1
|
Zou S, Zhou S, Li C, Zhu F, Wang Y, Yan D. Bipolar Solid-Solution Hosts for Efficient Crystalline Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8084-8094. [PMID: 39841998 DOI: 10.1021/acsami.4c20265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Crystalline organic semiconductors, recognized for their highly ordered structures and high carrier mobility, have emerged as a focal point in the field of high-performance optoelectronic devices. Nevertheless, the intrinsic unipolar properties, characterized by imbalanced hole and electron transport capabilities, have continuously represented a significant challenge in the advancement of high-performance crystalline thin-film organic light-emitting diodes (C-OLEDs). Here, a bipolar solid-solution thin film with a maintained crystal structure has been fabricated using 2-(4-(9H-carbazol-9-yl)phenyl)-1(3,5-difluorophenyl)-1H-phenanthro [9,10-d]imidazole (2FPPICz) and 4-(1-(3,5-difluorophenyl)-1H-imidazo[4,5-f][1,10]phenanthrolin-2-yl)-N,N-diphenylaniline (2Fn) via a weak epitaxial growth (WEG) process, exhibiting nearly equivalent hole and electron mobilities (10-2-10-1 cm2 V-1 s-1). We have demonstrated a blue C-OLED that achieves high efficiency while maintaining low-efficiency roll-off, employing the bipolar solid-solution thin film as the crystalline host matrix and 4,4'-bis[2-(4-(N,N-diphenylamino)phenyl)vinyl]biphenyl (DPAVBi) as the doped emitter. This device achieves a maximum external quantum efficiency (EQE) of 4.6% with Commission Internationale de L'Eclairage (CIE) coordinates lying around (0.15, 0.22). Among crystalline light-emitting devices utilizing carrier-balanced transport, this EQE stands as one of the highest recorded values. Notable advancements include enhanced photon emission capabilities, optimized driving voltage (4.0 V @ 1000 cd m-2), and a lower series resistance Joule heat loss ratio (11.8% @ 1000 cd m-2). This research marks a significant stride in modulating the inherent electrical properties of crystalline host materials, offering a novel and efficacious strategy for the advancement of high-performance crystalline OLEDs.
Collapse
Affiliation(s)
- Shuyu Zou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Shuang Zhou
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chenglong Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Feng Zhu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, P. R. China
| | - Donghang Yan
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
2
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
3
|
Nowak-Król A, Geppert PT, Naveen KR. Boron-containing helicenes as new generation of chiral materials: opportunities and challenges of leaving the flatland. Chem Sci 2024; 15:7408-7440. [PMID: 38784742 PMCID: PMC11110153 DOI: 10.1039/d4sc01083c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 04/16/2024] [Indexed: 05/25/2024] Open
Abstract
Increased interest in chiral functional dyes has stimulated activity in the field of boron-containing helicenes over the past few years. Despite the fact that the introduction of boron endows π-conjugated scaffolds with attractive electronic and optical properties, boron helicenes have long remained underdeveloped compared to other helicenes containing main group elements. The main reason was the lack of reliable synthetic protocols to access these scaffolds. The construction of boron helicenes proceeds against steric strain, and thus the methods developed for planar systems have sometimes proven ineffective in their synthesis. Recent advances in the general boron chemistry and the synthesis of strained derivatives have opened the way to a wide variety of boron-containing helicenes. Although the number of helically chiral derivatives is still limited, these compounds are currently at the forefront of emissive materials for circularly-polarized organic light-emitting diodes (CP-OLEDs). Yet the design of good emitters is not a trivial task. In this perspective, we discuss a number of requirements that must be met to provide an excellent emissive material. These include chemical and configurational stability, emission quantum yields, luminescence dissymmetry factors, and color purity. Understanding of these parameters and some structure-property relationships should aid in the rational design of superior boron helicenes. We also present the main achievements in their synthesis and point out niches in this area, e.g. stereoselective synthesis, necessary to accelerate the development of this fascinating class of compounds and to realize their potential in OLED devices and in other fields.
Collapse
Affiliation(s)
- Agnieszka Nowak-Król
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Patrick T Geppert
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg Am Hubland 97074 Würzburg Germany
| | - Kenkera Rayappa Naveen
- Institut für Anorganische Chemie and Institute for Sustainable Chemistry & Catalysis with Boron, Universität Würzburg Am Hubland 97074 Würzburg Germany
| |
Collapse
|
4
|
Diesing S, Zhang L, Zysman-Colman E, Samuel IDW. A figure of merit for efficiency roll-off in TADF-based organic LEDs. Nature 2024; 627:747-753. [PMID: 38538942 PMCID: PMC10972759 DOI: 10.1038/s41586-024-07149-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 02/01/2024] [Indexed: 04/01/2024]
Abstract
Organic light-emitting diodes (OLEDs) are a revolutionary light-emitting display technology that has been successfully commercialized in mobile phones and televisions1,2. The injected charges form both singlet and triplet excitons, and for high efficiency it is important to enable triplets as well as singlets to emit light. At present, materials that harvest triplets by thermally activated delayed fluorescence (TADF) are a very active field of research as an alternative to phosphorescent emitters that usually use heavy metal atoms3,4. Although excellent progress has been made, in most TADF OLEDs there is a severe decrease of efficiency as the drive current is increased, known as efficiency roll-off. So far, much of the literature suggests that efficiency roll-off should be reduced by minimizing the energy difference between singlet and triplet excited states (ΔEST) to maximize the rate of conversion of triplets to singlets by means of reverse intersystem crossing (kRISC)5-20. We analyse the efficiency roll-off in a wide range of TADF OLEDs and find that neither of these parameters fully accounts for the reported efficiency roll-off. By considering the dynamic equilibrium between singlets and triplets in TADF materials, we propose a figure of merit for materials design to reduce efficiency roll-off and discuss its correlation with reported data of TADF OLEDs. Our new figure of merit will guide the design and development of TADF materials that can reduce efficiency roll-off. It will help improve the efficiency of TADF OLEDs at realistic display operating conditions and expand the use of TADF materials to applications that require high brightness, such as lighting, augmented reality and lasing.
Collapse
Affiliation(s)
- S Diesing
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
- Organic Semiconductor Centre, EaStCHEM, School of Chemistry, St Andrews, UK
| | - L Zhang
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK
- Organic Semiconductor Centre, EaStCHEM, School of Chemistry, St Andrews, UK
| | - E Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM, School of Chemistry, St Andrews, UK.
| | - I D W Samuel
- Organic Semiconductor Centre, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, UK.
| |
Collapse
|
5
|
Meng G, Zhou J, Han XS, Zhao W, Zhang Y, Li M, Chen CF, Zhang D, Duan L. B-N Covalent Bond Embedded Double Hetero-[n]helicenes for Pure Red Narrowband Circularly Polarized Electroluminescence with High Efficiency and Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307420. [PMID: 37697624 DOI: 10.1002/adma.202307420] [Citation(s) in RCA: 39] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/22/2023] [Indexed: 09/13/2023]
Abstract
Chiral B/N embedded multi-resonance (MR) emitters open a new paradigm of circularly polarized (CP) organic light-emitting diodes (OLEDs) owing to their unique narrowband spectra. However, pure-red CP-MR emitters and devices remain exclusive in literature. Herein, by introducing a B-N covalent bond to lower the electron-withdrawing ability of the para-positioned B-π-B motif, the first pair of pure-red double hetero-[n]helicenes (n = 6 and 7) CP-MR emitter peaking 617 nm with a small full-width at half-maximum of 38 nm and a high photoluminescence quantum yield of ≈100% in toluene is developed. The intense mirror-image CP light produced by the enantiomers is characterized by high photoluminescence dissymmetry factors (gPL ) of +1.40/-1.41 × 10-3 from their stable helicenes configuration. The corresponding devices using these enantiomers afford impressive CP electroluminescence dissymmetry factors (gEL ) of +1.91/-1.77 × 10-3 , maximum external quantum efficiencies of 36.6%/34.4% and Commission Internationale de I'Éclairage coordinates of (0.67, 0.33), exactly satisfying the red-color requirement specified by National Television Standards Committee (NTSC) standard. Notably a remarkable long LT95 (operational time to 95% of the initial luminance) of ≈400 h at an initial brightness of 10,000 cd m-2 is also observed for the same device, representing the most stable CP-OLED up to date.
Collapse
Affiliation(s)
- Guoyun Meng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jianping Zhou
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xu-Shuang Han
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Wenlong Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yuewei Zhang
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Meng Li
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Chuan-Feng Chen
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Molecular Recognition and Function, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Dongdong Zhang
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Lian Duan
- Key Laboratory of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
6
|
Tankelevičiūtė E, Samuel IDW, Zysman-Colman E. The Blue Problem: OLED Stability and Degradation Mechanisms. J Phys Chem Lett 2024; 15:1034-1047. [PMID: 38259039 PMCID: PMC10839906 DOI: 10.1021/acs.jpclett.3c03317] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 01/11/2024] [Accepted: 01/16/2024] [Indexed: 01/24/2024]
Abstract
OLED technology has revolutionized the display industry and is promising for lighting. Despite its maturity, there remain outstanding device and materials challenges to address. Particularly, achieving stable and highly efficient blue OLEDs is still proving to be difficult; the vast array of degradation mechanisms at play, coupled with the precise balance of device parameters needed for blue high-performance OLEDs, creates a unique set of challenges in the quest for a suitably stable yet high-performance device. Here, we discuss recent progress in the understanding of device degradation pathways and provide an overview of possible strategies to increase device lifetimes without a significant efficiency trade-off. Only careful consideration of all variables that go into OLED development, from the choice of materials to a deep understanding of which degradation mechanisms need to be suppressed for the particular structure, can lead to a meaningful positive change toward commercializable blue devices.
Collapse
Affiliation(s)
- Eglė Tankelevičiūtė
- Organic
Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, U.K., KY16 9ST
- Organic
Semiconductor Centre, School of Physics & Astronomy, University of St Andrews, St Andrews, U.K., KY16 9SS
| | - Ifor D. W. Samuel
- Organic
Semiconductor Centre, School of Physics & Astronomy, University of St Andrews, St Andrews, U.K., KY16 9SS
| | - Eli Zysman-Colman
- Organic
Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, U.K., KY16 9ST
| |
Collapse
|
7
|
Chen YS, Lin IH, Huang HY, Liu SW, Hung WY, Wong KT. Exciplex-forming cohost systems with 2,7-dicyanofluorene acceptors for high efficiency red and deep-red OLEDs. Sci Rep 2024; 14:2458. [PMID: 38291066 PMCID: PMC10827723 DOI: 10.1038/s41598-024-52680-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 01/21/2024] [Indexed: 02/01/2024] Open
Abstract
Two 2,7-dicyaonfluorene-based molecules 27-DCN and 27-tDCN are utilized as acceptors (A) to combine with hexaphenylbenzene-centered donors (D) TATT and DDT-HPB for probing the exciplex formation. The photophysical characteristics reveal that the steric hindered 27-tDCN not only can increase the distance of D and A, resulting in a hypsochromic emission, but also dilute the concentration of triplet excitons to suppress non-radiative process. The 27-tDCN-based exciplex-forming blends exhibit better photoluminescence quantum yield (PLQY) as compared to those of 27-DCN-based pairs. In consequence, among these D:A blends, the device employing DDT-HPB:27-tDCN blend as the emissiom layer (EML) exhibits the best EQE of 3.0% with electroluminescence (EL) λmax of 542 nm. To further utilize the exciton electrically generated in exciplex-forming system, two D-A-D-configurated fluorescence emitter DTPNT and DTPNBT are doped into the DDT-HPB:27-tDCN blend. The nice spectral overlap ensures fast and efficient Förster energy transfer (FRET) process between the exciplex-forming host and the fluorescent quests. The red device adopting DDT-HPB:27-tDCN:10 wt% DTPNT as the EML gives EL λmax of 660 nm and maximum external quantum efficiency (EQEmax) of 5.8%, while EL λmax of 685 nm and EQE of 5.0% for the EML of DDT-HPB:27-tDCN:10 wt% DTPNBT. This work manifests a potential strategy to achieve high efficiency red and deep red OLED devices by incorporating the highly fluorescent emitters to extract the excitons generated by the exciplex-forming blend with bulky acceptor for suppressing non-radiative process.
Collapse
Affiliation(s)
- Yi-Sheng Chen
- Organic Electronic Research Center, Ming Chi University of Technology, New Taipei City, 24031, Taiwan
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan
| | - I-Hung Lin
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Hsin-Yuan Huang
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 20224, Taiwan
| | - Shun-Wei Liu
- Organic Electronic Research Center, Ming Chi University of Technology, New Taipei City, 24031, Taiwan
| | - Wen-Yi Hung
- Department of Optoelectronics and Materials Technology, National Taiwan Ocean University, Keelung, 20224, Taiwan.
| | - Ken-Tsung Wong
- Department of Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
- Institute of Atomic and Molecular Science Academia Sinica, Taipei, 10617, Taiwan.
| |
Collapse
|
8
|
Woo JY, Park MH, Jeong SH, Kim YH, Kim B, Lee TW, Han TH. Advances in Solution-Processed OLEDs and their Prospects for Use in Displays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207454. [PMID: 36300804 DOI: 10.1002/adma.202207454] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/05/2022] [Indexed: 06/16/2023]
Abstract
This review outlines problems and progress in development of solution-processed organic light-emitting diodes (SOLEDs) in industry and academia. Solution processing has several advantages such as low consumption of materials, low-cost processing, and large-area manufacturing. However, use of a solution process entails complications, such as the need for solvent resistivity and solution-processable materials, and yields SOLEDs that have limited luminous efficiency, severe roll-off characteristics, and short lifetime compared to OLEDs fabricated using thermal evaporation. These demerits impede production of practical SOLED displays. This review outlines the industrial demands for commercial SOLEDs and the current status of SOLED development in industries and academia, and presents research guidelines for the development of SOLEDs that have high efficiency, long lifetime, and good processability to achieve commercialization.
Collapse
Affiliation(s)
- Joo Yoon Woo
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Min-Ho Park
- Department of Organic Materials and Fiber Engineering, Soongsil University, 369 Sangdo-Ro, Dongjak-Gu, Seoul, 06978, Republic of Korea
| | - Su-Hun Jeong
- Future Technology Research Center, LG Chem, Ltd., 30, Magokjunang 10-ro, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Young-Hoon Kim
- Department of Energy Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Byungjae Kim
- Future Technology Research Center, LG Chem, Ltd., 30, Magokjunang 10-ro, Gangseo-gu, Seoul, 07794, Republic of Korea
| | - Tae-Woo Lee
- Department of Materials Science and Engineering, School of Chemical and Biological Engineering, Institute of Engineering Research, Research Institute of Advanced Materials, Soft Foundry, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Tae-Hee Han
- Division of Materials Science and Engineering, Hanyang University, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| |
Collapse
|
9
|
Wang L, Miao J, Zhang Y, Wu C, Huang H, Wang X, Yang C. Discrete Mononuclear Platinum(II) Complexes Realize High-Performance Red Phosphorescent OLEDs with EQEs of up to 31.8% and Superb Device Stability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303066. [PMID: 37327208 DOI: 10.1002/adma.202303066] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 06/14/2023] [Indexed: 06/18/2023]
Abstract
Designing mononuclear platinum(II) complexes that do not rely on intermolecular aggregation for high-performance red organic light-emitting diodes remains a formidable challenge. In this work, three robust red-emitting Pt(II) complexes are created by utilizing a rigid 4-coordination configuration, where the ligands are formed by linking electron-donor of triphenylamine (TPA) moieties with electron-acceptor of pyridine, isoquinoline, and/or δ-carboline units. The thermal stability, electrochemical, and photophysical properties of the complexes are thoroughly examined. The complexes display efficient red phosphorescence, with high photoluminescence quantum yields and short excited lifetimes. The OLEDs dope with these complexes exhibit high maximum external quantum efficiencies (EQEs) of up to 31.8% with minimal efficiency roll-off even at high brightness. Significantly, the devices demonstrate exceptional long operational lifetime, with a T90 lifetime of over 14000 h at initial luminance of 1000 cd m-2 , indicating the potential for these complexes to be practically utilizes.
Collapse
Affiliation(s)
- Lian Wang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Youming Zhang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
- Shenzhen Institute of Information Technology, Shenzhen, 518172, P. R. China
| | - Chengjun Wu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Hong Huang
- Shenzhen Institute of Information Technology, Shenzhen, 518172, P. R. China
| | - Xinzhong Wang
- Shenzhen Institute of Information Technology, Shenzhen, 518172, P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| |
Collapse
|
10
|
Saito Y, Sasabe H, Tsuneyama H, Abe S, Matsuya M, Kawano T, Kori Y, Hanayama T, Kido J. Quinoline-Modified Phenanthroline Electron-Transporters as n-Type Exciplex Partners for Highly Efficient and Stable Deep-Red OLEDs. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2023. [DOI: 10.1246/bcsj.20220297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Yu Saito
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Hisahiro Sasabe
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Research Center of Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Hisaki Tsuneyama
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Shoki Abe
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Misaki Matsuya
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Tomoya Kawano
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yuma Kori
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Takanori Hanayama
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Junji Kido
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Research Center of Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
11
|
Park JW, Cho KH, Rhee YM. Mechanism of Ir(ppy) 3 Guest Exciton Formation with the Exciplex-Forming TCTA:TPBI Cohost within a Phosphorescent Organic Light-Emitting Diode Environment. Int J Mol Sci 2022; 23:5940. [PMID: 35682617 PMCID: PMC9180450 DOI: 10.3390/ijms23115940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/04/2022] Open
Abstract
Cohosts based on hole transporting and electron transporting materials often act as exciplexes in the form of intermolecular charge transfer complexes. Indeed, exciplex-forming cohosts have been widely developed as the host materials for efficient phosphorescent organic light-emitting diodes (OLEDs). In host-guest systems of OLEDs, the guest can be excited by two competing mechanisms, namely, excitation energy transfer (EET) and charge transfer (CT). Experimentally, it has been reported that the EET mechanism is dominant and the excitons are primarily formed in the host first and then transferred to the guest in phosphorescent OLEDs based on exciplex-forming cohosts. With this, exciplex-forming cohosts are widely employed for avoiding the formation of trapped charge carriers in the phosphorescent guest. However, theoretical studies are still lacking toward elucidating the relative importance between EET and CT processes in exciting the guest molecules in such systems. Here, we obtain the kinetics of guest excitation processes in a few trimer model systems consisting of an exciplex-forming cohost pair and a phosphorescent guest. We adopt the Förster resonance energy transfer (FRET) rate constants for the electronic transitions between excited states toward solving kinetic master equations. The input parameters for calculating the FRET rate constants are obtained from density functional theory (DFT) and time-dependent DFT. The results show that while the EET mechanism is important, the CT mechanism may still play a significant role in guest excitations. In fact, the relative importance of CT over EET depends strongly on the location of the guest molecule relative to the cohost pair. This is understandable as both the coupling for EET and the interaction energy for CT are strongly influenced by the geometric constraints. Understanding the energy transfer pathways from the exciplex state of cohost to the emissive state of guest may provide insights for improving exciplex-forming materials adopted in OLEDs.
Collapse
Affiliation(s)
| | | | - Young Min Rhee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea; (J.W.P.); (K.H.C.)
| |
Collapse
|
12
|
Zeng X, Wang X, Zhang Y, Meng G, Wei J, Liu Z, Jia X, Li G, Duan L, Zhang D. Nitrogen-Embedded Multi-Resonance Heteroaromatics with Prolonged Homogeneous Hexatomic Rings. Angew Chem Int Ed Engl 2022; 61:e202117181. [PMID: 35092123 DOI: 10.1002/anie.202117181] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Indexed: 01/15/2023]
Abstract
Nitrogen-containing polycyclic heteroaromatics have exhibited fascinating multi-resonance (MR) characteristics for efficient narrowband emission, but strategies to bathochromic shift their emissions while maintaining the narrow bandwidths remain exclusive. Here, homogeneous hexatomic rings are introduced into nitrogen-embedded MR skeletons to prolong the π-conjugation length for low-energy electronic transitions while retaining the non-bonding character of the remaining parts. The proof-of-the-concept emitters exhibit near unity photoluminescence quantum yields with peaks at 598 nm and 620 nm and small full-width-at-half-maximums of 28 nm and 31 nm, respectively. Optimal organic light-emitting diodes exhibit a high external quantum efficiency of 18.2 %, negligible efficiency roll-off, and ultra-long lifetime with negligible degradation at an initial luminance of 10 000 cd m-2 after 94 hours.
Collapse
Affiliation(s)
- Xuan Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiang Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuewei Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Guoyun Meng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jinbei Wei
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ziyang Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xiaoqin Jia
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Guomeng Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
13
|
Shao J, Chen C, Zhao W, Zhang E, Ma W, Sun Y, Chen P, Sheng R. Recent Advances of Interface Exciplex in Organic Light-Emitting Diodes. MICROMACHINES 2022; 13:298. [PMID: 35208422 PMCID: PMC8875368 DOI: 10.3390/mi13020298] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 02/06/2023]
Abstract
The interface exciplex system is a promising technology for reaching organic light-emitting diodes (OLEDs) with low turn-on voltages, high efficiencies and long lifetimes due to its unique virtue of barrier-free charge transport, well-confined recombination region, and thermally activated delayed fluorescence characteristics. In this review, we firstly illustrate the mechanism frameworks and superiorities of the interface exciplex system. We then summarize the primary applications of interface exciplex systems fabricated by doping and doping-free technologies. The operation mechanisms of these OLEDs are emphasized briefly. In addition, various novel strategies for further improving the performances of interface exciplex-based devices are demonstrated. We believe this review will give a promising perspective and attract researchers to further develop this technology in the future.
Collapse
Affiliation(s)
- Jianhua Shao
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (J.S.); (C.C.); (W.Z.); (E.Z.); (W.M.); (Y.S.)
| | - Cong Chen
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (J.S.); (C.C.); (W.Z.); (E.Z.); (W.M.); (Y.S.)
| | - Wencheng Zhao
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (J.S.); (C.C.); (W.Z.); (E.Z.); (W.M.); (Y.S.)
| | - Erdong Zhang
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (J.S.); (C.C.); (W.Z.); (E.Z.); (W.M.); (Y.S.)
| | - Wenjie Ma
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (J.S.); (C.C.); (W.Z.); (E.Z.); (W.M.); (Y.S.)
| | - Yuanping Sun
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (J.S.); (C.C.); (W.Z.); (E.Z.); (W.M.); (Y.S.)
| | - Ping Chen
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (J.S.); (C.C.); (W.Z.); (E.Z.); (W.M.); (Y.S.)
- State Key Laboratory on Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, China
| | - Ren Sheng
- Institute of Physics and Electronic Information, Yantai University, Yantai 264005, China; (J.S.); (C.C.); (W.Z.); (E.Z.); (W.M.); (Y.S.)
| |
Collapse
|
14
|
Zeng X, Wang X, Zhang Y, Meng G, Wei J, Liu Z, Jia X, Li G, Duan L, Zhang D. Nitrogen‐Embedded Multi‐Resonance Heteroaromatics with Prolonged Homogeneous Hexatomic Rings. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xuan Zeng
- Tsinghua University Department of Chemistry 100084 Beijing CHINA
| | - Xiang Wang
- Tsinghua University Department of Chemistry 100084 Beijing CHINA
| | - Yuewei Zhang
- Tsinghua University Department of Chemistry 100084 Beijing CHINA
| | - Guoyun Meng
- Tsinghua University Department of Chemistry 100084 Beijing CHINA
| | - Jinbei Wei
- Chinese Academy of Sciences Institute of Chemistry 100190 Beijing CHINA
| | - Ziyang Liu
- Tsinghua University Department of Chemistry 100084 Beijing CHINA
| | - Xiaoqin Jia
- Tsinghua University Department of Chemistry 100084 Beijing CHINA
| | - Guomeng Li
- Tsinghua University Department of Chemistry 100084 Beijing CHINA
| | - Lian Duan
- Tsinghua University Chemistry HeTian Building Dept. of Chemistry, Tsinghua University, Beijing, P. R. China 100084 Beijing CHINA
| | - Dongdong Zhang
- Tsinghua University Department of Chemistry 100084 Beijing CHINA
| |
Collapse
|
15
|
Zhang M, Zhang SW, Wu C, Li W, Wu Y, Yang C, Meng Z, Xu W, Tang MC, Xie R, Meng H, Wei G. Fine Emission Tuning from Near-Ultraviolet to Saturated Blue with Rationally Designed Carbene-Based [3 + 2 + 1] Iridium(III) Complexes. ACS APPLIED MATERIALS & INTERFACES 2022; 14:1546-1556. [PMID: 34978413 DOI: 10.1021/acsami.1c19127] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We designed and synthesized a new class of six phosphorescent [3 + 2 + 1] iridium(III) complexes [(pbib)Ir(C^C)CN] bearing a tridentate 1,3-bis(1-butylimidazolin-2-ylidene) phenyl N-heterocyclic carbene (NHC)-based pincer ligand (pbib), bidentate imidazole-based NHC ligands (C^C), and a monodentate cyano group and investigated their photophysical, electrochemical, and thermal stabilities and electroluminescent properties. The extended π-conjugation of the imidazole-based C^C ligand is found to be the key to fine-tune the emission energies from ultraviolet blue (λ = 378 nm) to saturated blue (λ = 482 nm), as shown by electrochemical and photophysical studies, which is also revealed by the density functional theory (DFT) and time-dependent DFT calculations. Vacuum-deposited organic light-emitting diode devices have been fabricated with these newly synthesized emitters and exhibited the best external quantum efficiency of 6.4% and Commission International de L'Éclairage (CIE) coordinates of (0.163, 0.096), where the CIE y is very similar to the National Television System Committee standard blue CIE (x, y) coordinates of (0.149, 0.085). These results indicate that the novel [3 + 2 + 1] coordinated iridium(III) complexes [(pbib)Ir(C^C)CN], having a saturated blue emission, not only could alleviate the photodegradation of the emitters when compared to [(pbib)Ir(pmi)CN] but also provide new design strategies of saturated-blue-emitting iridium(III) complexes.
Collapse
Affiliation(s)
- Meng Zhang
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
- Institute of Materials Science, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Si-Wei Zhang
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
- Institute of Materials Science, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Chengcheng Wu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
- Institute of Materials Science, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Wansi Li
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
- Institute of Materials Science, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yuan Wu
- PURI Materials, Shenzhen 518133, China
| | - Chen Yang
- PURI Materials, Shenzhen 518133, China
| | - Zhimin Meng
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Wenzhan Xu
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
- Institute of Materials Science, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Man-Chung Tang
- Institute of Materials Science, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Rongjun Xie
- College of Materials, Xiamen University, Xiamen 361005, China
| | - Hong Meng
- School of Advanced Materials, Peking University, Shenzhen Graduate School, Peking University, Shenzhen 518055, China
| | - Guodan Wei
- Tsinghua-Berkeley Shenzhen Institute (TBSI), Tsinghua University, Shenzhen 518055, China
- Institute of Materials Science, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
16
|
|
17
|
Sun S, Si J, Gao Y, Xu R, Du Y, Zhang T, Li H, Yao X, Ai Q, Cai P, Cai M, Tang Y, Rabchinskii M, Brunkov P, Ye Z, Dai X, Liu Z. Decoupling the Positive and Negative Aging Processes of Perovskite Light-Emitting Diodes Using a Thin Interlayer of Ionic Liquid. J Phys Chem Lett 2021; 12:7783-7791. [PMID: 34374551 DOI: 10.1021/acs.jpclett.1c02024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
A positive aging phenomenon, that is, enhancement of the electroluminescence performance at the beginning of electrical aging, is commonly observed for the state-of-the-art perovskite light-emitting diodes (PeLEDs). The origins of positive aging could fundamentally interfere with those of the operational deterioration processes of PeLEDs (namely negative aging), bringing difficulty in analyzing the degradation mechanisms. This work decouples the positive and negative aging processes of PeLEDs by inserting a thin ionic liquid interlayer between the hole-injection layer and the perovskite layer. This interlayer inhibits ions migration by passivating the halogen vacancies of perovskite films and suppresses interfacial exciton quenching, enabling us to decouple the positive and negative aging processes of PeLEDs while increasing the device efficiency. Inserting an ionic liquid interlayer is also demonstrated to be effective for iodide-based PeLEDs and applicable with the use of other ionic liquids. Our work provides an ideal system for fundamental studies on the degradation mechanisms of PeLEDs.
Collapse
Affiliation(s)
- Shuo Sun
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, P. R. China
| | - Junjie Si
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, P. R. China
| | - Yun Gao
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Rui Xu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, P. R. China
| | - Yihang Du
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, P. R. China
| | - Taotao Zhang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, P. R. China
| | - Hongjin Li
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xin Yao
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, P. R. China
| | - Qi Ai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, P. R. China
| | - Peiqing Cai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, P. R. China
| | - Muzhi Cai
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, P. R. China
| | - Ying Tang
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, P. R. China
| | - Maxim Rabchinskii
- Ioffe Institute, 26 Politekhnicheskaya, St Petersburg, 194021, Russian Federation
| | - Pavel Brunkov
- Ioffe Institute, 26 Politekhnicheskaya, St Petersburg, 194021, Russian Federation
| | - Zhizhen Ye
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
| | - Xingliang Dai
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, P. R. China
- Wenzhou Key Laboratory of Novel Optoelectronic and Nano Materials, Institute of Wenzhou, Zhejiang University, Wenzhou 325006, P. R. China
| | - Zugang Liu
- College of Optical and Electronic Technology, China Jiliang University, Hangzhou 310018, P. R. China
| |
Collapse
|
18
|
Zhang Y, Zhang D, Huang T, Gillett AJ, Liu Y, Hu D, Cui L, Bin Z, Li G, Wei J, Duan L. Multi-Resonance Deep-Red Emitters with Shallow Potential-Energy Surfaces to Surpass Energy-Gap Law*. Angew Chem Int Ed Engl 2021; 60:20498-20503. [PMID: 34319641 DOI: 10.1002/anie.202107848] [Citation(s) in RCA: 184] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Indexed: 12/24/2022]
Abstract
Efficient organic emitters in the deep-red region are rare due to the "energy gap law". Herein, multiple boron (B)- and nitrogen (N)-atoms embedded polycyclic heteroaromatics featuring hybridized π-bonding/ non-bonding molecular orbitals are constructed, providing a way to overcome the above luminescent boundary. The introduction of B-phenyl-B and N-phenyl-N structures enhances the electronic coupling of those para-positioned atoms, forming restricted π-bonds on the phenyl-core for delocalized excited states and thus a narrow energy gap. The mutually ortho-positioned B- and N-atoms also induce a multi-resonance effect on the peripheral skeleton for the non-bonding orbitals, creating shallow potential energy surfaces to eliminate the high-frequency vibrational quenching. The corresponding deep-red emitters with peaks at 662 and 692 nm exhibit narrow full-width at half-maximums of 38 nm, high radiative decay rates of ca. 108 s-1 , ≈100 % photo-luminescence quantum yields and record-high maximum external quantum efficiencies of ca. 28 % in a normal planar organic light-emitting diode structure, simultaneously.
Collapse
Affiliation(s)
- Yuewei Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Tianyu Huang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Alexander J Gillett
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Yang Liu
- Key Lab of Green Chemistry and Technology of Ministry of Education, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Deping Hu
- School of Environment, South China Normal University, Guangzhou, 510006, P. R. China
| | - Linsong Cui
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Zhengyang Bin
- Key Lab of Green Chemistry and Technology of Ministry of Education, Sichuan University, 29 Wangjiang Road, Chengdu, 610064, P. R. China
| | - Guomeng Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Jinbei Wei
- Beijing National Larboratory for molecular Sciences, Insititute of Chemeistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China.,Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
19
|
Zhang Y, Zhang D, Huang T, Gillett AJ, Liu Y, Hu D, Cui L, Bin Z, Li G, Wei J, Duan L. Multi‐Resonance Deep‐Red Emitters with Shallow Potential‐Energy Surfaces to Surpass Energy‐Gap Law**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107848] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yuewei Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
- Center for Flexible Electronics Technology Tsinghua University Beijing 100084 P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Tianyu Huang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Alexander J. Gillett
- Cavendish Laboratory University of Cambridge JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Yang Liu
- Key Lab of Green Chemistry and Technology of Ministry of Education Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Deping Hu
- School of Environment South China Normal University Guangzhou 510006 P. R. China
| | - Linsong Cui
- Cavendish Laboratory University of Cambridge JJ Thomson Avenue Cambridge CB3 0HE UK
| | - Zhengyang Bin
- Key Lab of Green Chemistry and Technology of Ministry of Education Sichuan University 29 Wangjiang Road Chengdu 610064 P. R. China
| | - Guomeng Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
| | - Jinbei Wei
- Beijing National Larboratory for molecular Sciences Insititute of Chemeistry Chinese Academy of Sciences Beijing 100190 P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 P. R. China
- Center for Flexible Electronics Technology Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
20
|
Choi KH, Kim JM, Chung WJ, Lee JY. Effects of Substitution Position of Carbazole-Dibenzofuran Based High Triplet Energy Hosts to Device Stability of Blue Phosphorescent Organic Light-Emitting Diodes. Molecules 2021; 26:molecules26092804. [PMID: 34068572 PMCID: PMC8126063 DOI: 10.3390/molecules26092804] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 04/28/2021] [Accepted: 05/08/2021] [Indexed: 11/17/2022] Open
Abstract
High triplet energy hosts were developed through the modification of the substitution position of carbazole units. Two carbazole-dibenzofuran-derived compounds, 9,9′-(dibenzo[b,d]furan-2,6-diyl)bis(9H-carbazole) (26CzDBF) and 4,6-di(9H-carbazol-9-yl)dibenzo[b,d]furan (46CzDBF), were synthesized for achieving high triplet energy hosts. In comparison with the reported hole transport type host, 2,8-di(9H-carbazol-9-yl)dibenzo[b,d]furan (28CzDBF), 26CzDBF and 46CzDBF maintained high triplet energy over 2.95 eV. The device performances of the hosts were evaluated with electron transport type host, 2-phenyl-4, 6-bis(3-(triphenylsilyl)phenyl)-1,3,5-triazine (mSiTrz), to comprise a mixed host system. The deep blue phosphorescent device of 26CzDBF:mSiTrz with [[5-(1,1-dimethylethyl)-3-phenyl-1H-imidazo[4,5-b]pyrazin-1-yl-2(3H)-ylidene]-1,2-phenylene]bis[[6-(1,1-dimethylethyl)-3-phenyl-1H-imidazo[4,5-b]pyrazin-1-yl-2(3H)-ylidene]-1,2-phenylene]iridium (Ir(cb)3) dopant exhibited high external quantum efficiency of 22.9% with a color coordinate of (0.14, 0.16) and device lifetime of 1400 h at 100 cd m−2. The device lifetime was extended by 75% compared to the device lifetime of 28CzDBF:mSiTrz (800 h). These results demonstrated that the asymmetric and symmetric substitution of carbazole can make differences in the device performance of the carbazole- and dibenzofuran- derived hosts.
Collapse
|
21
|
Maruyama T, Sasabe H, Watanabe Y, Owada T, Yoshioka R, Saito Y, Kawano T, Kido J. Dibenzothiophene/Terpyridine Conjugated Asymmetric Electron-Transporters for High-efficiency and Long-life Green Phosphorescent OLEDs. CHEM LETT 2021. [DOI: 10.1246/cl.200803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Tomohiro Maruyama
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Hisahiro Sasabe
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yuichiro Watanabe
- Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Tsukasa Owada
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Ryo Yoshioka
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yu Saito
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Tomoya Kawano
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Junji Kido
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
22
|
Lee EG, Yang CY, Chung WJ, Lee JY. Decoration of 1,3,5-triazine backbone structure with dibenzofuran and triphenylsilyl blocking groups for high stability n-type host in deep blue phosphorescent organic light-emitting diodes. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2020.12.033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Zhang C, Lu Y, Liu Z, Zhang Y, Wang X, Zhang D, Duan L. A π-D and π-A Exciplex-Forming Host for High-Efficiency and Long-Lifetime Single-Emissive-Layer Fluorescent White Organic Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2004040. [PMID: 32893390 DOI: 10.1002/adma.202004040] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Exciplex-forming hosts with thermally activated delayed fluorescence (TADF) provide a viable opportunity to unlock the full potential of the yet-to-be improved power efficiencies (PEs) and stabilities of all-fluorescent white organic light-emitting diodes (WOLEDs), but this, however, is hindered by the lack of stable blue exciplexes. Here, an advanced exciplex system is proposed by incorporating bipolar charge-transport π-spacers into both the electron-donor (D) and the electron-accepter (A) to increase their distance for hypsochromic-shifted emission while maintaining the superior transporting ability. By using spirofluorene as the π-spacer, 3,3'-bicarbazole as the D-unit, and 2,4,6-triphenyl-1,3,5-triazine as the A-unit, a π-D and π-A exciplex with sky-blue emission and fast reverse intersystem crossing process is thereof constructed. Combining this exciplex-forming host, a blue TADF-sensitizer, and a yellow conventional fluorescent dopant in a single-emissive-layer, the fabricated warm-white-emissive device simultaneously exhibits a low driving voltage of 3.08 V, an external quantum efficiency of 21.4%, and a remarkable T80 (time to 80% of the initial luminance) of >8200 h at 1000 cd m-2 , accompanied by a new benchmark PE of 69.6 lm W-1 among all-fluorescent WOLEDs.
Collapse
Affiliation(s)
- Chen Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yang Lu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ziyang Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuewei Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xuewen Wang
- Foshan Xianhu Laboratory of the Advanced Energy Science and Technology Guangdong Laboratory, Xianhu Hydrogen Valley, Foshan, 528200, P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
24
|
Yu F, Liu Q, Sheng Y, Chen Y, Zhang Y, Sun Z, Zhang C, Xia Q, Li H, Hang XC, Huang W. Solution-Processable Csp 3-Annulated Hosts for High-Efficiency Deep Red Phosphorescent OLEDs. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33960-33967. [PMID: 32628441 DOI: 10.1021/acsami.0c04875] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this report, a solution-processable cohost system incorporating N,N'-di(naphtalene-1-yl)-N,N'-diphenylbenzidine (NPB) and Csp3-annulated phenylquinoline derivatives, including spiro[indeno[1,2-b]quinoline-11,8'-indolo[3,2,1-de]acridine] (IAIQ), 10-phenyl-10H-spiro[acridine-9,11'-indeno[1,2-b]quinoline] (PAIQ) and 3,3'-(11H-indeno[1,2-b]quinoline-11,11-diyl)bis(N-phenyl-N-(m-tolyl)aniline) (m-TPA-DPIQ), is developed for highly efficient saturated red phosphorescent organic light emitting diodes (OLEDs). IAIQ, PAIQ, and m-TPA-DPIQ, designed with the increase of molecular flexibility, are systematically investigated. Solution-processable devices based on the efficient phosphorescent emitter bis[2-(3,5-dimethylphenyl)isoquinolinato](2,8-dimethyl-4,6-nonanedionato)Iridium [Ir(mpiq)2divm] are successfully fabricated, and give electroluminescent peaks at 634-636 nm with Commission Internationale de L'Eclairage coordinates of (0.70, 0.30). Under optimized conditions, the devices incorporating IAIQ, PAIQ, and m-TPA-DPIQ exhibit high external quantum efficiency with the maximum value at 25.1%, 23.4%, and 23.3%, respectively, and all exceeding 18% at the luminance of 1000 cd/m2. In application, the supersaturated red devices with excellent performance could facilitate the development of wet-made displays. The newly developed Csp3-annulated host materials with their excitonic properties also showoff the tactic to construct cohost system for high-quality phosphorescent OLEDs.
Collapse
Affiliation(s)
- Feiling Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Qian Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yongjian Sheng
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yumeng Chen
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Yin Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Zhengyi Sun
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Cong Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Qinghua Xia
- Yanshan Branch of Beijing Research Institute of Chemical Industry, Sinopec, 15 Fenghuangting Road, Fangshan District, Beijing 102500, China
| | - Hongbo Li
- Yanshan Branch of Beijing Research Institute of Chemical Industry, Sinopec, 15 Fenghuangting Road, Fangshan District, Beijing 102500, China
| | - Xiao-Chun Hang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an 710072, China
| |
Collapse
|
25
|
Tang Y, Xie G, Yin X, Gao Y, Ding J, Yang C. Unravelling Electroplex Emission from Long-Range Charge Transfer Based on a Phosphorescent Dendrimer as the Electron Donor. J Phys Chem Lett 2020; 11:5255-5262. [PMID: 32519541 DOI: 10.1021/acs.jpclett.0c01482] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We report the exceptionally long-range charge-transfer-induced electroplex between a neat dendrimer emitter and the adjacent electron-transporting layer (ETL). Interestingly, the electroplex exists even in the dilute emitter with a sufficiently low concentration (0.5 wt %) in an inert host. The iridium dendrimer with the carbazole-based dendritic ligands exhibits bright emission, peaking at 536 nm, with a full width at half-maximum (fwhm) of 77 nm in the devices without any ETLs. Unexpectedly, once the ETLs are inserted, a significantly broadened emission (fwhm = 115 nm) is detectable under electroluminescence. Taking advantage of the broad interfacial electroplex emission, a hybrid warm-white device was demonstrated by combining a sky-blue thermally activated delayed fluorescence emitter, exhibiting a maximum external quantum efficiency of 13.7%, which is an order of magnitude higher than that of any other reported works based on the electroplex white organic light-emitting diodes.
Collapse
Affiliation(s)
- Yang Tang
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Guohua Xie
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xiaojun Yin
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Yuhan Gao
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
| | - Junqiao Ding
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, People's Republic of China
| | - Chuluo Yang
- Sauvage Center for Molecular Sciences, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University, Wuhan 430072, People's Republic of China
- College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
26
|
Conformation-dependent degradation of thermally activated delayed fluorescence materials bearing cycloamino donors. Commun Chem 2020; 3:53. [PMID: 36703478 PMCID: PMC9814945 DOI: 10.1038/s42004-020-0303-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 04/09/2020] [Indexed: 01/29/2023] Open
Abstract
Organic light-emitting devices (OLEDs) containing organic molecules that exhibit thermally activated delayed fluorescence (TADF) produce high efficiencies. One challenge to the commercialization of the TADF OLEDs that remains to be addressed is their operational stability. Here we investigate the molecular factors that govern the stability of various archetypal TADF molecules based on a cycloamino donor-acceptor platform. Our results reveal that the intrinsic stability depends sensitively on the identity of the cycloamino donors in the TADF compounds. The rates and photochemical quantum yields of the degradation are positively correlated with the operation lifetimes of the devices. Our research shows that the stability is governed by the conformeric heterogeneity between the pseudo-axial and pseudo-equatorial forms of the cycloamino donor. Spontaneous bond dissociation occurs in the former (i.e., the pseudo-axial form), but the cleavage is disfavored in the pseudo-equatorial form. These findings provide valuable insights into the design of stable TADF molecules.
Collapse
|
27
|
Kim DS, Lee KH, Lee JY. Novel Positive Polaron Stabilizing n-Type Host for High Efficiency and Long Lifetime in Blue Phosphorescent Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2020; 12:19737-19745. [PMID: 32302089 DOI: 10.1021/acsami.0c02260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Four electron transport type hosts withstanding the positive polaron stress were synthesized using the benzo[4,5]thieno[3,2-d]pyrimidine core to develop high triplet energy hosts. Four benzo[4,5]thieno[3,2-d]pyrimidine-derived hosts, 4-(9H-carbazol-9-yl)-2-(3-(triphenylsilyl)phenyl)benzo[4,5]thieno[3,2-d]pyrimidine (CzBTPmSi), 2,4-di(9H-carbazol-9-yl)benzo[4,5]thieno[3,2-d]pyrimidine (2CzBTP), 2-(9H-carbazol-9-yl)-4-(3-(triphenylsilyl)phenyl)benzo[4,5]thieno[3,2-d]pyrimidine (mSiBTPCz), and 2,4-bis(3-(triphenylsilyl)phenyl)benzo[4,5]thieno[3,2-d]pyrimidine (2mSiBTP), were designed to have either the tetraphenylsilyl blocking group or the hole transport type carbazole group. The CzBTPmSi and mSiBTPCz were prepared to study the effect of substitution positions of tetraphenylsilyl and carbazole on the device performances, and the 2CzBTP and 2mSiBTP were synthesized as reference materials. In the device application, the four hosts were used as electron transport type hosts mixed with a hole transport type 3,3'-di(9H-carbazol-9-yl)-1,1'-biphenyl (mCBP) host in the mixed host. Among the four mixed hosts, the mCBP/CzBTPmSi mixed host showed an external quantum efficiency of 23.9% and a device lifetime over 4000 h at 100 cd m-2 in the blue phosphorescent organic light-emitting diodes.
Collapse
Affiliation(s)
- Do Sik Kim
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 440-746, Korea
| | - Kyung Hyung Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 440-746, Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066, Seobu-ro, Jangan-gu, Suwon, Gyeonggi 440-746, Korea
| |
Collapse
|
28
|
Lee S, Han WS. Cyclometalated Ir(iii) complexes towards blue-emissive dopant for organic light-emitting diodes: fundamentals of photophysics and designing strategies. Inorg Chem Front 2020. [DOI: 10.1039/d0qi00001a] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The fundamental photophysics of cyclometalated Ir(iii) complexes and surveys design strategies for efficient blue phosphorescent Ir(iii) complexes are summarised.
Collapse
Affiliation(s)
- Sunhee Lee
- Department of Chemistry
- Seoul Women's University
- Seoul 01797
- Republic of Korea
| | - Won-Sik Han
- Department of Chemistry
- Seoul Women's University
- Seoul 01797
- Republic of Korea
| |
Collapse
|
29
|
Ying S, Pang P, Zhang S, Sun Q, Dai Y, Qiao X, Yang D, Chen J, Ma D. Superior Efficiency and Low-Efficiency Roll-Off White Organic Light-Emitting Diodes Based on Multiple Exciplexes as Hosts Matched to Phosphor Emitters. ACS APPLIED MATERIALS & INTERFACES 2019; 11:31078-31086. [PMID: 31381286 DOI: 10.1021/acsami.9b09429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Based on exciplexes as hosts, the monochromatic organic light-emitting diodes (OLEDs) have achieved high power and external quantum efficiencies. However, the high-quality white OLEDs (WOLEDs) with high color rendering index (CRI) have the unsatisfactory efficiencies at high luminance, particularly in terms of power efficiency (PE), resulting in high energy consumption. Here, a new design concept using multiple exciplexes as hosts to match different phosphors has been demonstrated to develop high-performance WOLEDs. It can be seen that the resulting WOLEDs work at a low turn-on voltage of 2.3 V and exhibit the large forward-viewing PE and external quantum efficiency (EQE) of 79 lm W-1 and 22.5%, respectively, without light out-coupling techniques. Significantly, the PE and EQE still remain 48.0 lm W-1 and 21.4% at 1000 cd m-2, showing extremely low efficiency roll-off. The CRI is as high as 81. The keys to success are the selection of the different exciplex hosts matched to different phosphors and the reasonable arrangement of emissive layers, which are beneficial to regulate the exciton distribution and reduce the energy losses.
Collapse
Affiliation(s)
- Shian Ying
- Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , People's Republic of China
| | - Peiyuan Pang
- Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , People's Republic of China
| | - Shuai Zhang
- Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , People's Republic of China
| | - Qian Sun
- Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , People's Republic of China
| | - Yanfeng Dai
- Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , People's Republic of China
| | - Xianfeng Qiao
- Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , People's Republic of China
| | - Dezhi Yang
- Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , People's Republic of China
| | - Jiangshan Chen
- Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , People's Republic of China
| | - Dongge Ma
- Center for Aggregation-Induced Emission, Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices , South China University of Technology , Guangzhou 510640 , People's Republic of China
| |
Collapse
|
30
|
Jeon SK, Lee HL, Yook KS, Lee JY. Recent Progress of the Lifetime of Organic Light-Emitting Diodes Based on Thermally Activated Delayed Fluorescent Material. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1803524. [PMID: 30907464 DOI: 10.1002/adma.201803524] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 01/14/2019] [Indexed: 05/22/2023]
Abstract
Recently, the external quantum efficiency and lifetime of organic light-emitting diodes (OLEDs) have been dramatically upgraded due to development of organic materials and device structure. In particular, an intramolecular or intermolecular complex based on thermally activated delayed fluorescent (TADF) materials has greatly contributed to improving OLED device performance. Although high external quantum efficiency has been the main objective of the development of TADF materials as hosts and emitters, recent interest has been directed towards the lifetime of TADF-material-based OLEDs. For the past several years, remarkable advances in the lifetime of phosphorescent and TADF OLEDs have been made using TADF materials as hosts or emitters in the emitting layer. Therefore, since TADF materials are useful as both hosts and emitters for a long lifetime, this work discusses the recent progress made in developing TADF materials for long-lifetime OLEDs.
Collapse
Affiliation(s)
- Sang Kyu Jeon
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 446-740, South Korea
| | - Ha Lim Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 446-740, South Korea
| | - Kyoung Soo Yook
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 446-740, South Korea
| | - Jun Yeob Lee
- School of Chemical Engineering, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon-si, Gyeonggi-do, 446-740, South Korea
| |
Collapse
|
31
|
Gnanasekaran P, Yuan Y, Lee CS, Zhou X, Jen AKY, Chi Y. Realization of Highly Efficient Red Phosphorescence from Bis-Tridentate Iridium(III) Phosphors. Inorg Chem 2019; 58:10944-10954. [PMID: 31365235 DOI: 10.1021/acs.inorgchem.9b01383] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Bis-tridentate Ir(III) metal complexes bring forth interesting photophysical properties, among which the orthogonal arranged, planar tridentate chelates could increase the emission efficiency due to the greater rigidity and, in the meantime, allow strong interligand stacking that could deteriorate the emission efficiency. We bypassed this hurdle by design of five bis-tridentate Ir(III) complexes (1-5), to which both of their monoanionic ancillary and dianionic chromophoric chelate were functionalized derivative of 2-pyrazolyl-6-phenylpyridine, i.e. pzpyphH2 parent chelate. Hence, addition of phenyl substituent to the pyrazolyl fragment of pzpyphH2 gave rise to the precursors of monoanionic chelate (A1H-A3H), on which the additional tert-butyl and/or methoxy groups were introduced at the selected positions for tuning their steric and electronic properties, while precursors of dianionic chelates was judiciously prepared with an isoquniolinyl central unit on pziqphH2 in giving the red-shifted emission (cf. L1H2 and L2H2). Factors affected their photophysical properties were discussed by theoretical methods based on DFT and TD-DFT calculation, confirming that the T1 excited state of all investigated Ir(III) complexes shows a mixed metal-to-ligand charge transfer (MLCT), intraligand charge transfer (ILCT), ligand-to-ligand charge transfer (LLCT), and ligand-centered (LC) transition character. In contrast, the poor quantum yield of 3 is due to the facilitation of the nonradiative decay in comparison to the radiative process. As for potential OLED applications, Ir(III) complex 2 gives superior performance with max. efficiencies of 28.17%, 41.25 cd·A-1 and 37.03 lm·W-1, CIEx,y = 0.63, 0.37 at 50 mA cm-2, and small efficiency roll-off.
Collapse
Affiliation(s)
- Premkumar Gnanasekaran
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , Hsinchu 30013 , Taiwan
| | - Yi Yuan
- Department of Materials Science and Engineering and Department of Chemistry , City University of Hong Kong , Kowloon , Hong Kong SAR.,Center of Super-Diamond and Advanced Films (COSDAF) , City University of Hong Kong , Kowloon , Hong Kong SAR
| | - Chun-Sing Lee
- Department of Materials Science and Engineering and Department of Chemistry , City University of Hong Kong , Kowloon , Hong Kong SAR.,Center of Super-Diamond and Advanced Films (COSDAF) , City University of Hong Kong , Kowloon , Hong Kong SAR
| | - Xiuwen Zhou
- School of Mathematics and Physics , The University of Queensland , Brisbane , Queensland 4072 , Australia
| | - Alex K-Y Jen
- Department of Materials Science and Engineering and Department of Chemistry , City University of Hong Kong , Kowloon , Hong Kong SAR
| | - Yun Chi
- Department of Chemistry and Frontier Research Center on Fundamental and Applied Sciences of Matters , National Tsing Hua University , Hsinchu 30013 , Taiwan.,Department of Materials Science and Engineering and Department of Chemistry , City University of Hong Kong , Kowloon , Hong Kong SAR
| |
Collapse
|
32
|
Kang YJ, Bail R, Lee CW, Chin BD. Inkjet Printing of Mixed-Host Emitting Layer for Electrophosphorescent Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2019; 11:21784-21794. [PMID: 31132238 DOI: 10.1021/acsami.9b04675] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
We have investigated the impact of the ink formulation on the properties of an inkjet-printed small molecular mixed host in a phosphorescent organic light-emitting diode (PhOLED). Host solubility, film roughness, and device efficiency improved by blending tris(4-carbazoyl-9-ylphenyl)amine (TCTA) with pyrido[3',2':4,5]furo[2,3- b]pyridine (3CzPFP). At a host ratio of 60:40 (TCTA/3CzPFP), the brightness increased by 33%, the efficiency roll-off at 1000 cd/m2 dropped to well below 10%, and the luminance half-lifetime (LT50) improved by 80% in comparison to the device with a single host (100% TCTA). When the optimized ink was deposited by inkjet printing, a maximum external quantum efficiency of 8.9% and a current efficiency of 28.8 cd/A were achieved at 1000 cd/m2 brightness. This amounted to around 84% of the efficiency of a spin-cast reference device. The obtained results provide a blueprint for designing enhanced PhOLEDs with inkjet-printed mixed hosts.
Collapse
Affiliation(s)
| | | | - Chil Won Lee
- Department of Chemistry , Dankook University , Cheonan 31116 , Korea
| | | |
Collapse
|
33
|
Watanabe T, Sasabe H, Owada T, Maruyama T, Watanabe Y, Katagiri H, Kido J. Chrysene-based Electron-transporters Realizing Highly Efficient and Stable Phosphorescent OLEDs. CHEM LETT 2019. [DOI: 10.1246/cl.180992] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Taiki Watanabe
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Hisahiro Sasabe
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Tsukasa Owada
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Tomohiro Maruyama
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Yuichiro Watanabe
- Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Hiroshi Katagiri
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| | - Junji Kido
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Research Center for Organic Electronics (ROEL), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
- Frontier Center for Organic Materials (FROM), Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata 992-8510, Japan
| |
Collapse
|
34
|
Shin H, Ha YH, Kim HG, Kim R, Kwon SK, Kim YH, Kim JJ. Controlling Horizontal Dipole Orientation and Emission Spectrum of Ir Complexes by Chemical Design of Ancillary Ligands for Efficient Deep-Blue Organic Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1808102. [PMID: 30972824 DOI: 10.1002/adma.201808102] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/13/2019] [Indexed: 06/09/2023]
Abstract
Deep-blue emitting Iridium (Ir) complexes with horizontally oriented emitting dipoles are newly designed and synthesized through engineering of the ancillary ligand, where 2',6'-difluoro-4-(trimethylsilyl)-2,3'-bipyridine (dfpysipy) is used as the main ligand. Introduction of a trimethylsilyl group at the pyridine and a nitrogen at the difluoropyrido group increases the bandgap of the emitter, resulting in deep-blue emission. Addition of a methyl group (mpic) to a picolinate (pic) ancillary ligand or replacement of an acetate structure of pic with a perfluoromethyl-triazole structure (fptz) increases the horizontal component of the emitting dipoles in sequence of mpic (86%) > fptz (77%) > pic (74%). The organic light-emitting diode (OLED) using the Ir complex with the mpic ancillary ligand shows the highest external quantum efficiency (31.9%) among the reported blue OLEDs with a y-coordinate value lower than 0.2 in the 1931 Commission Internationale de L'Eclairage (CIE) chromaticity diagram.
Collapse
Affiliation(s)
- Hyun Shin
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Yeon Hee Ha
- Department of Chemistry and RIGET, Gyeongsang National University, Jinju, 52828, South Korea
| | - Hyun-Gu Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
| | - Ran Kim
- Department of Chemistry and RIGET, Gyeongsang National University, Jinju, 52828, South Korea
| | - Soon-Ki Kwon
- Department of Materials Engineering and Convergence Technology and ERI, Gyeongsang National University, Jinju, 52828, South Korea
| | - Yun-Hi Kim
- Department of Chemistry and RIGET, Gyeongsang National University, Jinju, 52828, South Korea
| | - Jang-Joo Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 08826, South Korea
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 08826, South Korea
| |
Collapse
|
35
|
Chapran M, Pander P, Vasylieva M, Wiosna-Salyga G, Ulanski J, Dias FB, Data P. Realizing 20% External Quantum Efficiency in Electroluminescence with Efficient Thermally Activated Delayed Fluorescence from an Exciplex. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13460-13471. [PMID: 30864778 DOI: 10.1021/acsami.8b18284] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The investigation of nondoped exciplex blends of 2,4,6-tris[3-(diphenylphosphinyl)phenyl]-1,3,5-triazine (PO-T2T), working as the one-electron acceptor molecule, with different electron donors is reported. The emissions of these exciplexes span from the blue to orange-red regions, showing clear contribution from thermally activated delayed fluorescence (TADF) and delayed fluorescence originated from nongeminate recombination of charge carriers created by the dissociation of optically generated exciplexes. We focus our studies on the properties of TADF in these systems, covering in particular the physical meaning of the different transient components observed in their luminescence decays. Our results unravel the intricate role of reverse intersystem crossing due to spin-orbit coupling and possibly also due to hyperfine interactions and internal conversion, which affect the efficiency of the TADF mechanism. Remarkable performances are obtained in prototype organic light-emitting diodes fabricated with some of these blends. Green exciplex blends, in particular, exhibited the current efficiency of 60 cd A-1, power efficiency of 71 lm W-1, and external quantum efficiency of 20%. We believe that our results will contribute significantly to highlight the potential advantages of intermolecular exciplexes in the area of organic light-emitting diodes.
Collapse
Affiliation(s)
- Marian Chapran
- Department of Molecular Physics , Lodz University of Technology , Zeromskiego 116 , 90-924 Lodz , Poland
| | - Piotr Pander
- Physics Department , Durham University , South Road, Durham DH1 3LE , United Kingdom
| | - Marharyta Vasylieva
- Faculty of Chemistry , Silesian University of Technology , M. Strzody 9 , 44-100 Gliwice , Poland
| | - Gabriela Wiosna-Salyga
- Department of Molecular Physics , Lodz University of Technology , Zeromskiego 116 , 90-924 Lodz , Poland
| | - Jacek Ulanski
- Department of Molecular Physics , Lodz University of Technology , Zeromskiego 116 , 90-924 Lodz , Poland
| | - Fernando B Dias
- Physics Department , Durham University , South Road, Durham DH1 3LE , United Kingdom
| | - Przemyslaw Data
- Physics Department , Durham University , South Road, Durham DH1 3LE , United Kingdom
- Faculty of Chemistry , Silesian University of Technology , M. Strzody 9 , 44-100 Gliwice , Poland
- Centre of Polymer and Carbon Materials , Polish Academy of Science , M. Curie-Sklodowskiej 34 , 41-819 Zabrze , Poland
| |
Collapse
|
36
|
Wang Z, Li M, Gan L, Cai X, Li B, Chen D, Su S. Predicting Operational Stability for Organic Light-Emitting Diodes with Exciplex Cohosts. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802246. [PMID: 30989033 PMCID: PMC6446740 DOI: 10.1002/advs.201802246] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/27/2019] [Indexed: 05/06/2023]
Abstract
Organic light-emitting diodes (OLEDs) employing exciplex cohosts have gained attractive interest due to the promising high efficiency, low driving voltage, and potential low cost in future solid-state lighting sources and full-color displays. However, their device lifetime is still the most challenging weakness and rarely studied, which is regarded as a time consuming and complicated work. Therefore, a simplified but effective and comprehensive approach is demonstrated to give prediction for the exciplex cohosts operating lifespan and analyze their possible degradation mechanisms by considering molecular dissociated activation energy with internal exciton dynamics correlations. As a consequence, strong chemical bond stability for the hole transport moieties and rapid reactive exciton relaxation have the intrinsic talent to access potentially long-lived exciplex cohosts, achieving an extended lifetime of 10169 h for the predicted long-lived exciplex cohost OLEDs. Degradation behaviors further confirm that the deteriorated source is attributed to the formation of exciton quenchers and hole traps from excited states and charged-excited states, respectively. The current findings establish a universal technique to screen the stable exciplex cohost candidates with economic time consumption and expenses.
Collapse
Affiliation(s)
- Zhiheng Wang
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyGuangzhou510640P. R. China
| | - Mengke Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyGuangzhou510640P. R. China
| | - Lin Gan
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyGuangzhou510640P. R. China
| | - Xinyi Cai
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyGuangzhou510640P. R. China
| | - Binbin Li
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyGuangzhou510640P. R. China
| | - Dongcheng Chen
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyGuangzhou510640P. R. China
| | - Shi‐Jian Su
- State Key Laboratory of Luminescent Materials and Devices and Institute of Polymer Optoelectronic Materials and DevicesSouth China University of TechnologyGuangzhou510640P. R. China
| |
Collapse
|
37
|
Ito T, Sasabe H, Nagai Y, Watanabe Y, Onuma N, Kido J. A Series of Dibenzofuran‐Based n‐Type Exciplex Host Partners Realizing High‐Efficiency and Stable Deep‐Red Phosphorescent OLEDs. Chemistry 2019; 25:7308-7314. [DOI: 10.1002/chem.201805907] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/08/2019] [Indexed: 11/08/2022]
Affiliation(s)
- Takashi Ito
- Department of Organic Materials Science, Graduate School of Organic Materials ScienceYamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Hisahiro Sasabe
- Research Center for Organic Electronics (ROEL)Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
- Frontier Center for Organic Materials (FROM)Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
- Department of Organic Materials Science, Graduate School of Organic Materials ScienceYamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Yuji Nagai
- Department of Organic Materials Science, Graduate School of Organic Materials ScienceYamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Yuichiro Watanabe
- Department of Organic Materials Science, Graduate School of Organic Materials ScienceYamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Natsuki Onuma
- Department of Organic Materials Science, Graduate School of Organic Materials ScienceYamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| | - Junji Kido
- Research Center for Organic Electronics (ROEL)Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
- Frontier Center for Organic Materials (FROM)Yamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
- Department of Organic Materials Science, Graduate School of Organic Materials ScienceYamagata University 4-3-16 Jonan Yonezawa Yamagata 992-8510 Japan
| |
Collapse
|
38
|
Carrier Transport and Recombination Mechanism in Blue Phosphorescent Organic Light-Emitting Diode with Hosts Consisting of Cabazole- and Triazole-Moiety. Sci Rep 2019; 9:3654. [PMID: 30842539 PMCID: PMC6403257 DOI: 10.1038/s41598-019-40068-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2018] [Accepted: 02/01/2019] [Indexed: 11/08/2022] Open
Abstract
In this study, we demonstrated a blue phosphorescent organic light-emitting diode (BPOLED) based on a host with two carbazole and one trizole (2CbzTAZ) moiety, 9,9'-(2-(4,5-diphenyl-4H-1,2,4-triazol-3-yl)-1,3-phenylene)bis(9H-carbazole), that exhibits bipolar transport characteristics. Compared with the devices with a carbazole host (N,N'-dicarbazolyl-3,5-benzene, (mCP)), triazole host (3-(biphenyl-4-yl)-5-(4-tert-butylphenyl)-4-phenyl-4H-1,2,4-triazole, (TAZ)), or a physical mixture of mCP:TAZ, which exhibit hole, electron, and bipolar transport characteristics, respectively, the BPOLED with the bipolar 2CbzTAZ host exhibited the lowest driving voltage (6.55 V at 10 mA/cm2), the highest efficiencies (maximum current efficiency of 52.25 cd/A and external quantum efficiency of 23.89%), and the lowest efficiency roll-off, when doped with bis[2-(4,6-difluorophenyl)pyridinato-C2,N](picolinato)iridium(III) (FIrpic) as blue phosphor. From analyses of light leakage of the emission spectra of electroluminescence, transient electroluminescence, and partially doped OLEDs, it was found that the recombination zone was well confined inside the emitting layer and the recombination rate was most efficient in a 2CbzTAZ-based OLED. For the other cases using mCP, TAZ, and mCP:TAZ as hosts, electrons and holes transported with different routes that resulted in carrier accumulation on different organic molecules and lowered the recombination rate.
Collapse
|
39
|
Liang X, Tu ZL, Zheng YX. Thermally Activated Delayed Fluorescence Materials: Towards Realization of High Efficiency through Strategic Small Molecular Design. Chemistry 2019; 25:5623-5642. [PMID: 30648301 DOI: 10.1002/chem.201805952] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Indexed: 12/22/2022]
Abstract
Thermally activated delayed fluorescence (TADF) is one of the most intriguing and promising discoveries towards realization of highly-efficient organic light emitting diodes (OLED) utilizing small molecules as emitters. It has the capability of manifesting all excitons generated during the electroluminescent processes, consequently achieving 100 % of internal quantum efficiency. Since the report of the first efficient OLED based on a TADF small molecule in 2012 by Adachi et al., the quest for optimal TADF materials for OLED application has never stopped. Various TADF molecules bearing different design concepts and strategies have been designed and produced, with the aim to boost the overall performances of corresponding OLEDs. In this minireview, the general principles of TADF molecular design based on three basic categories of TADF species: twisted intramolecular charge transfer (TICT), through-space charge transfer (TSCT) and multi-resonance induced TADF (MR-TADF) are discussed in detail. Several key aspects with respect to each category, as well as some effective methods to enhance the efficiency of TADF materials and corresponding OLEDs from the molecular engineering perspectives, are summarized and discussed to exhibit a general landscape of TADF molecular design to a wide variety of scientific researchers within this particular disciplinary area.
Collapse
Affiliation(s)
- Xiao Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Zhen-Long Tu
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - You-Xuan Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Collaborative Innovation Center of Advanced Microstructures, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
40
|
Tian QS, Zhang L, Hu Y, Yuan S, Wang Q, Liao LS. High-Performance White Organic Light-Emitting Diodes with Simplified Structure Incorporating Novel Exciplex-Forming Host. ACS APPLIED MATERIALS & INTERFACES 2018; 10:39116-39123. [PMID: 30353735 DOI: 10.1021/acsami.8b17737] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
It is a challenge to engineer white organic light-emitting diodes (WOLEDs) with high efficiency, low operating voltage, good color quality, and low efficiency roll-off, simultaneously. Herein, we employ a novel exciplex to solve this problem, which mixes a bipolar host material 2,6-bis(3-(carbazol-9-yl)phenyl)pyridine (26DCzPPy) with a common electron-transporting material 4,6-bis[3,5-(dipyrid-4-yl)phenyl]-2-methylpyrimidine (B4PyMPM) to form the host for a blue emitter iridium(III)bis(4,6-(difluorophenyl)-pyridinato- N,C2') picolinate (FIrpic). The blue OLED with maximum power efficiency (PE) over 48 lm W-1 and Commission International de I'Eclairage chromaticity diagram (0.17, 0.36) was achieved. To obtain white light emission, a complementary orange emission layer is used, which consists of the bis(4-phenylth-ieno[3,2- c]pyridine)(acetylacetonate)iridium(III) (PO-01) doped into the single host of 26DCzPPy adjacent to the blue emission layer. Benefiting from the exciplex and effective utilization of the excitons by using the optimized multifunctional device structure, the WOLEDs remarkably exhibit maximum external quantum efficiency, PE, and current efficiency of 28.5%, 95.5 lm W-1, and 82.0 cd A-1, respectively. At the luminance of 100 cd m-2, it maintains the values of 27.2%, 90.2 lm W-1, and 78.4 cd A-1, respectively. Furthermore, the WOLEDs have a low threshold voltage of about 2.6 V and remain around 4.0 V at 10 000 cd m-2. These results indicate that the exciplex-forming co-host 26DCzPPy:B4PyMPM can provide an effective strategy to fabricate high-efficiency WOLEDs for potential applications.
Collapse
Affiliation(s)
- Qi-Sheng Tian
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Lei Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Yun Hu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Shuai Yuan
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Qiang Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM) , Soochow University , Suzhou , Jiangsu 215123 , China
| | - Liang-Sheng Liao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM) , Soochow University , Suzhou , Jiangsu 215123 , China
| |
Collapse
|
41
|
Bian M, Chen Z, Qu B, Xiao L. Highly Efficient Organic Blue Electroluminescent Materials and Devices with Mesoscopic Structures. CHEM REC 2018; 19:1562-1570. [DOI: 10.1002/tcr.201800140] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Accepted: 09/28/2018] [Indexed: 01/18/2023]
Affiliation(s)
- Mengying Bian
- State Key Laboratory for Mesoscopic Physics and Department of PhysicsPeking University Beijing 100871 P. R. China
| | - Zhijian Chen
- State Key Laboratory for Mesoscopic Physics and Department of PhysicsPeking University Beijing 100871 P. R. China
| | - Bo Qu
- State Key Laboratory for Mesoscopic Physics and Department of PhysicsPeking University Beijing 100871 P. R. China
| | - Lixin Xiao
- State Key Laboratory for Mesoscopic Physics and Department of PhysicsPeking University Beijing 100871 P. R. China
| |
Collapse
|
42
|
Tang X, Liu XY, Yuan Y, Wang YJ, Li HC, Jiang ZQ, Liao LS. High-Efficiency White Organic Light-Emitting Diodes Integrating Gradient Exciplex Allocation System and Novel D-Spiro-A Materials. ACS APPLIED MATERIALS & INTERFACES 2018; 10:29840-29847. [PMID: 30095891 DOI: 10.1021/acsami.8b09418] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
How to maintain high power efficiency (PE) and color stability under operating brightness is critical for the white organic light-emitting diodes (WOLEDs). To this end, two novel spiro-type materials STPy3 and STPy4 were designed. These materials could act as a single host and achieve a remarkable external quantum efficiency of 27.5% at 1000 cd m-2; to further optimize the PEs of OLEDs, STPy3/4 and PO-T2T were used as co-host-induced exciplexes, which enhanced the PE of green OLED to over 148.0 lm W-1. Unfortunately, the lower triplet energy level of exciplexes than blue emitters implied it is commonly unsuitable to fabricate WOLEDs. Herein, a new allocation of gradient exciplex (AGE) strategy was developed in which the formed excitons could be rationally allocated in a consequently doped nonuniform profile. The AGE incorporated the advantages of the exciplex with an ultralow turn-on voltage of 2.3 V and efficiency stability of spiro materials. The PE at 1000 cd m-2 was enhanced to 72.7 lm W-1, representing the first exciplex WOLED with the performance exceeding that of conventional fluorescent tubes.
Collapse
Affiliation(s)
- Xun Tang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM) , Soochow University , Suzhou 215123 , China
| | - Xiang-Yang Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM) , Soochow University , Suzhou 215123 , China
| | - Yi Yuan
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM) , Soochow University , Suzhou 215123 , China
| | - Yong-Jie Wang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM) , Soochow University , Suzhou 215123 , China
| | - Hong-Cheng Li
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM) , Soochow University , Suzhou 215123 , China
| | - Zuo-Quan Jiang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM) , Soochow University , Suzhou 215123 , China
| | - Liang-Sheng Liao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM) , Soochow University , Suzhou 215123 , China
- Institute of Organic Optoelectronics , Jiangsu Industrial Technology Research Institute (JITRI) , Wujiang, Suzhou , Jiangsu 215211 , China
| |
Collapse
|
43
|
Probe exciplex structure of highly efficient thermally activated delayed fluorescence organic light emitting diodes. Nat Commun 2018; 9:3111. [PMID: 30082702 PMCID: PMC6079109 DOI: 10.1038/s41467-018-05527-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 07/11/2018] [Indexed: 11/08/2022] Open
Abstract
The lack of structural information impeded the access of efficient luminescence for the exciplex type thermally activated delayed fluorescence (TADF). We report here the pump-probe Step-Scan Fourier transform infrared spectra of exciplex composed of a carbazole-based electron donor (CN-Cz2) and 1,3,5-triazine-based electron acceptor (PO-T2T) codeposited as the solid film that gives intermolecular charge transfer (CT), TADF, and record-high exciplex type cyan organic light emitting diodes (external quantum efficiency: 16%). The transient infrared spectral assignment to the CT state is unambiguous due to its distinction from the local excited state of either the donor or the acceptor chromophore. Importantly, a broad absorption band centered at ~2060 cm-1 was observed and assigned to a polaron-pair absorption. Time-resolved kinetics lead us to conclude that CT excited states relax to a ground-state intermediate with a time constant of ~3 µs, followed by a structural relaxation to the original CN-Cz2:PO-T2T configuration within ~14 µs.
Collapse
|
44
|
Shih CJ, Lee CC, Yeh TH, Biring S, Kesavan KK, Amin NRA, Chen MH, Tang WC, Liu SW, Wong KT. Versatile Exciplex-Forming Co-Host for Improving Efficiency and Lifetime of Fluorescent and Phosphorescent Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:24090-24098. [PMID: 29943574 DOI: 10.1021/acsami.8b08281] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report a new efficient exciplex-forming system consisting of a biscarbazole donor and a triazine-based acceptor. The new exciplex was characterized with a high photoluminescence quantum yield up to 68% and effective thermally activated delayed fluorescence behavior. The BCzPh:3P-T2T (2:1, 30 nm) blend was examined not only as an emitting layer (device D1) but also a reliable co-host of fluorescent and phosphorescent emitters for giving highly efficient exciplex-based organic light-emitting diodes (OLEDs) with a high maximum external quantum efficiency of 15.5 and 29.7% for devices doped with 1 wt % C545T (device D2) and 8 wt % Ir(ppy)2(acac) (device D4), respectively. More strikingly, a strongly enhanced lifetime ( T75 = 16 927 min.) of the C545T-doped device was obtained. The transient electroluminescence measurement as well as capacitance-voltage and impedance-voltage correlations were utilized to explore the factors governing the high efficiency and stability. The obtained results clearly show that the energy transfer and charge transport is highly efficient; they also show the photoelectric semiconducting characteristics of exciplex-based OLEDs, which are significantly different from those of unipolar host-based reference devices D3 (Alq3: 1 wt % C545T) and D5 (CBP: 8 wt % Ir(ppy)2(acac)). Our works have established a systematic protocol to shed light on the mechanisms behind exciplex-based devices. The combined results also confirm the bright prospect of the exciplex-forming system as the co-host for highly efficient and stable OLEDs.
Collapse
Affiliation(s)
- Chun-Jen Shih
- Department of Electronic Engineering , National Taiwan University of Science and Technology , Taipei 10617 , Taiwan
| | - Chih-Chien Lee
- Department of Electronic Engineering , National Taiwan University of Science and Technology , Taipei 10617 , Taiwan
| | - Tzu-Hung Yeh
- Department of Electronic Engineering , National Taiwan University of Science and Technology , Taipei 10617 , Taiwan
| | | | | | | | | | - Wei-Chieh Tang
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | | | - Ken-Tsung Wong
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
- Institute of Atomic and Molecular Science , Academia Sinica , Taipei 10617 , Taiwan
| |
Collapse
|
45
|
Sarma M, Wong KT. Exciplex: An Intermolecular Charge-Transfer Approach for TADF. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19279-19304. [PMID: 29613766 DOI: 10.1021/acsami.7b18318] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Organic materials that display thermally activated delayed fluorescence (TADF) are a striking class of functional materials that have witnessed a booming progress in recent years. In addition to pure TADF emitters achieved by the subtle manipulations of intramolecular charge transfer processes with sophisticated molecular structures, a new class of efficient TADF-based OLEDs with emitting layer formed by blending electron donor and acceptor molecules that involve intermolecular charge transfer have also been fabricated. In contrast to pure TADF materials, the exciplex-based systems can realize small Δ EST (0-0.05 eV) much more easily since the electron and hole are positioned on two different molecules, thereby giving small exchange energy. Consequently, exciplex-based OLEDs have the prospective to maximize the TADF contribution and achieve theoretical 100% internal quantum efficiency. Therefore, the challenging issue of achieving small Δ EST in organic systems could be solved. In this article, we summarize and discuss the latest and most significant developments regarding these rapidly evolving functional materials, wherein the majority of the reported exciplex forming systems are categorized into two subgroups, viz. (a) exciplex as TADF emitters and (b) those as hosts for fluorescent, phosphorescent and TADF dopants according to their structural features and applications. The working mechanisms of the direct electroluminescence from the donor/acceptor interface and the exciplex-forming systems as cohost for the realization of high efficiency OLEDs are reviewed and discussed. This article delivers a summary of the current progresses and achievements of exciplex-based researches and points out the future challenges to trigger more research endeavors to this growing field.
Collapse
Affiliation(s)
- Monima Sarma
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Ken-Tsung Wong
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
- Institute of Atomic and Molecular Science , Academia Sinica , Taipei 10617 , Taiwan
| |
Collapse
|
46
|
Song X, Zhang D, Huang T, Cai M, Duan L. Efficient red phosphorescent OLEDs based on the energy transfer from interface exciplex: the critical role of constituting molecules. Sci China Chem 2018. [DOI: 10.1007/s11426-018-9242-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Shih CJ, Lee CC, Chen YH, Biring S, Kumar G, Yeh TH, Sen S, Liu SW, Wong KT. Exciplex-Forming Cohost for High Efficiency and High Stability Phosphorescent Organic Light-Emitting Diodes. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2151-2157. [PMID: 29265796 DOI: 10.1021/acsami.7b15034] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An exciplex forming cohost system is employed to achieve a highly efficient organic light-emitting diode (OLED) with good electroluminescent lifetime. The exciplex is formed at the interfacial contact of a conventional star-shaped carbazole hole-transporting material, 4,4',4″-tris(N-carbazolyl)-triphenylamine (TCTA), and a triazine electron-transporting material, 2,4,6-tris[3-(1H-pyrazol-1-yl)phenyl]-1,3,5-triazine (3P-T2T). The excellent combination of TCTA and 3P-T2T is applied as the cohost of a common green phosphorescent emitter with almost zero energy loss. When Ir(ppy)2(acac) is dispersed in such exciplex cohost system, OLED device with maximum external quantum efficiency of 29.6%, the ultrahigh power efficiency of 147.3 lm/W, and current efficiency of 107 cd/A were successfully achieved. More importantly, the OLED device showed a low-efficiency roll-off and an operational lifetime (τ80) of ∼1020 min with the initial brightness of 2000 cd/m2, which is 56 times longer than the reference device. The significant difference of device stability was attributed to the degradation of exciplex system for energy transfer process, which was investigated by the photoluminescence aging measurement at room temperature and 100 K, respectively.
Collapse
Affiliation(s)
- Chun-Jen Shih
- Department of Electronic Engineering, National Taiwan University of Science and Technology , Taipei 10617, Taiwan
| | - Chih-Chien Lee
- Department of Electronic Engineering, National Taiwan University of Science and Technology , Taipei 10617, Taiwan
| | - Ying-Hao Chen
- Department of Electronic Engineering, National Taiwan University of Science and Technology , Taipei 10617, Taiwan
| | | | | | - Tzu-Hung Yeh
- Department of Electronic Engineering, National Taiwan University of Science and Technology , Taipei 10617, Taiwan
| | | | | | - Ken-Tsung Wong
- Department of Chemistry, National Taiwan University , Taipei 10617, Taiwan
- Institute of Atomic and Molecular Science, Academia Sinica , Taipei 10617, Taiwan
| |
Collapse
|
48
|
Huang M, Jiang B, Xie G, Yang C. Highly Efficient Solution-Processed Deep-Red Organic Light-Emitting Diodes Based on an Exciplex Host Composed of a Hole Transporter and a Bipolar Host. J Phys Chem Lett 2017; 8:4967-4973. [PMID: 28949144 DOI: 10.1021/acs.jpclett.7b02326] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
With the aim to achieve highly efficient deep-red emission, we introduced an exciplex forming cohost, 4,4',4″-tris(3-methylphenylphenylamino)triphenylamine (m-MTDATA): 2,5-bis(2-(9H-carbazol-9-yl)phenyl)-1,3,4-oxadiazole (o-CzOXD) (1:1). Due to the efficient triplet up-conversion processes upon the exciplex forming cohost, excellent performances of the devices were achieved with deep-red emission. Using the heteroleptic iridium complexes as the guest dopants, the solution-processed deep-red phosphorescent organic light-emitting diodes (PhOLEDs) with the iridium(III) bis(6-(4-(tert-butyl)phenyl)phenanthridine)acetylacetonate [(TP-BQ)2Ir(acac)]-based phosphorescent emitter exhibited an electroluminescent peak at 656 nm and a maximum external quantum efficiency (EQE) of 11.9%, which is 6.6 times that of the device based on the guest emitter doped in the polymer-based cohost. The unique exciplex with a typical hole transporter and a bipolar material is ideal and universal for hosting the red PhOLEDs and tremendously improves the device performances.
Collapse
Affiliation(s)
- Manli Huang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University , Wuhan, 430072, People's Republic of China
| | - Bei Jiang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University , Wuhan, 430072, People's Republic of China
| | - Guohua Xie
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University , Wuhan, 430072, People's Republic of China
| | - Chuluo Yang
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Department of Chemistry, Wuhan University , Wuhan, 430072, People's Republic of China
| |
Collapse
|
49
|
Kim HG, Kim KH, Kim JJ. Highly Efficient, Conventional, Fluorescent Organic Light-Emitting Diodes with Extended Lifetime. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1702159. [PMID: 28850733 DOI: 10.1002/adma.201702159] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/10/2017] [Indexed: 06/07/2023]
Abstract
Highly efficient, yellow-fluorescent organic light-emitting diodes with a maximum external quantum efficiency exceeding 25.0% and extended lifetime are reported using iridium-complex sensitizers doped in an exciplex host. Energy transfer processes reduce the lifetime of the exciplex and excitons on the Ir complexes and enable an excited state to exist in a conventional fluorescent emitter, thereby increasing device lifetime. The device stability depends on the location of the excited state.
Collapse
Affiliation(s)
- Hyun-Gu Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744, South Korea
| | - Kwon-Hyeon Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744, South Korea
| | - Jang-Joo Kim
- Department of Materials Science and Engineering, Seoul National University, Seoul, 151-744, South Korea
- Research Institute of Advanced Materials (RIAM), Seoul National University, Seoul, 151-744, South Korea
| |
Collapse
|
50
|
Hu M, Song W, Huang J, Xia Z, Su J. Synthesis and device properties of carbazole/benzimidazole-based host materials. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.07.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|