBR are well-characterized, recent studies highlight that our understanding of the cell types that shape the FBR may be incomplete. In this review, we discuss the emerging role of T cells, stromal-immune cell interactions, and senescent cells in the biomaterial response, particularly to synthetic materials. We emphasize future studies that will deepen the field's understanding of these cell types in the FBR, with the goal of identifying therapeutic targets that will improve implant integration. Finally, we briefly review several considerations that may influence our understanding of the FBR in humans, including rodent models, aging, gut microbiota, and sex differences. A better understanding of the heterogeneous host cell response during the FBR can enable the design and development of immunomodulatory materials that favor healing.
Collapse
Affiliation(s)
- Brenda Yang
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Natalie Rutkowski
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
| | - Jennifer Elisseeff
- Translational Tissue Engineering Center, Wilmer Eye Institute and Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Bloomberg∼Kimmel Institute for Cancer Immunotherapy, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
2
|
Structure-activity relationships of pH-responsive and ionizable lipids for gene delivery. Int J Pharm 2022; 617:121596. [PMID: 35181463 DOI: 10.1016/j.ijpharm.2022.121596] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/30/2022] [Accepted: 02/13/2022] [Indexed: 11/21/2022]
Abstract
Ionizable lipids are the leading vectors for gene therapy. Understanding the effects of molecular structure on efficient gene delivery is one of the most important challenges for maximizing the utility of such lipid vectors. We synthesized an array of pH-responsive and ionizable lipids to investigate the relationship between lipid structure and activity. The optimized lipid (EDM) has double tertiary amines in the headgroup and an ester linker. EDM exhibited efficient DNA and siRNA delivery to, and gene silencing of, A549 cells. EDM has a pKa value of 6.67, which enabled it to quickly escape from the endosome after entering the cell; the ester linkages rapidly degraded and enabled gene release into the cytoplasm. EDM also delivered IGF-1R siRNA to inhibit tumor growth and induce cancer cell apoptosis by efficient inhibition of IGF-1R expression in mice. Our study on the structure-activity relationships of ionizable lipids will facilitate clinical applications.
Collapse
|
3
|
Lu S, Zhang J, Lin S, Zheng D, Shen Y, Qin J, Li Y, Wang S. Recent advances in the development of in vitro liver models for hepatotoxicity testing. Biodes Manuf 2021. [DOI: 10.1007/s42242-021-00142-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
4
|
You R, Wang L, Liu L, Wang Y, Han K, Lin H, Wang Y, Raftery D, Guan YQ. Probing cell metabolism on insulin like growth factor(IGF)-1/tumor necrosis factor(TNF)-α and chargeable polymers co-immobilized conjugates. J Tissue Eng Regen Med 2021; 15:256-268. [PMID: 33462987 DOI: 10.1002/term.3174] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 11/08/2022]
Abstract
Cell culturing on different synthetic biomaterials would reprogram cell metabolism for adaption to their living conditions because such alterations in cell metabolism were necessary for cellular functions on them. Here we used metabolomics to uncover metabolic changes when liver cells were cultured on insulin-like growth factor (IGF)/tumor necrosis factor-α (TNF-α) and chargeable polymers co-modified biomaterials with the aim to explain their modulating effects on cell metabolism. The results showed that cell metabolism on IGF-1/TNF-α co-immobilized conjugates was significantly regulated according to their scatterings on the score plot of principal component analysis. Specifically, cell metabolisms were reprogrammed to the higher level of pyrimidine metabolism, β-alanine metabolism, and pantothenate and CoA biosynthesis, and the lower level of methionine salvage pathway in order to promote cell growth on IGF/TNF-α co-modified surface. Furthermore, cell senescence on PSt-PAAm-IGF/TNF-α surface was delayed through the regulation of branch amino acid metabolism and AMPK signal pathway. The research showed that metabolomics had great potential to uncover the molecular interaction between biomaterials and seeded cells, and provide the insights about cell metabolic reprogramming on IGF/TNF-α co-modified conjugates for cell growth.
Collapse
Affiliation(s)
- Rong You
- School of Life Science, South China Normal University, Guangzhou, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Lanqing Wang
- School of Life Science, South China Normal University, Guangzhou, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Li Liu
- School of Life Science, South China Normal University, Guangzhou, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Yuanjian Wang
- School of Life Science, South China Normal University, Guangzhou, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Kaibin Han
- School of Life Science, South China Normal University, Guangzhou, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Haiting Lin
- School of Life Science, South China Normal University, Guangzhou, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | - Yibei Wang
- School of Life Science, South China Normal University, Guangzhou, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China
| | | | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou, China.,South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou, China.,Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
5
|
Zhang LK, Chen WY, Wang HM, Liu C, He J, Tang Y, Jiao Y, Guan YQ. Growth factors regional patterned and photoimmobilized scaffold applied to bone tissue regeneration. J Mater Chem B 2020; 8:10990-11000. [PMID: 33300520 DOI: 10.1039/d0tb02317e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Bone diseases such as osteomalacia, osteoporosis, and osteomyelitis are major illnesses that threaten the health of human. This study aimed to provide an idea at the molecular level of material properties determined with UV specific surface approaches. The tert-butyl hydroperoxide (t-BHP) exposure aging model bone mesenchymal stem cells (BMSCs) were reverted by using a poly-hybrid scaffold (PS), which is a carbon nanotube (CNT) coated polycaprolactone (PCL) and polylactic acid (PLA) scaffold, combined with insulin-like growth factor-1 (IGF). Then, the region-specific PS photo-immobilized with different growth factors (GFs) was obtained by interference and diffraction of ultraviolet (UV) light. Additionally, the reverted BMSCs were regionally pattern differentiated into three kinds of cells on the GF immobilized PS (GFs/PS). In vivo, the GFs/PS accelerate bone healing in injured Sprague-Dawley (SD) rats. The data showed that GFs/PS effectively promoted the differentiation of reverted BMSCs in the designated area on 21st day. These results suggest region-specific interface immobilization of GFs concurrently differentiating reverted BMSCs into three different cells in the same scaffold. This method might be considered as a short-time, low cost, and simple operational approach to scaffold modification for tissue regeneration in the future.
Collapse
Affiliation(s)
- Ling-Kun Zhang
- School of Life Science, South China Normal University, Guangzhou 510631, China. and South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 510631, China
| | - Wu-Ya Chen
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Hui-Min Wang
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Chao Liu
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Jiecheng He
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Yunzhi Tang
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Yuxuan Jiao
- School of Life Science, South China Normal University, Guangzhou 510631, China.
| | - Yan-Qing Guan
- School of Life Science, South China Normal University, Guangzhou 510631, China. and South China Normal University-Panyu Central Hospital Joint Laboratory of Translational Medical Research, Panyu Central Hospital, Guangzhou 510631, China
| |
Collapse
|
6
|
Zhou L, He J, Sun S, Yu Y, Zhang T, Wang M. Cryptochrome 1 Regulates Osteoblast Differentiation via the AKT Kinase and Extracellular Signal-Regulated Kinase Signaling Pathways. Cell Reprogram 2019; 21:141-151. [PMID: 30985214 DOI: 10.1089/cell.2018.0054] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The many circadian clock genes build up a network structure that controls physiological processes, such as the sleep cycle, metabolism, and hormone secretion. Cryptochrome 1 (CRY1), as one of the critical circadian proteins, is closely related to bone formation. However, the regulatory function of CRY1 in osteogenic differentiation remains unclear. In this study, we investigated the role of CRY1 in regulating proliferation and osteoblast differentiation in C3H10 and C2C12 cells after silencing Cry1 using short hairpin RNA interference. In vitro experiments confirmed that the expression level of CRY1 gradually increased during the osteogenic differentiation process, and Cry1 knockdown inhibited the proliferation and differentiation of osteoblastic cells. In addition, Cry1 knockdown inhibited the phosphorylation of AKT kinase (AKT) and extracellular signal-regulated kinase (ERK), which suppressed the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)-AKT and mitogen-activated protein kinase (MAPK)-ERK signaling pathways. Taken together, these findings show that CRY1 regulates the proliferation and differentiation of osteoblastic cells in an AKT and ERK-dependent manner.
Collapse
Affiliation(s)
- Lei Zhou
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, P.R. China
| | - Jun He
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, P.R. China
| | - Shiwei Sun
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, P.R. China
| | - Yueming Yu
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, P.R. China
| | - Tieqi Zhang
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, P.R. China
| | - Minghai Wang
- Department of Orthopedics, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, P.R. China
| |
Collapse
|
7
|
Zheng CX, Sui BD, Hu CH, Qiu XY, Zhao P, Jin Y. Reconstruction of structure and function in tissue engineering of solid organs: Toward simulation of natural development based on decellularization. J Tissue Eng Regen Med 2018; 12:1432-1447. [PMID: 29701314 DOI: 10.1002/term.2676] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 10/13/2017] [Accepted: 04/16/2018] [Indexed: 12/21/2022]
Abstract
Failure of solid organs, such as the heart, liver, and kidney, remains a major cause of the world's mortality due to critical shortage of donor organs. Tissue engineering, which uses elements including cells, scaffolds, and growth factors to fabricate functional organs in vitro, is a promising strategy to mitigate the scarcity of transplantable organs. Within recent years, different construction strategies that guide the combination of tissue engineering elements have been applied in solid organ tissue engineering and have achieved much progress. Most attractively, construction strategy based on whole-organ decellularization has become a popular and promising approach, because the overall structure of extracellular matrix can be well preserved. However, despite the preservation of whole structure, the current constructs derived from decellularization-based strategy still perform partial functions of solid organs, due to several challenges, including preservation of functional extracellular matrix structure, implementation of functional recellularization, formation of functional vascular network, and realization of long-term functional integration. This review overviews the status quo of solid organ tissue engineering, including both advances and challenges. We have also put forward a few techniques with potential to solve the challenges, mainly focusing on decellularization-based construction strategy. We propose that the primary concept for constructing tissue-engineered solid organs is fabricating functional organs based on intact structure via simulating the natural development and regeneration processes.
Collapse
Affiliation(s)
- Chen-Xi Zheng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Shaanxi, China
| | - Bing-Dong Sui
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Shaanxi, China
| | - Cheng-Hu Hu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| | - Xin-Yu Qiu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Shaanxi, China
| | - Pan Zhao
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.,Xi'an Institute of Tissue Engineering and Regenerative Medicine, Xi'an, Shaanxi, China
| | - Yan Jin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi International Joint Research Center for Oral Diseases, Center for Tissue Engineering, School of Stomatology, Fourth Military Medical University, Xi'an, Shaanxi, China.,Research and Development Center for Tissue Engineering, Fourth Military Medical University, Shaanxi, China
| |
Collapse
|
8
|
Effects of sucrose ester structures on liposome-mediated gene delivery. Acta Biomater 2018; 72:278-286. [PMID: 29609051 DOI: 10.1016/j.actbio.2018.03.031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 02/19/2018] [Accepted: 03/15/2018] [Indexed: 12/12/2022]
Abstract
Sucrose esters (SEs) have great potential applications in gene delivery because of their low toxicity, excellent biocompatibility, and biodegradability. By using tripeptide-based lipid (CDO) as a model lipid and SEs as helper lipids, a series of liposomes were prepared. The SEs with hydrophilic-lipophilic balance (HLB) values of 1, 6, 11, or 16 and the fatty acids of laurate, stearate, or oleate were used in the liposomes. We investigated the effect of HLB values of SEs and fatty acid types on gene transfection efficiency and toxicity of liposomes. The results showed that transfection efficiencies of the liposomes containing SEs with HLB value of 6 were superior to other liposomes in HeLa, MCF-7, NCI-H460, and A549 tumor cells. For the same HLB value, liposomes of laurate SEs were preferable to transfect cells compared to SEs of stearate and oleate. The liposomes with SEs showed higher cellular uptake than liposome without SEs (LipoCDO). LipoL12-6/Luc-siRNA treatment on tumor-bearing mice exhibited about 60% in vivo gene silencing of luciferase, and LipoL12-6 could mediate IGF-1R siRNA to greatly inhibit tumor growth. Moreover, liposomes with SEs revealed remarkably low toxicity in vitro and in vivo. The illustration of SE structures on gene delivery will promote the use of SEs for clinical trials of liposomes. STATEMENT OF SIGNIFICANCE This article is the first to study the effects of various chain lengths and hydrophilic-lipophilic balance (HLB) of sucrose esters (SEs) on gene transfection efficiency and safety of liposomes for gene delivery. The in vitro delivery of pDNA and siRNA by lipoplexes against HeLa, MCF-7, NCI-H460, and A549 tumor cells showed that the lipoplexes could lead to better transfection and lower cytotoxicity after the addition of SEs. SEs with shorter chain and a median HLB value could provide the liposomes with much higher gene transfection efficiency than others. The in vivo delivery of siRNA to tumor-bearing mice further confirmed that liposome containing laurate SE (LipoL12-6) could be a potential therapeutic vector, as it delivered siRNA to silence nearly 60% of the luciferase in tumors and also greatly inhibited the tumor growth. Therefore, the addition of SEs to liposomes proved to be relatively safe in vitro and in vivo. These preliminary results demonstrated that SEs show great potential for constructing controlled-release systems for gene delivery. The readers will get insights into a series of gene vectors and deepen their understanding about gene delivery.
Collapse
|
9
|
Feng G, Zheng K, Cao T, Zhang J, Lian M, Huang D, Wei C, Gu Z, Feng X. Repeated stimulation by LPS promotes the senescence of DPSCs via TLR4/MyD88-NF-κB-p53/p21 signaling. Cytotechnology 2018; 70:1023-1035. [PMID: 29480340 DOI: 10.1007/s10616-017-0180-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/02/2017] [Indexed: 01/13/2023] Open
Abstract
Dental pulp stem cells (DPSCs), one type of mesenchymal stem cells, are considered to be a type of tool cells for regenerative medicine and tissue engineering. Our previous studies found that the stimulation with lipopolysaccharide (LPS) might introduce senescence of DPSCs, and this senescence would have a positive correlation with the concentration of LPS. The β-galactosidase (SA-β-gal) staining was used to evaluate the senescence of DPSCs and immunofluorescence to show the morphology of DPSCs. Our findings suggested that the activity of SA-β-gal has increased after repeated stimulation with LPS and the morphology of DPSCs has changed with the stimulation with LPS. We also found that LPS bound to the Toll-like receptor 4 (TLR4)/myeloid differentiation factor (MyD) 88 signaling pathway. Protein and mRNA expression of TLR4, MyD88 were enhanced in DPSCs with LPS stimulation, resulting in the activation of nuclear factor-κB (NF-κB) signaling, which exhibited the expression of p65 improved in the nucleus while the decreasing of IκB-α. Simultaneously, the expression of p53 and p21, the downstream proteins of the NF-κB signaling, has increased. In summary, DPSCs tend to undergo senescence after repeated stimulation in an inflammatory microenvironment. Ultimately, these findings may lead to a new direction for cell-based therapy in oral diseases and other regenerative medicines.
Collapse
Affiliation(s)
- Guijuan Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Ke Zheng
- Department of Stomatology, Wuxi No.2 People's Hospital, Wuxi, 214000, China
| | - Tong Cao
- Department of Provost's Office, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Jinlong Zhang
- Department of Spine Surgery, The Second Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Min Lian
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Dan Huang
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China
| | - Changbo Wei
- Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, 510055, China
| | - Zhifeng Gu
- Department of Rheumatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| | - Xingmei Feng
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, 226001, China.
| |
Collapse
|
10
|
Zhao B, Liang L, Wang J, Ren C, Hu M, Wu H, Chen L, Liu X, Xu F, Zheng X, Chen J, Cui S. The effect of a human acellular amniotic membrane loaded with mechanical stretch-stimulated bone marrow mesenchymal stem cells for the treatment of pelvic floor dysfunction. RSC Adv 2017. [DOI: 10.1039/c7ra02020a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Pelvic floor dysfunction (PFD) has a severe impact on the quality of life of middle-aged and elderly women and is closely related to the damage of pelvic support tissues, especially ligaments.
Collapse
Affiliation(s)
- Bing Zhao
- Third Affiliated Hospital of Zhengzhou University
- Zhengzhou
- PR China
| | - Linlin Liang
- The Center for Reproduction
- Henan Province People's Hospital
- Zhengzhou
- PR China
| | - Junmin Wang
- Third Affiliated Hospital of Zhengzhou University
- Zhengzhou
- PR China
- Laboratory Animal Center
- Zhengzhou University
| | - Chenchen Ren
- Third Affiliated Hospital of Zhengzhou University
- Zhengzhou
- PR China
| | - Mengcai Hu
- Third Affiliated Hospital of Zhengzhou University
- Zhengzhou
- PR China
| | - Huiyan Wu
- Third Affiliated Hospital of Zhengzhou University
- Zhengzhou
- PR China
| | - Lulu Chen
- Third Affiliated Hospital of Zhengzhou University
- Zhengzhou
- PR China
| | - Xiaojun Liu
- Henan Medical Equipment Inspection Institute
- Zhengzhou
- PR China
| | - Feng Xu
- Third Affiliated Hospital of Zhengzhou University
- Zhengzhou
- PR China
| | - Xueqin Zheng
- Third Affiliated Hospital of Zhengzhou University
- Zhengzhou
- PR China
| | - Juan Chen
- Third Affiliated Hospital of Zhengzhou University
- Zhengzhou
- PR China
| | - Shihong Cui
- Third Affiliated Hospital of Zhengzhou University
- Zhengzhou
- PR China
| |
Collapse
|