1
|
Zhang K, Liang W, Chen XB, Mang J. Smart materials strategy for vascular challenges targeting in-stent restenosis: a critical review. Regen Biomater 2025; 12:rbaf020. [PMID: 40290450 PMCID: PMC12034381 DOI: 10.1093/rb/rbaf020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 02/25/2025] [Accepted: 03/11/2025] [Indexed: 04/30/2025] Open
Abstract
In-stent restenosis (ISR) presents a major challenge in vascular disease management, often leading to complications and repeated interventions. This review article explores the potential of existing smart materials strategies in addressing ISR, emphasizing advancements in materials science and biomedical engineering. We focus on innovative solutions such as bioactive coatings and responsive polymers that offer targeted responses to ISR-related internal and external triggers. These smart materials can dynamically adapt to the physiological conditions within blood vessels, responding in real time to various stimuli such as pH, oxidative stress and temperature. Moreover, we discuss preclinical progress and translational challenges associated with these materials as they move toward clinical applications. The review highlights the importance of controlled drug release and the need for materials that can degrade appropriately to minimize adverse effects. This work aims to identify critical research gaps and provide guidance to encourage interdisciplinary efforts to advance the development of smart stent technologies. Ultimately, the goal is to improve patient outcomes in vascular interventions by leveraging the capabilities of intelligent biomaterials to enhance ISR management and ensure better long-term efficacy and safety in-stent applications.
Collapse
Affiliation(s)
- Kai Zhang
- Department of Geriatrics and General Practice, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Wenzhao Liang
- Department of Geriatrics and General Practice, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| | - Xiao-Bo Chen
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Jing Mang
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun 130033, China
| |
Collapse
|
2
|
Zheng Y, Du Y, Chen L, Mao W, Pu Y, Wang S, Wang D. Recent advances in shape memory polymeric nanocomposites for biomedical applications and beyond. Biomater Sci 2024; 12:2033-2040. [PMID: 38517138 DOI: 10.1039/d4bm00004h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Shape memory polymers (SMPs), which initiate shape transformation in response to environmental stimuli, have attracted significant attention in both academic research and technological innovation. The combination of functional nanomaterials and SMPs has led to the emergence of a variety of shape memory polymeric nanocomposites (SMPNs) with multifunctional properties. This has injected new vitality and vigor into fields such as tissue engineering, biomedicine, optical sensing, aerospace and mechanical engineering. In this review article, we present a brief introduction to the fundamentals of SMPs and SMPNs, followed by a discussion of the recent advances in their multifunctional applications in biomedical manufacturing, drug delivery devices, mechanical sensing, micro-engines, etc. The opportunities and challenges in the future development of SMPs are also discussed.
Collapse
Affiliation(s)
- Yifan Zheng
- State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Yudi Du
- State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Ling Chen
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China.
| | - Wei Mao
- Quzhou Innovation Institute for Chemical Engineering and Materials, Quzhou 324000, China
| | - Yuan Pu
- State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Steven Wang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, 999077, China.
| | - Dan Wang
- State Key Laboratory of Organic Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
3
|
Yu S, Sadaba N, Sanchez-Rexach E, Hilburg SL, Pozzo LD, Altin-Yavuzarslan G, Liz-Marzán LM, de Aberasturi DJ, Sardon H, Nelson A. 4D Printed Protein-AuNR Nanocomposites with Photothermal Shape Recovery. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2311209. [PMID: 38966003 PMCID: PMC11221775 DOI: 10.1002/adfm.202311209] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Indexed: 07/06/2024]
Abstract
4D printing is the 3D printing of objects that change chemically or physically in response to an external stimulus over time. Photothermally responsive shape memory materials are attractive for their ability to undergo remote activation. While photothermal methods using gold nanorods (AuNRs) have been used for shape recovery, 3D patterning of these materials into objects with complex geometries using degradable materials has not been addressed. Here, we report on the fabrication of 3D printed shape memory bioplastics with photo-activated shape recovery. Protein-based nanocomposites based on bovine serum albumin (BSA), poly (ethylene glycol) diacrylate and gold nanorods were developed for vat photopolymerization. These 3D printed bioplastics were mechanically deformed under high loads, and the proteins served as mechanoactive elements that unfolded in an energy-dissipating mechanism that prevented fracture of the thermoset. The bioplastic object maintained its metastable shape-programmed state under ambient conditions. Subsequently, up to 99% shape recovery was achieved within 1 min of irradiation with near-infrared light. Mechanical characterization and small angle X-ray scattering (SAXS) analysis suggest that the proteins mechanically unfold during the shape programming step and may refold during shape recovery. These composites are promising materials for the fabrication of biodegradable shape-morphing devices for robotics and medicine.
Collapse
Affiliation(s)
- Siwei Yu
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| | - Naroa Sadaba
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
| | - Eva Sanchez-Rexach
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA; POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
| | - Shayna L Hilburg
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Lilo D Pozzo
- Department of Chemical Engineering, University of Washington, Seattle, WA 98195, USA
| | - Gokce Altin-Yavuzarslan
- Molecular Engineering and Sciences Institute, University of Washington, Seattle, WA, 98195, USA
| | - Luis M Liz-Marzán
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain; Biomedical Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 20014, Donostia-San Sebastián, Spain; Ikerbaque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Dorleta Jimenez de Aberasturi
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), 20014, Donostia-San Sebastián, Spain; Biomedical Networking Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 20014, Donostia-San Sebastián, Spain; Ikerbaque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Haritz Sardon
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of Basque Country UPV/EHU, Donostia-San Sebastián 20018, Spain
| | - Alshakim Nelson
- Department of Chemistry, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
4
|
Ren Y, Song X, Chen Y, Xin W, Zhu C, Huang Y, Tian N, Huang Y. Self-Healing of Poly(vinyl Alcohol)/Poly(acrylic Acid)-Polytetrahydrofuran-Poly(acrylic Acid) Blend Boosted via Shape Memory. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14811-14821. [PMID: 37791913 DOI: 10.1021/acs.langmuir.3c02324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
The self-healable polymers that can repair physical damage autonomously to extend their lifetime and reduce maintenance costs are promising intelligent materials. However, utilizing shape memory to facilitate self-repair is unusual at present. In this work, a series of poly(acrylic acid)-polytetrahydrofuran-poly(acrylic acid) polymers (PAA-PTMG-PAA, diPAA-PTMG) are synthesized as a switching phase and healing accelerator to blend into poly(vinyl alcohol) (PVA). The water swelling rate of the blend is up to 400.0% at 1/1 molecular weight ratio of PTMG/PAA and 20.0 wt % blend ratio of diPAA-PTMG to PVA, and its crystallization is changed significantly under wet conditions. The blend membrane exhibits not only a good hydrothermal-response shape memory effect but also a favorable self-healing behavior. The tensile strength and elongation at break are 12.4 MPa and 320.0% after healing at 25 °C, respectively. In particular, the wound membrane can achieve a better self-healing effect with the assistance of shape memory at 37 °C, and the elongation at the break increased to 515.9% after healing. The membrane is not cytotoxic, so it will be a promising biomedical material.
Collapse
Affiliation(s)
- Yajun Ren
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
- School of Engineering, Jilin Normal University, Siping 136000, China
| | - Xiaofeng Song
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Youhua Chen
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Wen Xin
- School of Engineering, Jilin Normal University, Siping 136000, China
| | - Chuanming Zhu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Yuan Huang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Na Tian
- School of Engineering, Jilin Normal University, Siping 136000, China
| | - Yuling Huang
- School of Engineering, Jilin Normal University, Siping 136000, China
| |
Collapse
|
5
|
Ma RY, Sun WJ, Xu L, Jia LC, Yan DX, Li ZM. Permanent Shape Reconfiguration and Locally Reversible Actuation of a Carbon Nanotube/Ethylene Vinyl Acetate Copolymer Composite by Constructing a Dynamic Cross-Linked Network. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40954-40962. [PMID: 37584965 DOI: 10.1021/acsami.3c07931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
Given the rapid developments in modern devices, there is an urgent need for shape-memory polymer composites (SMPCs) in soft robots and other fields. However, it remains a challenge to endow SMPCs with both a reconfigurable permanent shape and a locally reversible shape transformation. Herein, a dynamic cross-linked network was facilely constructed in carbon nanotube/ethylene vinyl acetate copolymer (CNT/EVA) composites by designing the molecular structure of EVA. The CNT/EVA composite with 0.05 wt % CNT realized a steady-state temperature of ∼75 °C under 0.11 W/cm2 light intensity, which gave rise to remote actuation behavior. The dynamic cross-linked network along with a wide melting temperature offered opportunities for chemical and physical programming, thus realizing the achievement of the programmable three-dimensional (3D) structure and locally reversible actuation. Specifically, the CNT/EVA composite exhibited a superior permanent shape reconfiguration by activating the dynamic cross-linked network at 140 °C. The composite also showed a high reversible deformation rate of 11.1%. These features endowed the composites with the capability of transformation to 3D structure as well as locally reversible actuation performance. This work provides an attractive guideline for the future design of SMPCs with sophisticated structures and actuation capability.
Collapse
Affiliation(s)
- Rui-Yu Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wen-Jin Sun
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Ling Xu
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Li-Chuan Jia
- College of Electrical Engineering, Sichuan University, Chengdu 610065, China
| | - Ding-Xiang Yan
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Zhong-Ming Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
6
|
Bai X, Gou X, Zhang J, Liang J, Yang L, Wang S, Hou X, Chen F. A Review of Smart Superwetting Surfaces Based on Shape-Memory Micro/Nanostructures. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206463. [PMID: 36609999 DOI: 10.1002/smll.202206463] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Bioinspired smart superwetting surfaces with special wettability have aroused great attention from fundamental research to technological applications including self-cleaning, oil-water separation, anti-icing/corrosion/fogging, drag reduction, cell engineering, liquid manipulation, and so on. However, most of the reported smart superwetting surfaces switch their wettability by reversibly changing surface chemistry rather than surface microstructure. Compared with surface chemistry, the regulation of surface microstructure is more difficult and can bring novel functions to the surfaces. As a kind of stimulus-responsive material, shape-memory polymer (SMP) has become an excellent candidate for preparing smart superwetting surfaces owing to its unique shape transformation property. This review systematically summarizes the recent progress of smart superwetting SMP surfaces including fabrication methods, smart superwetting phenomena, and related application fields. The smart superwettabilities, such as superhydrophobicity/superomniphobicity with tunable adhesion, reversible switching between superhydrophobicity and superhydrophilicity, switchable isotropic/anisotropic wetting, slippery surface with tunable wettability, and underwater superaerophobicity/superoleophobicity with tunable adhesion, can be obtained on SMP micro/nanostructures by regulating the surface morphology. Finally, the challenges and future prospects of smart superwetting SMP surfaces are discussed.
Collapse
Affiliation(s)
- Xue Bai
- Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, P. R. China
| | - Xiaodan Gou
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jialiang Zhang
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jie Liang
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lijing Yang
- Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, P. R. China
| | - Shaopeng Wang
- Northwest Institute for Non-ferrous Metal Research, Xi'an, 710016, P. R. China
| | - Xun Hou
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Feng Chen
- State Key Laboratory for Manufacturing System Engineering and Shaanxi Key Laboratory of Photonics Technology for Information, School of Electronic Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
7
|
Mahmoud DB, Schulz‐Siegmund M. Utilizing 4D Printing to Design Smart Gastroretentive, Esophageal, and Intravesical Drug Delivery Systems. Adv Healthc Mater 2023; 12:e2202631. [PMID: 36571721 PMCID: PMC11468531 DOI: 10.1002/adhm.202202631] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 12/16/2022] [Indexed: 12/27/2022]
Abstract
The breakthrough of 3D printing in biomedical research has paved the way for the next evolutionary step referred to as four dimensional (4D) printing. This new concept utilizes the time as the fourth dimension in addition to the x, y, and z axes with the idea to change the configuration of a printed construct with time usually in response to an external stimulus. This can be attained through the incorporation of smart materials or through a preset smart design. The 4D printed constructs may be designed to exhibit expandability, flexibility, self-folding, self-repair or deformability. This review focuses on 4D printed devices for gastroretentive, esophageal, and intravesical delivery. The currently unmet needs and challenges for these application sites are tried to be defined and reported on published solution concepts involving 4D printing. In addition, other promising application sites that may similarly benefit from 4D printing approaches such as tracheal and intrauterine drug delivery are proposed.
Collapse
Affiliation(s)
- Dina B. Mahmoud
- Pharmaceutical TechnologyInstitute of PharmacyFaculty of MedicineLeipzig University04317LeipzigGermany
- Department of PharmaceuticsEgyptian Drug Authority12311GizaEgypt
| | - Michaela Schulz‐Siegmund
- Pharmaceutical TechnologyInstitute of PharmacyFaculty of MedicineLeipzig University04317LeipzigGermany
| |
Collapse
|
8
|
Uboldi M, Perrotta C, Moscheni C, Zecchini S, Napoli A, Castiglioni C, Gazzaniga A, Melocchi A, Zema L. Insights into the Safety and Versatility of 4D Printed Intravesical Drug Delivery Systems. Pharmaceutics 2023; 15:pharmaceutics15030757. [PMID: 36986618 PMCID: PMC10057729 DOI: 10.3390/pharmaceutics15030757] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
This paper focuses on recent advancements in the development of 4D printed drug delivery systems (DDSs) for the intravesical administration of drugs. By coupling the effectiveness of local treatments with major compliance and long-lasting performance, they would represent a promising innovation for the current treatment of bladder pathologies. Being based on a shape-memory pharmaceutical-grade polyvinyl alcohol (PVA), these DDSs are manufactured in a bulky shape, can be programmed to take on a collapsed one suitable for insertion into a catheter and re-expand inside the target organ, following exposure to biological fluids at body temperature, while releasing their content. The biocompatibility of prototypes made of PVAs of different molecular weight, either uncoated or coated with Eudragit®-based formulations, was assessed by excluding relevant in vitro toxicity and inflammatory response using bladder cancer and human monocytic cell lines. Moreover, the feasibility of a novel configuration was preliminarily investigated, targeting the development of prototypes provided with inner reservoirs to be filled with different drug-containing formulations. Samples entailing two cavities, filled during the printing process, were successfully fabricated and showed, in simulated urine at body temperature, potential for controlled release, while maintaining the ability to recover about 70% of their original shape within 3 min.
Collapse
Affiliation(s)
- Marco Uboldi
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
| | - Cristiana Perrotta
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, 20157 Milano, Italy
| | - Claudia Moscheni
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, 20157 Milano, Italy
| | - Silvia Zecchini
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, 20157 Milano, Italy
| | - Alessandra Napoli
- Dipartimento di Scienze Biomediche e Cliniche, Università degli Studi di Milano, via Giovanni Battista Grassi 74, 20157 Milano, Italy
| | - Chiara Castiglioni
- Dipartimento di Chimica, Materiali e Ingegneria Chimica “Giulio Natta”, Politecnico di Milano, piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Andrea Gazzaniga
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
| | - Alice Melocchi
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
- Correspondence: ; Tel.: +39-02-50324654
| | - Lucia Zema
- Sezione di Tecnologia e Legislazione Farmaceutiche “Maria Edvige Sangalli”, Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, via Giuseppe Colombo 71, 20133 Milano, Italy
| |
Collapse
|
9
|
Zhou P, Li X, Jiang Z, Zhou J, He G, Qu L. An approach of pectin from Citrus aurantium L. for superabsorbent resin with superior quality for hygiene products: Salt resistance, antibacterial, nonirritant and biodegradability. Int J Biol Macromol 2023; 227:241-251. [PMID: 36539172 DOI: 10.1016/j.ijbiomac.2022.12.131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/05/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
In this paper, a kind of superabsorbent resin (SAR) with superior quality for hygiene products was developed using Fructus Aurantii Immaturus pectin (FAIP) from Citrus aurantium L.. FAIP-g-AM/AMPS SAR was established by free radical graft co-polymerization with FAIP as skeleton structure, N, N'-Methylene-bis (acrylamide) (MBA) as the cross-linker. Meanwhile, the functional monomers of acrylamide (AM) and 2-acrylamido-2-methylpropane sulfonic acid (AMPS) were introduced. The structure and morphology of FAIP-g-AM/AMPS were characterized by FTIR, 13C NMR, XRD, SEM and TG-DSC analysis. The results confirmed that the AFIP-g-AM/AMPS SAR was successfully prepared, which exhibited a three-dimensional (3D) network structure and an excellent thermal stability. The absorption and retention capacity of FAIP-g-AM/AMPS was comparable to or even better than commercial diapers and sanitary napkins. Significantly, FAIP-g-AM/AMPS itself exhibited excellent antibacterial and safety. FAIP-g-AM/AMPS has an inhibition ratio of 97.1 % for Escherichia coli (E. coli) and 98.5 % for Staphylococcus aureus (S. aureus), and was non-irritating and non-allergic to the skin. In addition, FAIP-g-AM/AMPS presented amazing biodegradability and a weight loss reached 37.1 % after 30 days by soil burial test. The research provides a safe and high-performance SAR, which expected to be used in hygiene products such as baby diapers, adult incontinence pads and sanitary napkins.
Collapse
Affiliation(s)
- Peng Zhou
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xiangzhou Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; Institute of Natural Products Research and Development, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Zhi Jiang
- College of Pharmacy, Hunan University of Chinese Medicine, Changsha 410208, Hunan, China; Hunan Prima Drug Research Center Co., LTD, Changsha 410329, Hunan, China
| | - Jun Zhou
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Guang He
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Limin Qu
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| |
Collapse
|
10
|
Zhao W, Yue C, Liu L, Liu Y, Leng J. Research Progress of Shape Memory Polymer and 4D Printing in Biomedical Application. Adv Healthc Mater 2022:e2201975. [PMID: 36520058 DOI: 10.1002/adhm.202201975] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 11/06/2022] [Indexed: 12/23/2022]
Abstract
As a kind of smart material, shape memory polymer (SMP) shows great application potential in the biomedical field. Compared with traditional metal-based medical devices, SMP-based devices have the following characteristics: 1) The adaptive ability allows the biomedical device to better match the surrounding tissue after being implanted into the body by minimally invasive implantation; 2) it has better biocompatibility and adjustable biodegradability; 3) mechanical properties can be regulated in a large range to better match with the surrounding tissue. 4D printing technology is a comprehensive technology based on smart materials and 3D printing, which has great application value in the biomedical field. 4D printing technology breaks through the technical bottleneck of personalized customization and provides a new opportunity for the further development of the biomedical field. This paper summarizes the application of SMP and 4D printing technology in the field of bone tissue scaffolds, tracheal scaffolds, and drug release, etc. Moreover, this paper analyzes the existing problems and prospects, hoping to provide a preliminary discussion and useful reference for the application of SMP in biomedical engineering.
Collapse
Affiliation(s)
- Wei Zhao
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Chengbin Yue
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Liwu Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Yanju Liu
- Department of Astronautical Science and Mechanics, Harbin Institute of Technology (HIT), P.O. Box 301, No. 92 West Dazhi Street, Harbin, 150001, P. R. China
| | - Jinsong Leng
- Center for Composite Materials and Structures, Harbin Institute of Technology (HIT), P.O. Box 3011, No. 2 Yikuang Street, Harbin, 150080, P. R. China
| |
Collapse
|
11
|
Recent advances in shape memory superhydrophobic surfaces: Concepts, mechanism, classification, applications and challenges. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
12
|
Experimental and computational analysis of a pharmaceutical-grade shape memory polymer applied to the development of gastroretentive drug delivery systems. J Mech Behav Biomed Mater 2021; 124:104814. [PMID: 34534845 DOI: 10.1016/j.jmbbm.2021.104814] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 08/10/2021] [Accepted: 09/03/2021] [Indexed: 11/23/2022]
Abstract
The present paper aims at developing an integrated experimental/computational approach towards the design of shape memory devices fabricated by hot-processing with potential for use as gastroretentive drug delivery systems (DDSs) and for personalized therapy if 4D printing is involved. The approach was tested on a plasticized poly(vinyl alcohol) (PVA) of pharmaceutical grade, with a glass transition temperature close to that of the human body (i.e., 37 °C). A comprehensive experimental analysis was conducted in order to fully characterize the PVA thermo-mechanical response as well as to provide the necessary data to calibrate and validate the numerical predictions, based on a thermo-viscoelastic constitutive model, implemented within a finite element framework. Particularly, a thorough thermal, mechanical, and shape memory characterization under different testing conditions and on different sample geometries was first performed. Then, a prototype consisting of an S-shaped device was fabricated, deformed in a temporary compact configuration and tested. Simulation results were compared with the results obtained from shape memory experiments carried out on the prototype. The proposed approach provided useful results and recommendations for the design of PVA-based shape memory DDSs.
Collapse
|
13
|
Basak S, Bandyopadhyay A. Solvent Responsive Shape Memory Polymers‐ Evolution, Current Status, and Future Outlook. MACROMOL CHEM PHYS 2021. [DOI: 10.1002/macp.202100195] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sayan Basak
- Department of Polymer Science and Technology University of Calcutta 92, A.P.C Road Kolkata West Bengal 700 009 India
| | - Abhijit Bandyopadhyay
- Department of Polymer Science and Technology University of Calcutta 92, A.P.C Road Kolkata West Bengal 700 009 India
| |
Collapse
|
14
|
Zirdehi EM, Dumlu H, Eggeler G, Varnik F. On the Size Effect of Additives in Amorphous Shape Memory Polymers. MATERIALS (BASEL, SWITZERLAND) 2021; 14:E327. [PMID: 33435200 PMCID: PMC7826723 DOI: 10.3390/ma14020327] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 12/30/2020] [Accepted: 01/06/2021] [Indexed: 11/17/2022]
Abstract
Small additive molecules often enhance structural relaxation in polymers. We explore this effect in a thermoplastic shape memory polymer via molecular dynamics simulations. The additive-to-monomer size ratio is shown to play a key role here. While the effect of additive-concentration on the rate of shape recovery is found to be monotonic in the investigated range, a non-monotonic dependence on the size-ratio emerges at temperatures close to the glass transition. This work thus identifies the additives' size to be a qualitatively novel parameter for controlling the recovery process in polymer-based shape memory materials.
Collapse
Affiliation(s)
- Elias M. Zirdehi
- Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany;
| | - Hakan Dumlu
- Institute for Materials (IFM), Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (H.D.); (G.E.)
| | - Gunther Eggeler
- Institute for Materials (IFM), Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany; (H.D.); (G.E.)
| | - Fathollah Varnik
- Interdisciplinary Centre for Advanced Materials Simulation (ICAMS), Ruhr-Universität Bochum, Universitätsstr. 150, 44801 Bochum, Germany;
| |
Collapse
|
15
|
Chemin M, Beaumal B, Cathala B, Villares A. pH-Responsive Properties of Asymmetric Nanopapers of Nanofibrillated Cellulose. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1380. [PMID: 32679783 PMCID: PMC7408521 DOI: 10.3390/nano10071380] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 11/26/2022]
Abstract
Inspired by plant movements driven by the arrangement of cellulose, we have fabricated nanopapers of nanofibrillated cellulose (NFC) showing actuation under pH changes. Bending was achieved by a concentration gradient of charged groups along the film thickness. Hence, the resulting nanopapers contained higher concentration of charged groups on one side of the film than on the opposite side, so that pH changes resulted in charge-dependent asymmetric deprotonation of the two layers. Electrostatic repulsions separate the nanofibers in the nanopaper, thus facilitating an asymmetric swelling and the subsequent expanding that results in bending. Nanofibrillated cellulose was modified by 2,2,6,6-tetramethylpiperidin-1-yl)oxyl radical (TEMPO) oxidation at two reaction times to get different surface concentrations of carboxylic acid groups. TEMPO-oxidized NFC was further chemically transformed into amine-modified NFC by amidation. The formation of graded nanopapers was accomplished by successive filtration of NFC dispersions with varying charge nature and/or concentration. The extent of bending was controlled by the charge concentration and the nanopaper thickness. The direction of bending was tuned by the layer composition (carboxylic acid or amine groups). In all cases, a steady-state was achieved within less than 25 s. This work opens new routes for the use of cellulosic materials as actuators.
Collapse
Affiliation(s)
| | | | | | - Ana Villares
- French National Research Institute for Agriculture, Food and Environment (INRAE), UR Biopolymer, Interactions, Assemblies (BIA), F-44316 Nantes, France; (M.C.); (B.B.); (B.C.)
| |
Collapse
|
16
|
Tomimuro K, Tenda K, Ni Y, Hiruta Y, Merkx M, Citterio D. Thread-Based Bioluminescent Sensor for Detecting Multiple Antibodies in a Single Drop of Whole Blood. ACS Sens 2020; 5:1786-1794. [PMID: 32441095 DOI: 10.1021/acssensors.0c00564] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Antibodies are important biomarkers in clinical diagnostics in addition to being increasingly used for therapeutic purposes. Although numerous methods for their detection and quantification exist, they predominantly require benchtop instruments operated by specialists. To enable the detection of antibodies at point-of-care (POC), the development of simple and rapid assay methods independent of laboratory equipment is of high relevance. In this study, we demonstrate microfluidic thread-based analytical devices (μTADs) as a new platform for antibody detection by means of bioluminescence resonance energy-transfer (BRET) switching sensor proteins. The devices consist of vertically assembled layers including a blood separation membrane and a plastic film with a sewn-in cotton thread, onto which the BRET sensor proteins together with the substrate furimazine have been predeposited. In contrast to intensity-based signaling, the BRET mechanism enables time-independent, ratiometric readout of bioluminescence signals with a digital camera in a darkroom or a smartphone camera with a 3D-printed lens adapter. The device design allows spatially separated deposition of multiple bioluminescent proteins on a single sewn thread, enabling quantification of multiple antibodies in 5 μL of whole blood within 5 min. The bioluminescence response is independent of the applied sample volume within the range of 5-15 μL. Therefore, μTADs in combination with BRET-based sensor proteins represent user-friendly analytical tools for POC quantification of antibodies without any laboratory equipment in a finger prick (5 μL) of whole blood.
Collapse
Affiliation(s)
- Kosuke Tomimuro
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, 223-8522 Yokohama, Japan
| | - Keisuke Tenda
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, 223-8522 Yokohama, Japan
| | - Yan Ni
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Yuki Hiruta
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, 223-8522 Yokohama, Japan
| | - Maarten Merkx
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, 223-8522 Yokohama, Japan
- Laboratory of Chemical Biology and Institute for Complex Molecular Systems, Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| | - Daniel Citterio
- Department of Applied Chemistry, Keio University, 3-14-1 Hiyoshi,
Kohoku-ku, 223-8522 Yokohama, Japan
| |
Collapse
|
17
|
Xiao R, Huang WM. Heating/Solvent Responsive Shape-Memory Polymers for Implant Biomedical Devices in Minimally Invasive Surgery: Current Status and Challenge. Macromol Biosci 2020; 20:e2000108. [PMID: 32567193 DOI: 10.1002/mabi.202000108] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/03/2020] [Indexed: 12/16/2022]
Abstract
This review is about the fundamentals and practical issues in applying both heating and solvent responsive shape memory polymers (SMPs) for implant biomedical devices via minimally invasive surgery. After revealing the general requirements in the design of biomedical devices based on SMPs and the fundamentals for the shape-memory effect in SMPs, the underlying mechanisms, characterization methods, and several representative biomedical applications, including vascular stents, tissue scaffolds, occlusion devices, drug delivery systems, and the current R&D status of them, are discussed. The new opportunities arising from emerging technologies, such as 3D printing, and new materials, such as vitrimer, are also highlighted. Finally, the major challenge that limits the practical clinical applications of SMPs at present is addressed.
Collapse
Affiliation(s)
- Rui Xiao
- Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Department of Engineering Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Wei Min Huang
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
18
|
Wang M, Zhuge J, Li C, Jiang L, Yang H. Self-healing quadruple shape memory hydrogels based on coordination, borate bonds and temperature with tunable mechanical properties. IRANIAN POLYMER JOURNAL 2020. [DOI: 10.1007/s13726-020-00821-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
19
|
Han Y, Wang H, Jiao X, Chen D. Hydrogen‐bonded poly(vinyl alcohol)‐boehmite composites exhibiting excellent shape memory properties. J Appl Polym Sci 2020. [DOI: 10.1002/app.49158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yanyang Han
- School of Chemistry and Chemical EngineeringYantai University Yantai China
| | - Haimei Wang
- School of Chemistry and Chemical EngineeringShandong University Jinan China
| | - Xiuling Jiao
- School of Chemistry and Chemical EngineeringShandong University Jinan China
| | - Dairong Chen
- School of Chemistry and Chemical EngineeringShandong University Jinan China
| |
Collapse
|
20
|
Tan H, Yu X, Tu Y, Zhang L. Humidity-Driven Soft Actuator Built up Layer-by-Layer and Theoretical Insight into Its Mechanism of Energy Conversion. J Phys Chem Lett 2019; 10:5542-5551. [PMID: 31475526 DOI: 10.1021/acs.jpclett.9b02249] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
An improved protocol is proposed for preparation of a humidity-sensitive soft actuator through the layer-by-layer assembling of weight-ratio-variable composites of sodium alginate (SA) and poly(vinyl alcohol) (PVA) into laminated structures. The design induces nonuniform hygroscopicity in the thickness direction and gives rise to strong interfacial interaction between layers, making the actuator have directional motility. A mathematical model reveals that the directional motion is driven by the chemical potential of humidity, and its energy conversion efficiency from humidity to mechanical work reaches 81.2% at 25 °C. By coating with CoCl2, the composite film of SA@PVA/CoCl2 can act as a warning sign that provides reminder information to prevent people from slipping or falling by a conspicuous red sign during a high-humidity environment. When the film is involved in a bidirectional switch, it is capable of turning on/off light-emitting diodes by humidity, showing promising potential in control over humidity-dependent devices.
Collapse
Affiliation(s)
- Huiyan Tan
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , People's Republic of China
| | - Xiunan Yu
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , People's Republic of China
| | - Yaqing Tu
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , People's Republic of China
| | - Lidong Zhang
- School of Chemistry and Molecular Engineering , East China Normal University , Shanghai 200241 , People's Republic of China
| |
Collapse
|
21
|
Melocchi A, Inverardi N, Uboldi M, Baldi F, Maroni A, Pandini S, Briatico-Vangosa F, Zema L, Gazzaniga A. Retentive device for intravesical drug delivery based on water-induced shape memory response of poly(vinyl alcohol): design concept and 4D printing feasibility. Int J Pharm 2019; 559:299-311. [DOI: 10.1016/j.ijpharm.2019.01.045] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/23/2022]
|
22
|
Yang J, Zheng Y, Sheng L, Chen H, Zhao L, Yu W, Zhao KQ, Hu P. Water Induced Shape Memory and Healing Effects by Introducing Carboxymethyl Cellulose Sodium into Poly(vinyl alcohol). Ind Eng Chem Res 2018. [DOI: 10.1021/acs.iecr.8b03230] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Jiyu Yang
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| | - Yanan Zheng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| | - Linjuan Sheng
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| | - Hongmei Chen
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| | - Lijuan Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| | - Wenhao Yu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| | - Ke-Qing Zhao
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| | - Ping Hu
- College of Chemistry and Materials Science, Sichuan Normal University, Chengdu 610066, People’s Republic of China
| |
Collapse
|
23
|
Wang W, Lai H, Cheng Z, Kang H, Wang Y, Zhang H, Wang J, Liu Y. Water-induced poly(vinyl alcohol)/carbon quantum dot nanocomposites with tunable shape recovery performance and fluorescence. J Mater Chem B 2018; 6:7444-7450. [PMID: 32254746 DOI: 10.1039/c8tb02064g] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Water-induced shape memory polymers (SMPs) show promising applications in biomedicine, biosensing, anti-counterfeiting and intelligent actuating systems. However, the dual function of shape morphing and color switching has not been achieved in the water-induced SMP system. Herein, a novel water-induced SMP with both color-switching fluorescence behavior and shape memory performance is reported. The material is fabricated by crosslinking poly(vinyl alcohol) (PVA) and pH-responsive fluorescent carbon quantum dots (CQDs). The incorporation of CQDs with PVA not only improves the shape recovery performance but also endows the material with color-switching features. To our best knowledge, such smart ability is first realized in this PVA/CQD SMP system, and this report provides a novel strategy for fabricating smart water-induced SMPs with adjustable shape recovery performance and fluorescence.
Collapse
Affiliation(s)
- Wu Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Wang W, Li C, Cho M, Ahn SH. Soft Tendril-Inspired Grippers: Shape Morphing of Programmable Polymer-Paper Bilayer Composites. ACS APPLIED MATERIALS & INTERFACES 2018; 10:10419-10427. [PMID: 29504740 DOI: 10.1021/acsami.7b18079] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Nastic movements in plants that occur in response to environmental stimuli have inspired many man-made shape-morphing systems. Tendril is an exemplification serving as a parasitic grasping component for the climbing plants by transforming from a straight shape into a coiled configuration via the asymmetric contraction of internal stratiform plant tissues. Inspired by tendrils, this study using a three-dimensional (3D) printing approach developed a class of soft grippers with preprogrammed deformations being capable of imitating the general motions of plant tendrils, including bending, spiral, and helical distortions for grasping. These grippers initially in flat configurations were tailored from a polymer-paper bilayer composite sheet fabricated via 3D printing a polymer on the paper substrate with different patterns. The rough and porous paper surface provides a printed polymer that is well-adhered to the paper substrate which in turn serves as a passive strain-limiting layer. During printing, the melted polymer filament is stretched, enabling the internal strain to be stored in the printed polymer as memory, and then it can be thermally released, which will be concurrently resisted by the paper layer, resulting in various transformations based on the different printed geometries. These obtained transformations were then used for designing grippers to grasp objects with corresponding motions. Furthermore, a fully equipped robotic tendril with three segments was reproduced, where one segment was used for grasping the object and the other two segments were used for forming a tendril-like twistless spring-like structure. This study further helps in the development of soft robots using active polymer materials for engineered systems.
Collapse
|
25
|
Xiang Z, Zhang L, Yuan T, Li Y, Sun J. Healability Demonstrates Enhanced Shape-Recovery of Graphene-Oxide-Reinforced Shape-Memory Polymeric Films. ACS APPLIED MATERIALS & INTERFACES 2018; 10:2897-2906. [PMID: 29256583 DOI: 10.1021/acsami.7b14588] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The fabrication of shape-memory polymers or films that can simultaneously heal the mechanical damage and the fatigued shape-memory function remains challenging. In this study, mechanically robust healable shape-memory polymeric films that can heal the mechanical damage and the fatigued shape-memory function in the presence of water are fabricated by layer-by-layer assembly of branched poly(ethylenimine) (bPEI)-graphene oxide (GO) complexes with poly(acrylic acid) (PAA), followed by the release of the (PAA/bPEI-GO)*n films from the underlying substrates. The free-standing (PAA/bPEI-GO0.02)*35 films made of bPEI-GO complexes with a mass ratio of 0.02 between GO nanosheets and bPEI are mechanically robust with a Young's modulus of 19.8 ± 2.1 GPa and a hardness of 0.92 ± 0.15 GPa and exhibit excellent humidity-induced healing and shape-memory functions. Benefiting from the highly efficient healing function, the (PAA/bPEI-GO0.02)*35 films can heal cuts penetrating thorough the entire film and achieve an ∼100% shape-recovery ratio for a long-term shape-memory application. Meanwhile, the shape-memory function of the mechanically damaged (PAA/bPEI-GO0.02)*35 films can be finely restored after being healed in water. The shape-memory functions of the (PAA/bPEI-GO0.02)*35 films and their healing capacity originate from the reversibility of electrostatic and hydrogen-bonding interactions induced by water between PAA and bPEI-GO complexes.
Collapse
Affiliation(s)
- Zilong Xiang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, PR China
| | - Ling Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, PR China
| | - Tao Yuan
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, PR China
| | - Yixuan Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, PR China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University , Changchun 130012, PR China
| |
Collapse
|
26
|
Water-actuated shape-memory and mechanically-adaptive poly(ethylene vinyl acetate) achieved by adding hydrophilic poly (vinyl alcohol). Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2017.11.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|