1
|
Xu L, Chu Z, Zhang J, Cai T, Zhang X, Li Y, Wang H, Shen X, Cai R, Shi H, Zhu C, Pan J, Pan D. Steric Effects in the Deposition Mode and Drug-Delivering Efficiency of Nanocapsule-Based Multilayer Films. ACS OMEGA 2022; 7:30321-30332. [PMID: 36061696 PMCID: PMC9434745 DOI: 10.1021/acsomega.2c03591] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 08/03/2022] [Indexed: 05/10/2023]
Abstract
Using surface-initiated atom transfer radical polymerization (ATRP), block polymers with a series of quaternization degrees were coated on the surface of silica nanocapsules (SNCs) by the "grafting-from" technique. Molnupiravir, an antiviral medicine urgently approved for the treatment of SARS-CoV-2, was encapsulated in polymer-coated SNCs and further incorporated into well-defined films with polystyrene sulfonate (PSS) homopolymers by layer-by-layer (LBL) self-assembly via electrostatic interactions. We investigated the impact of the quaternization degree of the polymers and steric hindrance of functional groups on the growth mode, swelling/deswelling transition, and drug-delivering efficiency of the obtained LBL films. The SNCs were derived from coronas of parent block polymers of matched molecular weights-poly(N-isopropylacrylamide)-block-poly(N,N-dimethylaminoethyl methacrylate) (PNIPAM-b-PDMAEMA)-by quaternization with methyl sulfate. As revealed by the data results, SNCs with coronas with higher quaternization degrees resulted in a larger layering distance of the film structure because of weaker ionic pairing (due to the presence of a bulky methyl spacer) between SNCs and PSS. Interestingly, when comparing the drug release profile of the encapsulated drugs from SNC-based films, the release rate was slower in the case of capsule coronas with higher quaternization degrees because of the larger diffusion distance of the encapsulated drugs and stronger hydrophobic-hydrophobic interactions between SNCs and drug molecules.
Collapse
Affiliation(s)
- Li Xu
- Institute
of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zihan Chu
- Institute
of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jianhua Zhang
- N.O.D
Topia (GuangZhou) Biotechnology Co., Ltd., Guangzhou, Guangdong 510599, China
| | - Tingwei Cai
- Guangdong
Jiabo Pharmaceutical Co., Qingyuan, Guangdong 511517, China
| | - Xingxing Zhang
- Institute
of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yinzhao Li
- Institute
of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hailong Wang
- Institute
of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Xiaochen Shen
- China
Tobacco Jiangsu Industrial Co., Ltd., Nanjing, Jiangsu 210023, China
| | - Raymond Cai
- Institute
of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Haifeng Shi
- Institute
of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Chunyin Zhu
- Institute
of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Jia Pan
- Novo
Nordisk Research Center—Indianapolis, Inc., Indianapolis, Indiana 46241, United States
| | - Donghui Pan
- Jiangsu
Institute of Nuclear Medicine, Wuxi, Jiangsu 214063, China
| |
Collapse
|
2
|
Bonartsev AP, Lei B, Kholina MS, Menshikh KA, Svyatoslavov DS, Samoylova SI, Sinelnikov MY, Voinova VV, Shaitan KV, Kirpichnikov MP, Reshetov IV. Models of head and neck squamous cell carcinoma using bioengineering approaches. Crit Rev Oncol Hematol 2022; 175:103724. [PMID: 35609774 DOI: 10.1016/j.critrevonc.2022.103724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/24/2022] [Accepted: 05/18/2022] [Indexed: 11/21/2022] Open
Abstract
The use of bioengineering methods and approaches is extremely promising for the development of experimental models of cancer, especially head and neck squamous cell carcinomas (HNSCC) that are characterized by early metastasis and rapid progression., for testing novel anticancer drugs and diagnostics. This review summarizes the most relevant HNSCC tumor models used to this day as well as future directions for improved modeling of the malignant disease. Apart from conventional 2D-cell cultivation methods and in vivo animal cancer models a number of bioengineering techniques of modeling HNSCC tumors were reported: genetic-engineering, ethanol/tobacco exposure experiment, spheroids, hydrogel-based cell culture, scaffold-based cell culture, microfluidics, bone-tumor niche cell culture, cancer and normal cells co-culture, cancer cells, and bacteria co-culture. An organized set of these models can constitute a system of HNSCC experimental modeling, which gives potential towards developing the newest approaches in the diagnosis, prevention, and treatment of HNSCC.
Collapse
Affiliation(s)
- Anton P Bonartsev
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia.
| | - Bo Lei
- Frontier Institute of Science and Technology, Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710000, China; National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital, Xi'an Jiaotong University, Xi'an 710000, China; Instrument Analysis Center, Xi'an Jiaotong University, Xi'an 710054, China.
| | - Margarita S Kholina
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia.
| | - Ksenia A Menshikh
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia.
| | - Dmitriy S Svyatoslavov
- I.M.Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia.
| | - Svetlana I Samoylova
- I.M.Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia.
| | - Mikhail Y Sinelnikov
- I.M.Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia.
| | - Vera V Voinova
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia.
| | - Konstantin V Shaitan
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia.
| | - Mikhail P Kirpichnikov
- Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie Gory 1-12, Moscow 119234, Russia.
| | - Igor V Reshetov
- I.M.Sechenov First Moscow State Medical University, Trubetskaya 8-2, Moscow 119991, Russia.
| |
Collapse
|
3
|
Wei Q, Wang S, Han F, Wang H, Zhang W, Yu Q, Liu C, Ding L, Wang J, Yu L, Zhu C, Li B, Bl, Cz, Cz, Cz, Qw, Sw, Fh, Hw, Wz, Qy, Cl, Ld, Jw, Ly, Cz, Qw. Cellular modulation by the mechanical cues from biomaterials for tissue engineering. BIOMATERIALS TRANSLATIONAL 2021; 2:323-342. [PMID: 35837415 PMCID: PMC9255801 DOI: 10.12336/biomatertransl.2021.04.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/13/2021] [Accepted: 07/10/2021] [Indexed: 01/17/2023]
Abstract
Mechanical cues from the extracellular matrix (ECM) microenvironment are known to be significant in modulating the fate of stem cells to guide developmental processes and maintain bodily homeostasis. Tissue engineering has provided a promising approach to the repair or regeneration of damaged tissues. Scaffolds are fundamental in cell-based regenerative therapies. Developing artificial ECM that mimics the mechanical properties of native ECM would greatly help to guide cell functions and thus promote tissue regeneration. In this review, we introduce various mechanical cues provided by the ECM including elasticity, viscoelasticity, topography, and external stimuli, and their effects on cell behaviours. Meanwhile, we discuss the underlying principles and strategies to develop natural or synthetic biomaterials with different mechanical properties for cellular modulation, and explore the mechanism by which the mechanical cues from biomaterials regulate cell function toward tissue regeneration. We also discuss the challenges in multimodal mechanical modulation of cell behaviours and the interplay between mechanical cues and other microenvironmental factors.
Collapse
Affiliation(s)
- Qiang Wei
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Shenghao Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Feng Han
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Huan Wang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Weidong Zhang
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Qifan Yu
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Changjiang Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Luguang Ding
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Jiayuan Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Lili Yu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China
| | - Caihong Zhu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China,Corresponding authors: Caihong Zhu, ; Bin Li,
| | - Bin Li
- Department of Orthopaedic Surgery, Orthopaedic Institute, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China,College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, Jiangsu Province, China,China Orthopaedic Regenerative Medicine Group (CORMed), Hangzhou, Zhejiang Province, China,Corresponding authors: Caihong Zhu, ; Bin Li,
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Abstract
The corneal endothelium is the innermost layer of the cornea that selectively pumps ions and metabolites and regulates the hydration level of the cornea, ensuring its transparency. Trauma or disease affecting human corneal endothelial cells (hCECs) can result in major imbalances of such transport activity with consequent deterioration or loss of vision. Since tissue transplantation from deceased donors is only available to a fraction of patients worldwide, alternative solutions are urgently needed. Cell therapy approaches, in particular by attempting to expand primary culture of hCECs in vitro, aim to tackle this issue. However, existing cell culture protocols result in limited expansion of this cell type. Recent studies in this field have shown that topographical features with specific dimensions and shapes could improve the efficacy of hCEC expansion. Therefore, potential solutions to overcome the limitation of the conventional culture of hCECs may include recreating nanometer scale topographies (nanotopographies) that mimic essential biophysical cues present in their native environment. In this review, we summarize the current knowledge and understanding of the effect of substrate topographies on the response of hCECs. Moreover, we also review the latest developments for the nanofabrication of such bio-instructive cell substrates.
Collapse
|
5
|
Mertgen AS, Trossmann VT, Guex AG, Maniura-Weber K, Scheibel T, Rottmar M. Multifunctional Biomaterials: Combining Material Modification Strategies for Engineering of Cell-Contacting Surfaces. ACS APPLIED MATERIALS & INTERFACES 2020; 12:21342-21367. [PMID: 32286789 DOI: 10.1021/acsami.0c01893] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
In the human body, cells in a tissue are exposed to signals derived from their specific extracellular matrix (ECM), such as architectural structure, mechanical properties, and chemical composition (proteins, growth factors). Research on biomaterials in tissue engineering and regenerative medicine aims to recreate such stimuli using engineered materials to induce a specific response of cells at the interface. Although traditional biomaterials design has been mostly limited to varying individual signals, increasing interest has arisen on combining several features in recent years to improve the mimicry of extracellular matrix properties. Tremendous progress in combinatorial surface modification exploiting, for example, topographical features or variations in mechanics combined with biochemical cues has enabled the identification of their key regulatory characteristics on various cell fate decisions. Gradients especially facilitated such research by enabling the investigation of combined continuous changes of different signals. Despite unravelling important synergies for cellular responses, challenges arise in terms of fabrication and characterization of multifunctional engineered materials. This review summarizes recent work on combinatorial surface modifications that aim to control biological responses. Modification and characterization methods for enhanced control over multifunctional material properties are highlighted and discussed. Thereby, this review deepens the understanding and knowledge of biomimetic combinatorial material modification, their challenges but especially their potential.
Collapse
Affiliation(s)
- Anne-Sophie Mertgen
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Vanessa Tanja Trossmann
- Lehrstuhl für Biomaterialien, Universität Bayreuth, Prof.-Rüdiger-Bormann-Strasse 1, Bayreuth 95440, Germany
| | - Anne Géraldine Guex
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
- Laboratory for Biomimetic Membranes and Textiles, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Katharina Maniura-Weber
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| | - Thomas Scheibel
- Lehrstuhl für Biomaterialien, Bayerisches Polymerinstitut (BPI), Bayreuther Zentrum für Kolloide und Grenzflächen (BZKG), Bayreuther Zentrum für Molekulare Biowissenschaften (BZMB), Bayreuther Materialzentrum (BayMAT), Universität Bayreuth, Bayreuth 95440, Germany
| | - Markus Rottmar
- Laboratory for Biointerfaces, Empa, Swiss Federal Laboratories for Materials Science and Technology, Lerchenfeldstrasse 5, St. Gallen 9014, Switzerland
| |
Collapse
|
6
|
Li Q, Zhang B, Kasoju N, Ma J, Yang A, Cui Z, Wang H, Ye H. Differential and Interactive Effects of Substrate Topography and Chemistry on Human Mesenchymal Stem Cell Gene Expression. Int J Mol Sci 2018; 19:E2344. [PMID: 30096912 PMCID: PMC6121573 DOI: 10.3390/ijms19082344] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 08/05/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022] Open
Abstract
Variations in substrate chemistry and the micro-structure were shown to have a significant effect on the biology of human mesenchymal stromal cells (hMSCs). This occurs when differences in the surface properties indirectly modulate pathways within numerous signaling networks that control cell fate. To understand how the surface features affect hMSC gene expression, we performed RNA-sequencing analysis of bone marrow-derived hMSCs cultured on tissue culture-treated polystyrene (TCP) and poly(l-lactide) (PLLA) based substrates of differing topography (Fl: flat and Fs: fibrous) and chemistry (Pr: pristine and Am: aminated). Whilst 80% of gene expression remained similar for cells cultured on test substrates, the analysis of differentially expressed genes (DEGs) revealed that surface topography significantly altered gene expression more than surface chemistry. The Fl and Fs topologies introduced opposite directional alternations in gene expression when compared to TCP control. In addition, the effect of chemical treatment interacted with that of topography in a synergistic manner with the Pr samples promoting more DEGs than Am samples in all gene ontology function groups. These findings not only highlight the significance of the culture surface on regulating the overall gene expression profile but also provide novel insights into cell-material interactions that could help further design the next-generation biomaterials to facilitate hMSC applications. At the same time, further studies are required to investigate whether or not the observations noted correlate with subsequent protein expression and functionality of cells.
Collapse
Affiliation(s)
- Qiongfang Li
- China National GeneBank-Shenzhen, BGI-Shenzhen, 518083 Shenzhen, China.
| | - Bo Zhang
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, UK.
- Department of Engineering Science, University of Oxford, OX1 3PJ Oxford, UK.
| | - Naresh Kasoju
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, UK.
| | - Jinmin Ma
- China National GeneBank-Shenzhen, BGI-Shenzhen, 518083 Shenzhen, China.
| | - Aidong Yang
- Department of Engineering Science, University of Oxford, OX1 3PJ Oxford, UK.
| | - Zhanfeng Cui
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, UK.
| | - Hui Wang
- China National GeneBank-Shenzhen, BGI-Shenzhen, 518083 Shenzhen, China.
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, UK.
- Oxford Suzhou Centre for Advanced Research, Suzhou Industrial Park, 215123 Suzhou, China.
| | - Hua Ye
- Institute of Biomedical Engineering, Department of Engineering Science, University of Oxford, OX3 7DQ Oxford, UK.
| |
Collapse
|