1
|
Jiang L, Ma Y, Tang S, Wang Y, Zhang Y, Su S, Hu X, He J. Improving chitosan-based composite membrane by introducing a novel hybrid functional nano-hydroxyapatite with carboxymethyl cellulose and phytic acid. Front Chem Sci Eng 2024; 18:61. [DOI: 10.1007/s11705-024-2418-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/16/2024] [Indexed: 01/03/2025]
|
2
|
Enhanced osteogenic differentiation of stem cells by 3D printed PCL scaffolds coated with collagen and hydroxyapatite. Sci Rep 2022; 12:12359. [PMID: 35859093 PMCID: PMC9300684 DOI: 10.1038/s41598-022-15602-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 06/27/2022] [Indexed: 12/24/2022] Open
Abstract
Bone tissue engineering uses various methods and materials to find suitable scaffolds that regenerate lost bone due to disease or injury. Poly(ε-caprolactone) (PCL) can be used in 3D printing for producing biodegradable scaffolds by fused deposition modeling (FDM). However, the hydrophobic surfaces of PCL and its non-osteogenic nature reduces adhesion and cell bioactivity at the time of implantation. This work aims to enhance bone formation, osteogenic differentiation, and in vitro biocompatibility via PCL scaffolds modification with Hydroxyapatite (HA) and Collagen type I (COL). This study evaluated the osteosupportive capacity, biological behavior, and physicochemical properties of 3D-printed PCL, PCL/HA, PCL/COL, and PCL/HA/COL scaffolds. Biocompatibility and cells proliferation were investigated by seeding human adipose tissue-derived mesenchymal stem cells (hADSCs) onto the scaffolds, which were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay, and 6-diamidino-2-phenylindole (DAPI) staining. In addition, the bone differentiation potential of the hADSCs was assessed using calcium deposition, alkaline phosphatase (ALP) activity, and bone-related protein and genes. Although all constructed scaffolds support hADSCs proliferation and differentiation, the results showed that scaffold coating with HA and COL can boost these capacities in a synergistic manner. According to the findings, the tricomponent 3D-printed scaffold can be considered as a promising choice for bone tissue regeneration and rebuilding.
Collapse
|
3
|
Liu S, Wang YN, Ma B, Shao J, Liu H, Ge S. Gingipain-Responsive Thermosensitive Hydrogel Loaded with SDF-1 Facilitates In Situ Periodontal Tissue Regeneration. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36880-36893. [PMID: 34324286 DOI: 10.1021/acsami.1c08855] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Existing local drug delivery systems for periodontitis suffer from poor antibacterial effect and unsatisfied periodontal regeneration. In this study, a smart gingipain-responsive hydrogel (PEGPD@SDF-1) was synthesized as an environmentally sensitive carrier for on-demand drug delivery. The PEGPD@SDF-1 hydrogel was synthesized from polyethylene glycol diacrylate (PEG-DA) based scaffolds, dithiothreitol (DTT), and a novel designed functional peptide module (FPM) via Michael-type addition reaction, and the hydrogel was further loaded with stromal cell derived factor-1 (SDF-1). The FPM exhibiting a structure of anchor peptide-short antimicrobial peptide (SAMP)-anchor peptide could be cleaved by gingipain specifically, and the SAMP was released out of the hydrogel for antibacterial effect in response to gingipain. The hydrogel properties were characterized by scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), swelling ratio analysis, degradation evaluation, and release curve description of the SAMP and SDF-1. Results in vitro indicated the PEGPD@SDF-1 hydrogel exhibited preferable biocompatibility and could promote the proliferation, migration, and osteogenic differentiation of periodontal ligament stem cells (PDLSCs). Antibacterial testing demonstrated that the PEGPD@SDF-1 hydrogel released the SAMP stressfully in response to gingipain stimulation, thereby strongly inhibiting the growth of Porphyromonas gingivalis. Furthermore, the study in vivo indicated that the PEGPD@SDF-1 hydrogel inhibited P. gingivalis reproduction, created a low-inflammatory environment, facilitated the recruitment of CD90+/CD34- stromal cells, and induced osteogenesis. Taken together, these results suggest that the gingipain-responsive PEGPD@SDF-1 hydrogel could facilitate in situ periodontal tissue regeneration and is a promising candidate for the on-demand local drug delivery system for periodontitis.
Collapse
Affiliation(s)
- Shiyue Liu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Ya-Nan Wang
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Baojin Ma
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Jinlong Shao
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Hongrui Liu
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| | - Shaohua Ge
- Department of Periodontology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong 250012, China
| |
Collapse
|
4
|
Qian Y, Xu C, Xiong W, Jiang N, Zheng Y, He X, Ding F, Lu X, Shen J. Dual cross-linked organic-inorganic hybrid hydrogels accelerate diabetic skin wound healing. CHEMICAL ENGINEERING JOURNAL 2021; 417:129335. [DOI: 10.1016/j.cej.2021.129335] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
5
|
Huerta-López C, Alegre-Cebollada J. Protein Hydrogels: The Swiss Army Knife for Enhanced Mechanical and Bioactive Properties of Biomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1656. [PMID: 34202469 PMCID: PMC8307158 DOI: 10.3390/nano11071656] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/17/2021] [Accepted: 06/18/2021] [Indexed: 12/31/2022]
Abstract
Biomaterials are dynamic tools with many applications: from the primitive use of bone and wood in the replacement of lost limbs and body parts, to the refined involvement of smart and responsive biomaterials in modern medicine and biomedical sciences. Hydrogels constitute a subtype of biomaterials built from water-swollen polymer networks. Their large water content and soft mechanical properties are highly similar to most biological tissues, making them ideal for tissue engineering and biomedical applications. The mechanical properties of hydrogels and their modulation have attracted a lot of attention from the field of mechanobiology. Protein-based hydrogels are becoming increasingly attractive due to their endless design options and array of functionalities, as well as their responsiveness to stimuli. Furthermore, just like the extracellular matrix, they are inherently viscoelastic in part due to mechanical unfolding/refolding transitions of folded protein domains. This review summarizes different natural and engineered protein hydrogels focusing on different strategies followed to modulate their mechanical properties. Applications of mechanically tunable protein-based hydrogels in drug delivery, tissue engineering and mechanobiology are discussed.
Collapse
Affiliation(s)
- Carla Huerta-López
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | | |
Collapse
|
6
|
Rodrigues RM, Pereira RN, Vicente AA, Cavaco-Paulo A, Ribeiro A. Ohmic heating as a new tool for protein scaffold engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 120:111784. [PMID: 33545911 DOI: 10.1016/j.msec.2020.111784] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/11/2020] [Accepted: 12/02/2020] [Indexed: 11/15/2022]
Abstract
Ohmic heating (OH) is recognised as an emerging processing technology which recently is gaining increasing attention due to its ability to induce and control protein functionality. In this study, OH was used for the first time in the production of scaffolds for tissue engineering. BSA/casein solutions were processed by OH, promoting protein denaturation and aggregation, followed by cold-gelation through the addition of Ca2+. The formation of stable scaffolds was mostly dependent on the temperature and treatment time during OH processing. The variations of the electric field (EF) induced changes in the functional properties of both gel forming solutions and final scaffolds (contact angle, swelling, porosity, compressive modulus and degradation rate). The scaffolds' biological performance was evaluated regarding their ability to support the adhesion and proliferation of human fibroblast cells. The production process resulted in a non-cytotoxic material and the changes imposed by the presence of the EF during the scaffolds' production improved cellular proliferation and metabolic activity. Protein functionalization assisted by OH presents a promising new alternative for the production of improved and tuneable protein-based scaffolds for tissue engineering.
Collapse
Affiliation(s)
- Rui M Rodrigues
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal.
| | - Ricardo N Pereira
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - António A Vicente
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Artur Cavaco-Paulo
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Artur Ribeiro
- CEB-Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| |
Collapse
|
7
|
Tunable keratin hydrogel based on disulfide shuffling strategy for drug delivery and tissue engineering. J Colloid Interface Sci 2019; 544:121-129. [DOI: 10.1016/j.jcis.2019.02.049] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Revised: 02/15/2019] [Accepted: 02/16/2019] [Indexed: 02/07/2023]
|
8
|
Zhao Z, Hu R, Shi H, Wang Y, Ji L, Zhang P, Zhang Q. Design of ruthenium-albumin hydrogel for cancer therapeutics and luminescent imaging. J Inorg Biochem 2019; 194:19-25. [DOI: 10.1016/j.jinorgbio.2019.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 01/26/2019] [Accepted: 02/03/2019] [Indexed: 02/08/2023]
|
9
|
Mallakpour S, Khadem E. Construction of crosslinked chitosan/nitrogen-doped graphene quantum dot nanocomposite for hydroxyapatite biomimetic mineralization. Int J Biol Macromol 2018; 120:1451-1460. [DOI: 10.1016/j.ijbiomac.2018.09.127] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/09/2018] [Accepted: 09/20/2018] [Indexed: 02/07/2023]
|
10
|
Li B, Thompson ME. Phase transition in amphiphilic poly(N-isopropylacrylamide): controlled gelation. Phys Chem Chem Phys 2018; 20:13623-13631. [PMID: 29737361 DOI: 10.1039/c8cp01609g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Thermally reversible gelation of polymers is of converging interest in both the fundamental research and practical biomedical or pharmaceutical applications. While the block structure is widely reported to favor gelation, there are few studies regarding the behavior of amphiphilic random copolymers. Herein, hydrophobically modified poly(N-isopropylacrylamide) (pNIPAM) polymers were designed and synthesized by reversible addition-fragmentation chain transfer (RAFT) copolymerization of NIPAM and butyl acrylate (BA). A library of polymer systems was created by varying the BA : NIPAM ratio, molecular weight (Mw) and concentrations. While a coil-to-globule transition induced microphase separation occurred in the dilute solution, diverse phase behaviors were observed by phase diagram study. A transparent gel phase was identified in p(NIPAM-co-BA) systems, which was missing in its block counterpart pNIPAM-b-pBA, and existed over a wider temperature range with increased BA content, Mw and concentrations. A dynamic rheological analysis revealed that the gel properties were strongly dependent on temperature, which regulated the interchain hydrophobic association, and the gel proved to be highly elastic, stable, reversible and self-healable under the optimized conditions. The p(NIPAM-co-BA) system will be highly desirable for injectable in situ forming hydrogel materials, and the study demonstrated here can be potentially extended to other amphiphilic pNIPAM copolymers.
Collapse
Affiliation(s)
- Bin Li
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA
| | - Mark E Thompson
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, USA and Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, USA.
| |
Collapse
|
11
|
Phan VHG, Thambi T, Kim BS, Huynh DP, Lee DS. Engineering highly swellable dual-responsive protein-based injectable hydrogels: the effects of molecular structure and composition in vivo. Biomater Sci 2017; 5:2285-2294. [PMID: 29019478 DOI: 10.1039/c7bm00707h] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Stimuli-responsive hydrogels, known as smart hydrogels, are three-dimensional amphiphilic or hydrophilic polymer networks that are able to change their volume or phase, and other properties, including viscosity, structure, and dimension, in response to changes in pH, temperature, and magnetic or electric field. Highly swellable, dual-responsive bovine serum albumin (BSA)-based injectable hydrogels are prepared here by the chemical conjugation of pH- and temperature-responsive oligo(sulfamethazine acrylate-co-N-isopropylacrylamide) (oligo(SMA-co-NIPAM)) copolymers on the surface of BSA through carbodiimide-mediated chemistry. The pH- and temperature-responsive oligomer-bearing BSA conjugates show rapid sol-to-gel phase transition properties. Specifically, the free-flowing conjugates at high pH (pH 8.4, 23 °C) are transformed to a viscoelastic gel under physiological conditions (pH 7.4, 37 °C). The swelling ratio, gel strength, and pore size of the BSA hydrogel were tuned by altering the conjugation ratio of the oligo(SMA-co-NIPAM) copolymers of various lengths and compositions to BSA. Subcutaneously administered BSA conjugate sols into the dorsal region of Sprague-Dawley rats formed an in situ gel. When the oligo(NIPAM) content in the hydrogel was high, the degradation rate of BSA hydrogels was remarkably slow, and two weeks after in vivo administration, the hydrogels with high oligo(NIPAM) had swollen more than 4-fold. An in vivo biodegradation study demonstrated that no necrosis or hemorrhage was observed in the tissues with the hydrogels. The concurrent stimuli-responsivity under physiological conditions and high elasticity suggest that these smart hydrogels may open a new avenue for hydrogel applications.
Collapse
Affiliation(s)
- V H Giang Phan
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, Republic of Korea.
| | | | | | | | | |
Collapse
|
12
|
DiMaio JTM, Doran TM, Ryan DM, Raymond DM, Nilsson BL. Modulating Supramolecular Peptide Hydrogel Viscoelasticity Using Biomolecular Recognition. Biomacromolecules 2017; 18:3591-3599. [PMID: 28872306 DOI: 10.1021/acs.biomac.7b00925] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Self-assembled peptide-based hydrogels are emerging materials that have been exploited for wound healing, drug delivery, tissue engineering, and other applications. In comparison to synthetic polymer hydrogels, supramolecular peptide-based gels have advantages in biocompatibility, biodegradability, and ease of synthesis and modification. Modification of the emergent viscoelasticity of peptide hydrogels in a stimulus responsive fashion is a longstanding goal in the development of next-generation materials. In an effort to selectively modulate hydrogel viscoelasticity, we report herein a method to enhance the elasticity of β-sheet peptide hydrogels using specific molecular recognition events between functionalized hydrogel fibrils and biomolecules. Two distinct biomolecular recognition strategies are demonstrated: oligonucleotide Watson-Crick duplex formation between peptide nucleic acid (PNA) modified fibrils with a bridging oligonucleotide and protein-ligand recognition between mannose modified fibrils with concanavalin A. These methods to modulate hydrogel elasticity should be broadly adaptable in the context of these materials to a wide variety of molecular recognition partners.
Collapse
Affiliation(s)
- John T M DiMaio
- University of Rochester , Department of Chemistry, Rochester, New York 14627, United States
| | - Todd M Doran
- University of Rochester , Department of Chemistry, Rochester, New York 14627, United States
| | - Derek M Ryan
- University of Rochester , Department of Chemistry, Rochester, New York 14627, United States
| | - Danielle M Raymond
- University of Rochester , Department of Chemistry, Rochester, New York 14627, United States
| | - Bradley L Nilsson
- University of Rochester , Department of Chemistry, Rochester, New York 14627, United States
| |
Collapse
|
13
|
Ren K, Li B, Xu Q, Xiao C, He C, Li G, Chen X. Enzymatically crosslinked hydrogels based on linear poly(ethylene glycol) polymer: performance and mechanism. Polym Chem 2017. [DOI: 10.1039/c7py01597f] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
A horseradish peroxidase-catalyzed hydrogel based on a double-end tyramine conjugated linear poly(ethylene glycol) polymer is developed and clarified.
Collapse
Affiliation(s)
- Kaixuan Ren
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Bin Li
- University of Chinese Academy of Sciences
- Beijing 100039
- P. R. China
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
| | - Qinghua Xu
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Chunsheng Xiao
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Chaoliang He
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Gao Li
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|