1
|
Cong B, Wu Y, Zhou M, Zhao X, Chao D. Dual-Band Electrochromic Supercapacitor Utilizing Metal-Organic Coordination Polymer with Multi-Redox Feature. Macromol Rapid Commun 2025; 46:e2400741. [PMID: 39614875 DOI: 10.1002/marc.202400741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Indexed: 02/07/2025]
Abstract
Electrochromic supercapacitors, which indicate energy states through optical color changes, are gaining significant attention for their potential in energy saving and recycling. In this study, a novel metal-organic coordination polymer (DTPB-MCP) is successfully synthesized using an N,N'-diphenyl-1,4-phenylenediamine (DTPB)-functionalized phenanthroline ligand. The resulting DTPB-MCP film demonstrated desirable electrochromic performance in both the visible light (ΔT:77.6% at 730 nm) and near-infrared (ΔT: 49.2% at 1410 nm) regions, as well as decent energy-storage capabilities (16.4 mF cm- 2 at 0.1 mA cm- 2), attributed to the presence of multiple redox centers. Furthermore, a hybrid electrochromic supercapacitor is also developed by combining DTPB-MCP with V₂O₅ (DTPB-MCP//V₂O₅), showcasing a significant optical contrast (47.6% at 750 nm and 14.5% at 1420 nm), an acceptable capacitance of 11.5 mF cm- 2 with good rate performance, and impressive cycling stability (maintaining 81% of capacitance after 2750 charging/discharging cycles). In addition, >60% of electric energy can be reused to drive small household appliances during the bleaching process. The design principles outlined in this study offer valuable insights into the development of high-performance dual-band electrochromic energy-storage materials, highlighting their potential applications in energy recovery and reuse.
Collapse
Affiliation(s)
- Bing Cong
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Yuqi Wu
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Mingjuan Zhou
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaogang Zhao
- Key Laboratory of High Performance Plastics (Jilin University), Ministry of Education, National & Local Joint Engineering Laboratory for Synthesis Technology of High Performance Polymer, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Danming Chao
- College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
2
|
Bian P, Yang H, Zhang L, Liu Z, Qiao G, Han Y, Jiao T. Fabrication and Photovoltaic Conversion Performances of Imidazolyl and Fumaric Acid Composite Langmuir-Blodgett Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18642-18651. [PMID: 39171787 DOI: 10.1021/acs.langmuir.4c02199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Novel organic small molecule structures have received increasing attention in the preparation of multifunctional thin film materials and have become the subject of research in many cutting-edge directions. In this work, imidazolyl and transbutylene glycolic acid molecules and dye molecules were designed and prepared as composite films by supramolecular self-assembly in the LB technique, and their morphological features and spectral properties were analyzed. The results showed that the prepared LB films presented different aggregation states. In addition, their photoelectrochemical properties, on ITO sheets were tested, all of which showed good optoelectronic properties, and their binding energies, structure optimization, and electrostatic potentials were theoretically calculated by DFT simulations, which proved that the prepared films have good optoelectronic properties, and have the potential to become optoelectronic multifunctional ultrathin film devices.
Collapse
Affiliation(s)
- Pengfei Bian
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Huiqing Yang
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Lexin Zhang
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Zhiwei Liu
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Guiying Qiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| | - Yong Han
- School of Electrical Engineering, Yanshan University, Qinhuangdao 066004, China
| | - Tifeng Jiao
- State Key Laboratory of Metastable Materials Science and Technology, Hebei Key Laboratory of Applied Chemistry, Hebei Key Laboratory of Nano-biotechnology, Hebei Key Laboratory of Heavy Metal Deep-Remediation in Water and Resource Reuse, Yanshan University, Qinhuangdao 066004, China
| |
Collapse
|
3
|
Self-adaptive Polymer Reactor Made of Flytrap-Inspired Catalytic Bi-layers, Capable of Single-Tandem-Single Triple-Shift Catalytic Ability. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-021-02191-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
4
|
Peng ZZ, Xu SY, Li WZ, Li L, Wang XQ, Wang W. Self-assembly of berberine and a boron cluster for antibacterial regulation. NEW J CHEM 2022. [DOI: 10.1039/d2nj00578f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
B12H122− and BBR can quickly form rod-shaped particles in aqueous solution with enhanced reactive oxygen species (ROS) generation ability.
Collapse
Affiliation(s)
- Zi-Ze Peng
- College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Shi-Yuan Xu
- College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Wen-Zhen Li
- College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Lingling Li
- College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Xiao-Qiang Wang
- College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Wenjing Wang
- College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
5
|
Ho TE, Datta A, Lee HM. Proton-conducting metal–organic frameworks with linkers containing anthracenyl and sulfonate groups. CrystEngComm 2022. [DOI: 10.1039/d2ce00747a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Co(dia)1.5(Hsip)(H2O)·H2O (1) and Zn2(μ-OH)(dia)2(sip)·2H2O (2) were prepared from the same set of ligand precursors. They exhibited bnn and dia topologies, respectively. Factors that contributed to the higher proton conductivity of 1 were presented.
Collapse
Affiliation(s)
- Tsai-En Ho
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Amitabha Datta
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| | - Hon Man Lee
- Department of Chemistry, National Changhua University of Education, Changhua 500, Taiwan
| |
Collapse
|
6
|
Kobayashi A, Imada SI, Yao Y, Nagao Y, Kubota Y, Yoshida M, Kato M. Halide Replacement Effect on Proton Conductivity and Vapochromic Luminescence of Pt(II) Complexes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Shin-ichiro Imada
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Yuze Yao
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Yuki Nagao
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahidai, Nomi, Ishikawa 923-1292, Japan
| | - Yuto Kubota
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masaki Yoshida
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
| | - Masako Kato
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan
- Department of Applied Chemistry for Environment, School of Biological and Environmental Sciences, Kwansei Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| |
Collapse
|
7
|
Rajah D, Pfrunder MC, Chong BSK, Ireland AR, Etchells IM, Moore EG. Sensitised lanthanide luminescence using a Ru II polypyridyl functionalised dipicolinic acid chelate. Dalton Trans 2021; 50:7400-7408. [PMID: 33969860 DOI: 10.1039/d1dt00982f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visible light absorbing [RuII(tpy)2]2+-type chromophore appended with a dipicolinic acid LnIII chelator has been prepared and complexed with several differing lanthanide cations to form the corresponding heterobimetallic d-f assemblies. The subseqent solution speciation analysed by 1H NMR spectroscopy revealed an unexpected decrease in the LnIII chelate complex stability, in particular for the 1 : 3 complex, when compared to the parent dipicolinic acid. As a result, the desired Ln(ML)3 complexes could not be isolated, and the 1 : 1 LnIII-ML complexes were instead characterised and investigated using steady state absorption and emission spectroscopy. Sensitised NIR emission from the YbIII, NdIII and ErIII complexes was observed upon 1MLCT excitation of the RuII based metalloligand in the visible region at ca. 485 nm. Investigations using transient absorption spectroscopy revealed essentially quantitative intersystem crossing to form the 3MLCT excited state, as expected, which then acts as the energy donor for the metalloligand based antennae effect, facilitating sensitisation efficiencies of 4.8, 17.0 and 37.4% respectively for the YbIII, ErIII and NdIII cations.
Collapse
Affiliation(s)
- Divya Rajah
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Michael C Pfrunder
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Bowie S K Chong
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Alexander R Ireland
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Isaac M Etchells
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| | - Evan G Moore
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD 4072, Australia.
| |
Collapse
|
8
|
Shankar R, Jakhar E, Dubey A, Chauhan P, Tiwari PK, Basu S. Studies on the Genesis and Proton Conductivity of Imidazole-Based Linear and Open-Framework Zinc Phosphites. Inorg Chem 2021; 60:6569-6575. [PMID: 33861061 DOI: 10.1021/acs.inorgchem.1c00372] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Three new zinc phosphites, [HIm]2[Zn3(HPO3)4] (1), [Zn2(HPO3)2Im2] (2), and [Zn(HPO3)Im] (3) (Im = imidazole), have been synthesized from the hydro/solvothermal reaction of zinc acetate, dimethyl phosphite, and imidazole by varying the temperature and solvent of the reaction medium. The structure of 1 is built from vertex-sharing of four HPO3-capped Zn3P3 units and adopts an open framework with 12-ring channels stabilized by HIm cations via N-H···O hydrogen bonds. For 2, the inorganic skeleton is comprised of alternating ZnO4 and HPO3 tetrahedra, while the coordinatively associated ZnN2O2 fragments occupy the 12-ring hexagonal channels. Compound 3 adopts a ladder-type one-dimensional structure and exhibits N-H···O hydrogen-bonding interactions to afford a supramolecular assembly. A plausible rationale on the genesis of 1-3 has been put forth by reacting the preformed inorganic zinc phosphites Zn{OP(O)(OMe)H}2 or [Zn2(HPO3)2(H2O)4]·H2O with imidazole as the structure-directing ligand. Alternating-current impedance measurements reveal that 1 and 3 exhibit proton conductivities on the order of 10-3-10-4 S cm-1 between 25 and 100 °C under 35 and 77% relative humidity in repeated impedance cycles (Ea = 0.22-0.35 eV). On the contrary, the conduction property is completely impaired in 2 under similar conditions.
Collapse
Affiliation(s)
- Ravi Shankar
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Ekta Jakhar
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Archishmati Dubey
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Priyanka Chauhan
- Department of Chemistry, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Pankaj Kr Tiwari
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| | - Suddhasatwa Basu
- Department of Chemical Engineering, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
9
|
Kobayashi A, Imada SI, Wang D, Nagao Y, Yoshida M, Kato M. Cooperative phenomenon of vapochromism and proton conduction of luminescent Pt(ii) complexes for the visualisation of proton conductivity. Faraday Discuss 2021; 225:184-196. [PMID: 33094299 DOI: 10.1039/d0fd00001a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The luminescent and proton conductive Pt(ii) complex [PtCl(tpy-o-py)]Cl and its HCl adduct [PtCl(tpy-o-pyH)]Cl2 (o-Pt and o-Pt·HCl, respectively; tpy-o-py = 2,2':6',2''-terpyridine-6',2'''-pyridine) were synthesised and their crystal structures, vapochromic behaviour, and proton conduction, were investigated and compared to those of the para isomers [PtCl(tpy-p-py)]Cl and [PtCl(tpy-p-pyH)]Cl2 (p-Pt and p-Pt·HCl, respectively; tpy-p-py = 2,2':6',2''-terpyridine-4',4'''-pyridine). X-ray structure analysis revealed that the intermolecular metallophilic (PtPt) interaction was negligible in o-Pt but effective in o-Pt·HCl. Reversible transformation between o-Pt and o-Pt·HCl coupled with significant colour and luminescence changes was achieved by four different external stimuli, namely: exposure of o-Pt to humid HCl gas to form o-Pt·HCl, heating, exposure to MeOH vapour, and finally drying in air to regenerate the original o-Pt. The intraligand π-π* orange emission observed for o-Pt exhibited negligible dependence on the relative humidity (RH). Conversely, o-Pt·HCl exhibited red metal-metal-to-ligand charge-transfer (MMLCT) phosphorescence at 725 nm, originating from effective intermolecular Pt-Pt interactions, and interesting vapochromic behaviour that was dependent on the RH. Notably, o-Pt·HCl presented higher conductivity than the p-Pt·HCl isomer at RH < 80%. This trend was reversed at RH values > 80%, probably owing to the second water-adsorption-induced transformation of p-Pt·HCl. The cooperative phenomenon between the proton conduction and vapochromic behaviour observed for both o-Pt·HCl and p-Pt·HCl should allow the visualisation of the proton-conducting pathway, without the need for a bulk electrode, via the absorption and emission colours at both macroscopic and microscopic levels.
Collapse
Affiliation(s)
- Atsushi Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, North-10 West-8, Kita-ku, Sapporo, Hokkaido 060-0810, Japan.
| | | | | | | | | | | |
Collapse
|
10
|
S L V Narayana Y, Yoshida T, Bera MK, Mondal S, Higuchi M. Ni(II)-Based Metallosupramolecular Polymer with Carboxylic Acid Groups: A Stable Platform for Smooth Imidazole Loading and the Anhydrous Proton Channel Formation. ACS OMEGA 2020; 5:14796-14804. [PMID: 32596617 PMCID: PMC7315567 DOI: 10.1021/acsomega.0c01735] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/25/2020] [Indexed: 06/11/2023]
Abstract
The Ni(II)-based metallosupramolecular polymer with carboxylic acid groups (polyNi) was synthesized via a 1:1 complexation of Ni(II) salt with (4,4'-(9,9-dihexyl-9H-fluorene-2,7-diyl)bis(pyridine-2,6-dicarboxylic acid) for the first time. The divalent state of Ni(II) in the polymer was confirmed by the X-ray absorption fine structure analysis. Smooth loading of imidazole molecules into polyNi proceeded with the help of the carboxylic acid groups to form the imidazole-loaded polyNi (polyNi-Im). Thermogravimetric analysis of polyNi-Im revealed that approximately three imidazole molecules were incorporated per repeating unit of polyNi. The Fourier transform infrared spectrum of polyNi-Im showed a new peak at 3219 cm-1, which shows an ∼73 cm-1 enhancement to -N-H of pristine imidazole. The peak suggests the formation of an imidazolium cation in the polymer. Powder X-ray diffraction indicated no degradation of the polymer structure during the imidazole loading because the diffraction pattern of polyNi-Im was almost the same as that of polyNi except for the presence of peaks corresponding to the imidazole molecules. Interestingly, the scanning electron microscopy measurement showed a large morphological change to uniform spherical particles by loading imidazole to the polymer. PolyNi-Im exhibited good proton conductivity (1.05 × 10-2 mS/cm) at a high temperature (120 °C), which is around 7 orders of magnitude higher than that of pristine polyNi because of the proton conduction pathway formation along the polymer chains by the incorporated imidazole molecules.
Collapse
Affiliation(s)
- Yemineni S L V Narayana
- Electronic Functional Macromolecules
Group, National Institute for Materials
Science (NIMS), Tsukuba 305-0044, Japan
| | - Takefumi Yoshida
- Electronic Functional Macromolecules
Group, National Institute for Materials
Science (NIMS), Tsukuba 305-0044, Japan
| | - Manas Kumar Bera
- Electronic Functional Macromolecules
Group, National Institute for Materials
Science (NIMS), Tsukuba 305-0044, Japan
| | - Sanjoy Mondal
- Electronic Functional Macromolecules
Group, National Institute for Materials
Science (NIMS), Tsukuba 305-0044, Japan
| | - Masayoshi Higuchi
- Electronic Functional Macromolecules
Group, National Institute for Materials
Science (NIMS), Tsukuba 305-0044, Japan
| |
Collapse
|
11
|
Bai Z, Liu S, Chen P, Cheng G, Wu G, Liu Y. Enhanced proton conduction of imidazole localized in one-dimensional Ni-metal-organic framework nanofibers. NANOTECHNOLOGY 2020; 31:125702. [PMID: 31783393 DOI: 10.1088/1361-6528/ab5d5e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal-organic frameworks (MOFs) show possibilities to be potential candidates for proton exchange membranes (PEMs). However, the poor flexibility and processability of MOFs due to their crystalline nature limit their applications significantly. An efficient approach to overcome this limitation is to combine MOFs with polymers. In this work, novel lightweight and flexible Ni-MOFs/polyacrylonitrile nanofibers were fabricated by electrospinning. The nanofibers consisted of one-dimensional proton conduction channels for imidazole and show enhanced proton conductivity. A proton conductivity of 6.04 × 10-5 Scm-1 was achieved at 363 K and 90% RH. Furthermore, the proton transport dynamics of the fibers were investigated using the AC impedance technique.
Collapse
Affiliation(s)
- Zhongxiong Bai
- School of Physical Sciences, Guizhou University, Guiyang 550025, People's Republic of China
| | | | | | | | | | | |
Collapse
|
12
|
Zhou SF, Hao BB, Lin T, Zhang CX, Wang QL. A dual-functional MOF for high proton conduction and sensitive detection of ascorbic acid. Dalton Trans 2020; 49:14490-14496. [DOI: 10.1039/d0dt02834g] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
A new Eu-MOF detects AA with turn off fluorescence and the proton conductivity of the Im@Eu-MOF is ten times higher than that of the En-MOF.
Collapse
Affiliation(s)
- Shu-Fang Zhou
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Biao-Biao Hao
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Tian Lin
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
| | - Chen-Xi Zhang
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Tianjin 300457
- P. R. China
- Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization
| | - Qing-Lun Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- Nan kai University
- Tianjin 300071
- P. R. China
- College of Chemistry
| |
Collapse
|
13
|
Chakraborty P, Das B, Pal P, Datta S, Bera S, Dastidar P. A supramolecular hydrogel derived from a simple organic salt capable of proton conduction. Chem Commun (Camb) 2020; 56:5251-5254. [DOI: 10.1039/d0cc01467b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The supramolecular hydrogel of a simple organic salt derived from a primary amine and a mono-sulfonic acid displayed a proton conductivity of 1.2 × 10−4 S cm−1.
Collapse
Affiliation(s)
- Poulami Chakraborty
- School of Chemical Sciences
- Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S.C. Mullick Road
- Jadavpur
- Kolkata-700032
- India
| | - Bikash Das
- School of Physical Sciences
- IACS
- Kolkata
- India
| | - Pulak Pal
- School of Physical Sciences
- IACS
- Kolkata
- India
| | | | - Sourabh Bera
- School of Chemical Sciences
- Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S.C. Mullick Road
- Jadavpur
- Kolkata-700032
- India
| | - Parthasarathi Dastidar
- School of Chemical Sciences
- Indian Association for the Cultivation of Science (IACS), 2A and 2B Raja S.C. Mullick Road
- Jadavpur
- Kolkata-700032
- India
| |
Collapse
|
14
|
A Hierarchically Porous Carbazole‐Containing Polymer from [
p
‐(4‐N‐carbazole)‐C
6
H
4
SiO
1.5
]
8
to Load Imidazole for Efficient Proton Conductivity over a Wide Temperature Range. ChemistrySelect 2019. [DOI: 10.1002/slct.201902965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
15
|
Potentially helical imidazole-containing conjugated oligomers: synthesis, optical properties, and conformation. Polym J 2018. [DOI: 10.1038/s41428-018-0146-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
16
|
Metallo-Supramolecular Polymers Made of Cobalt and 3,4-Propylenedioxythiophene-Bisterpyridine Complexes for Electrochromic Applications. Macromol Res 2018. [DOI: 10.1007/s13233-018-6107-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
17
|
Xia D, Wang L, Lv X, Chao J, Wei X, Wang P. Dual-Responsive [2]Pseudorotaxane On the basis of a pH-Sensitive Pillar[5]arene and Its Application in the Fabrication of Metallosupramolecular Polypseudorotaxane. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00354] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Danyu Xia
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China
| | - Liyun Wang
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China
| | - Xiaoqing Lv
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China
| | - Jianbin Chao
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China
| | - Xuehong Wei
- Scientific Instrument Center, Shanxi University, Taiyuan 030006, P. R. China
| | - Pi Wang
- Ministry of Education Key Laboratory of Interface Science and Engineering in Advanced Materials, Research Center of Advanced Materials Science and Technology, Taiyuan University of Technology, Taiyuan 030024, P.R. China
| |
Collapse
|
18
|
Yang SL, Sun PP, Yuan YY, Zhang CX, Wang QL. High proton conduction behavior in 12-connected 3D porous lanthanide–organic frameworks and their polymer composites. CrystEngComm 2018. [DOI: 10.1039/c8ce00476e] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two novel 12-connected 3D porous lanthanide–organic frameworks have been synthesized by the reaction of bipyridine-carboxylate ligand bpydbH2 and lanthanide metal ions. Both of them show a high proton conduction behavior as well as their composite membranes.
Collapse
Affiliation(s)
- Shuai-Liang Yang
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Key Laboratory of Marine Resources and Chemistry
- Tianjin 300457
- P. R. China
| | - Pei-Pei Sun
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Key Laboratory of Marine Resources and Chemistry
- Tianjin 300457
- P. R. China
| | - Yue-Ying Yuan
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Key Laboratory of Marine Resources and Chemistry
- Tianjin 300457
- P. R. China
| | - Chen-Xi Zhang
- College of Chemical Engineering and Materials Science
- Tianjin University of Science and Technology
- Key Laboratory of Marine Resources and Chemistry
- Tianjin 300457
- P. R. China
| | - Qing-Lun Wang
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)
- College of Chemistry
- Nankai University
- Tianjin 300071
- P. R. China
| |
Collapse
|
19
|
Narayana YSV, Chakraborty C, Rana U, Ninomiya Y, Yoshida T, Higuchi M. Modulation of a coordination structure in a europium(iii)-based metallo-supramolecular polymer for high proton conduction. RSC Adv 2018; 8:37193-37199. [PMID: 35557791 PMCID: PMC9089287 DOI: 10.1039/c8ra07405d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 10/29/2018] [Indexed: 11/21/2022] Open
Abstract
Developing high proton conducting solid materials is significant in the field of fuel cells. A europium(iii)-based metallo-supramolecular polymer with uncoordinated carboxylic acids (PolyEu-H) was successfully synthesized by modifying the synthesis conditions. The proton conductivity was enhanced with increasing the relative humidity (RH) from 30 to 95% RH. PolyEu-H showed about 104 times higher proton conductivity than the polymer with coordinated carboxylic acids (PolyEu) and about 400 times higher than the polymer without carboxylic acids (PolyEu-2). The proton conductivity of PolyEu-H reached 4.45 × 10−2 S cm−1 at 95% RH and 25 °C and 5.6 × 10−2 S cm−1 at 75 °C. The activation energy, Ea was ultralow (0.04 eV), which indicates proton conduction based on the Grotthuss mechanism. The results indicate that efficient proton conduction occurs through proton channels formed by moisture in PolyEu-H. Developing high proton conducting solid materials is significant in the field of fuel cells. We firstly synthesized europium(iii)-based metallo-supramolecular polymer with uncoordinated carboxylic acids (PolyEu-H), for high proton conduction.![]()
Collapse
Affiliation(s)
- Yemineni S. L. V. Narayana
- Electronic Functional Macromolecules Group
- National Institute for Material Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Chanchal Chakraborty
- Electronic Functional Macromolecules Group
- National Institute for Material Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Utpal Rana
- Electronic Functional Macromolecules Group
- National Institute for Material Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Yoshikazu Ninomiya
- Electronic Functional Macromolecules Group
- National Institute for Material Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Takefumi Yoshida
- Electronic Functional Macromolecules Group
- National Institute for Material Science (NIMS)
- Tsukuba 305-0044
- Japan
| | - Masayoshi Higuchi
- Electronic Functional Macromolecules Group
- National Institute for Material Science (NIMS)
- Tsukuba 305-0044
- Japan
| |
Collapse
|
20
|
Dey B, Debnath P, Chakraborty S, Deb B, Bhattacharjee D, Majumdar S, Hussain SA. Study of Compression-Induced Supramolecular Nanostructures of an Imidazole Derivative by Langmuir-Blodgett Technique. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8383-8394. [PMID: 28791869 DOI: 10.1021/acs.langmuir.7b01750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this communication, we report the design and synthesis as well as the supramolecular assembly behavior of a 2,4,5-triaryl imidazole derivative (compound 1) at the air-water interface and in thin films using Langmuir-Blodgett (LB) technique. The main idea for such a chemical structure is that the long alkyl chain and N-H of the imidazole core may help to form supramolecular architecture through the hydrophobic-hydrophobic interaction and hydrogen bonding, respectively. Accordingly, the interfacial behavior as well as morphology of 1 in thin films were studied through a series of characterization methods such as surface pressure-area (π-A) isotherm, hysteresis analysis, ultraviolet-visible (UV-vis) absorption and steady-state fluorescence spectroscopies, Fourier transform infrared, X-ray diffraction, Brewster angle microscopy (BAM), and atomic force microscopy (AFM) measurements, and so forth. Pressure-area isotherm is an indication toward the formation of supramolecular nanostructures instead of an ideal monolayer at the air-water interface. This has been confirmed by the hysteresis analysis and BAM measurement at the air-water interface. AFM images of 1 in the LB monolayer exhibits the formation of supramolecular nanowires as well as nanorods. By controlling different film-forming parameters, it becomes possible to manipulate these nanostructures. With the passage of time, the nanowires come close to each other and become straight. Similarly, nanorods come close to each other and form bundles of several rods in the LB films. H-bonding, J-aggregation, as well as compression during film formation might play a key role in the formation of such nanostructures. Electrical switching behavior of compound 1 was also observed because of the presence of an electron donor-acceptor system in 1. This type of organic switching behavior may be promising for next-generation organic electronics.
Collapse
Affiliation(s)
| | | | - Santanu Chakraborty
- Department of Physics, NIT Agartala , Jiraniya, Agartala 799046, West Tripura, Tripura, India
| | | | | | | | | |
Collapse
|
21
|
Qu F, Yang B, He Q, Bu W. Synthesis of platinum(ii) complex end functionalized star polymers: luminescence enhancements and unimolecular micelles in solvents of weakened quality. Polym Chem 2017. [DOI: 10.1039/c7py00993c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Platinum(ii) complex end functionalized star polymers have been synthesized by reacting K2PtCl4 with star ligands ended with 2,6-bis(benzimidazol-2′-yl)pyridine. They show luminescence enhancements and form unimolecular micelles in solvents of weakened quality.
Collapse
Affiliation(s)
- Fang Qu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou City
| | - Beihong Yang
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou City
| | - Qun He
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou City
| | - Weifeng Bu
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province
- State Key Laboratory of Applied Organic Chemistry
- and College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou City
| |
Collapse
|