1
|
Gong H, Yao S, Zhao X, Chen F, Chen C, Cai C. Construction of an autofluorescence interference-free phosphorescence biosensor for the specific detection of TK1 mRNA. Anal Chim Acta 2024; 1303:342508. [PMID: 38609274 DOI: 10.1016/j.aca.2024.342508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/19/2024] [Indexed: 04/14/2024]
Abstract
The anti-interference ability of biosensors is critical for detection in biological samples. Fluorescence-based sensors are subject to interference from self-luminescent substances in biological matrices. Therefore, phosphorescent sensors stand out among biosensors due to their lack of self-luminescence background. In this study, a phosphorescent sensor was constructed, which can accurately detect thymidine kinase 1 (TK1) mRNA in biological samples and avoid autofluorescence interference. When there is no target, polydopamine (PDA) is used as the phosphorescence resonance energy transfer (PRET) acceptor to quench the phosphorescence of the persistently luminescent (PL) nanomaterial. When there is a target, the DNA modified by the PL nanomaterial is replaced by the hairpin H and removed away from the PDA, resulting in a rebound in phosphorescence. The phosphorescent sensor exhibits a good linear relationship in the TK1 mRNA concentration range of 0-200 nM, and the detection limit was 1.74 nM. The sensor fabricated in this study can effectively avoid interference from spontaneous fluorescence in complex biological samples, and sensitively and precisely detect TK1 mRNA in serum samples, providing a powerful tool to more accurately detect biomarkers in biological samples.
Collapse
Affiliation(s)
- Hang Gong
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, PR China; Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| | - Shufen Yao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Xiaojia Zhao
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Feng Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Chunyan Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China
| | - Changqun Cai
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, PR China.
| |
Collapse
|
2
|
Huang P, Deng H, Wang C, Zhou Y, Chen X. Cellular Trafficking of Nanotechnology-Mediated mRNA Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023:e2307822. [PMID: 37929780 DOI: 10.1002/adma.202307822] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 10/30/2023] [Indexed: 11/07/2023]
Abstract
Messenger RNA (mRNA)-based therapy has emerged as a powerful, safe, and rapidly scalable therapeutic approach that involves technologies for both mRNA itself and the delivery vehicle. Although there are some unique challenges for different applications of mRNA therapy, a common challenge for all mRNA therapeutics is the transport of mRNA into the target cell cytoplasm for sufficient protein expression. This review is focused on the behaviors at the cellular level of nanotechnology-mediated mRNA delivery systems, which have not been comprehensively reviewed yet. First, the four main therapeutic applications of mRNA are introduced, including immunotherapy, protein replacement therapy, genome editing, and cellular reprogramming. Second, common types of mRNA cargos and mRNA delivery systems are summarized. Third, strategies to enhance mRNA delivery efficiency during the cellular trafficking process are highlighted, including accumulation to the cell, internalization into the cell, endosomal escape, release of mRNA from the nanocarrier, and translation of mRNA into protein. Finally, the challenges and opportunities for the development of nanotechnology-mediated mRNA delivery systems are presented. This review can provide new insights into the future fabrication of mRNA nanocarriers with desirable cellular trafficking performance.
Collapse
Affiliation(s)
- Pei Huang
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hongzhang Deng
- School of Life Science and Technology and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Changrong Wang
- School of Life Science and Technology and Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, Xidian University, Xi'an, Shaanxi, 710126, China
| | - Yongfeng Zhou
- School of Chemistry and Chemical Engineering, Frontiers Science Center for Transformative Molecules, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical Engineering, Yong Loo Lin School of Medicine and College of Design and Engineering, National University of Singapore, Singapore, 119074, Singapore
- Nanomedicine Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore
- Clinical Imaging Research Centre, Centre for Translational Medicine, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117599, Singapore
- Institute of Molecular and Cell Biology, Agency for Science, Technology, and Research (A*STAR), 61 Biopolis Drive Proteos, Singapore, 138673, Singapore
| |
Collapse
|
3
|
Han G, Noh D, Lee H, Lee S, Kim S, Yoon HY, Lee SH. Advances in mRNA therapeutics for cancer immunotherapy: From modification to delivery. Adv Drug Deliv Rev 2023; 199:114973. [PMID: 37369262 PMCID: PMC10290897 DOI: 10.1016/j.addr.2023.114973] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/13/2023] [Accepted: 06/21/2023] [Indexed: 06/29/2023]
Abstract
RNA vaccines have demonstrated their ability to solve the issues posed by the COVID-19 pandemic. This success has led to the renaissance of research into mRNA and their nanoformulations as potential therapeutic modalities for various diseases. The potential of mRNA as a template for synthesizing proteins and protein fragments for cancer immunotherapy is now being explored. Despite the promise, the use of mRNA in cancer immunotherapy is limited by challenges, such as low stability against extracellular RNases, poor delivery efficiency to the target organs and cells, short circulatory half-life, variable expression levels and duration. This review highlights recent advances in chemical modification and advanced delivery systems that are helping to address these challenges and unlock the biological and pharmacological potential of mRNA therapeutics in cancer immunotherapy. The review concludes by discussing future perspectives for mRNA-based cancer immunotherapy, which holds great promise as a next-generation therapeutic modality.
Collapse
Affiliation(s)
- Geonhee Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea
| | - Dahye Noh
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Hwarang-ro14-gil 5, Seongbuk-gu, Seoul, Republic of Korea 02792; Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Hokyung Lee
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sangmin Lee
- Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Sehoon Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea; Department of Fundamental Pharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 1 Hoegi-dong, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Hong Yeol Yoon
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Hwarangno 14-gil 5, Seongbuk-gu, Seoul 02792, Republic of Korea; Division of Bio-Medical Science &Technology, KIST School, University of Science and Technology, Hwarang-ro14-gil 5, Seongbuk-gu, Seoul, Republic of Korea 02792.
| | - Soo Hyeon Lee
- Molecular Surgery Laboratory, Byers Eye Institute, Department of Ophthalmology, Stanford University, Palo Alto, CA 94304, USA.
| |
Collapse
|
4
|
Liu X, He C, Huang Q, Yu M, Qiu Z, Cheng H, Yang Y, Hao X, Wang X. A facile visualized solid-phase detection of virus-specific nucleic acid sequences through an upconversion activated linear luminescence recovery process. Analyst 2022; 147:2378-2387. [DOI: 10.1039/d2an00382a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the LRET between UCNPs and AuNPs, a solid-phase biosensor was developed for detection of virus-specific nucleic acid sequences by the naked eye, and is expected to become a fast, facile, efficient and reliable POCT platform.
Collapse
Affiliation(s)
- Xiaorong Liu
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
| | - Chaonan He
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
| | - Qi Huang
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
| | - Mengmeng Yu
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang, Jiangxi, 330088, P. R. China
| | - Zhuang Qiu
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang, Jiangxi, 330088, P. R. China
| | - Haoxin Cheng
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
| | - Yifei Yang
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang, Jiangxi, 330088, P. R. China
| | - Xian Hao
- School of Public Health & Jiangxi Provincial Key Laboratory of Preventive Medicine, Nanchang, Jiangxi, 330088, P. R. China
| | - Xiaolei Wang
- College of Chemistry, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
- The National Engineering Research Center for Bioengineering Drugs and the Technologies, Institute of Translational Medicine, Nanchang University, Nanchang, Jiangxi, 330088, P. R. China
| |
Collapse
|
5
|
Li B, Zhang X, Dong Y. Nanoscale platforms for messenger RNA delivery. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1530. [PMID: 29726120 PMCID: PMC6443240 DOI: 10.1002/wnan.1530] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 03/27/2018] [Accepted: 04/01/2018] [Indexed: 12/27/2022]
Abstract
Messenger RNA (mRNA) has become a promising class of drugs for diverse therapeutic applications in the past few years. A series of clinical trials are ongoing or will be initiated in the near future for the treatment of a variety of diseases. Currently, mRNA-based therapeutics mainly focuses on ex vivo transfection and local administration in clinical studies. Efficient and safe delivery of therapeutically relevant mRNAs remains one of the major challenges for their broad applications in humans. Thus, effective delivery systems are urgently needed to overcome this limitation. In recent years, numerous nanoscale biomaterials have been constructed for mRNA delivery in order to protect mRNA from extracellular degradation and facilitate endosomal escape after cellular uptake. Nanoscale platforms have expanded the feasibility of mRNA-based therapeutics, and enabled its potential applications to protein replacement therapy, cancer immunotherapy, therapeutic vaccines, regenerative medicine, and genome editing. This review focuses on recent advances, challenges, and future directions in nanoscale platforms designed for mRNA delivery, including lipid and lipid-derived nanoparticles, polymer-based nanoparticles, protein derivatives mRNA complexes, and other types of nanomaterials. This article is categorized under: Nanotechnology Approaches to Biology > Nanoscale Systems in Biology Biology-Inspired Nanomaterials > Lipid-Based Structures Biology-Inspired Nanomaterials > Nucleic Acid-Based Structures.
Collapse
Affiliation(s)
- Bin Li
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Xinfu Zhang
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
| | - Yizhou Dong
- Division of Pharmaceutics and Pharmaceutical Chemistry, College of Pharmacy, The Ohio State University, Columbus, Ohio
- Department of Biomedical Engineering, The Ohio State University, Columbus, Ohio
- The Center for Clinical and Translational Science, The Ohio State University, Columbus, Ohio
- James Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio
- Dorothy M. Davis Heart & Lung Research Institute, The Ohio State University, Columbus, Ohio
- Department of Radiation Oncology, The Ohio State University, Columbus, Ohio
| |
Collapse
|
6
|
Chan KP, Chao SH, Kah JCY. Exploiting Protein Corona around Gold Nanoparticles Conjugated to p53 Activating Peptides To Increase the Level of Stable p53 Proteins in Cells. Bioconjug Chem 2019; 30:920-930. [DOI: 10.1021/acs.bioconjchem.9b00032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Kian Ping Chan
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, University Hall, Tan Chin Tuan Wing, Level 04, #04-02, 21 Lower Kent Ridge, Singapore 119077
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, 20 Biopolis Way, #06-01 Centros, Singapore 138668
| | - Sheng-Hao Chao
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, Singapore, 20 Biopolis Way, #06-01 Centros, Singapore 138668
- Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, Blk MD4, Level 3, Singapore 117597
| | - James Chen Yong Kah
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, University Hall, Tan Chin Tuan Wing, Level 04, #04-02, 21 Lower Kent Ridge, Singapore 119077
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Blk E4, #04-08, Singapore 117583
| |
Collapse
|
7
|
Chan KP, Chao SH, Kah JCY. Enhanced Secretion of Functional Insulin with DNA-Functionalized Gold Nanoparticles in Cells. ACS Biomater Sci Eng 2019; 5:1602-1610. [DOI: 10.1021/acsbiomaterials.9b00032] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Kian Ping Chan
- National University of Singapore Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, University Hall, Tan Chin Tuan Wing, Level 04, #04-02, 21 Lower Kent Ridge, Singapore 119077
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668
| | - Sheng-Hao Chao
- Bioprocessing Technology Institute, Agency for Science, Technology and Research, 20 Biopolis Way, #06-01 Centros, Singapore 138668
- Department of Microbiology and Immunology, National University of Singapore, 5 Science Drive 2, Blk MD4, Level 3, Singapore 117597
| | - James Chen Yong Kah
- National University of Singapore Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, University Hall, Tan Chin Tuan Wing, Level 04, #04-02, 21 Lower Kent Ridge, Singapore 119077
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Blk E4, #04-08, Singapore 117583
| |
Collapse
|
8
|
Xiong Q, Lee GY, Ding J, Li W, Shi J. Biomedical applications of mRNA nanomedicine. NANO RESEARCH 2018; 11:5281-5309. [PMID: 31007865 PMCID: PMC6472920 DOI: 10.1007/s12274-018-2146-1] [Citation(s) in RCA: 85] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 07/02/2018] [Accepted: 07/08/2018] [Indexed: 05/20/2023]
Abstract
As an attractive alternative to plasmid DNA, messenger RNA (mRNA) has recently emerged as a promising class of nucleic acid therapeutics for biomedical applications. Advances in addressing the inherent shortcomings of mRNA and in the development of nanoparticle-based delivery systems have prompted the development and clinical translation of mRNA-based medicines. In this review, we discuss the chemical modification strategies of mRNA to improve its stability, minimize immune responses, and enhance translational efficacy. We also highlight recent progress in nanoparticle-based mRNA delivery. Considerable attention is given to the increasingly widespread applications of mRNA nanomedicine in the biomedical fields of vaccination, protein-replacement therapy, gene editing, and cellular reprogramming and engineering.
Collapse
Affiliation(s)
- Qingqing Xiong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- Department of Hepatobiliary Cancer, Tianjin Medical University Cancer Institute & Hospital, Tianjin, 300060 China
| | - Gha Young Lee
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Jianxun Ding
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| | - Wenliang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
- School of Pharmacy, Jilin Medical University, Jilin, 132013 China
| | - Jinjun Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115 USA
| |
Collapse
|
9
|
Rodriguez-Quijada C, Sánchez-Purrà M, de Puig H, Hamad-Schifferli K. Physical Properties of Biomolecules at the Nanomaterial Interface. J Phys Chem B 2018; 122:2827-2840. [DOI: 10.1021/acs.jpcb.8b00168] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
| | - Maria Sánchez-Purrà
- Department of Engineering, University of Massachusetts, Boston, Massachusetts 02125, United States
| | - Helena de Puig
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Kimberly Hamad-Schifferli
- Department of Engineering, University of Massachusetts, Boston, Massachusetts 02125, United States
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Chan KP, Chao SH, Kah JCY. Universal mRNA Translation Enhancement with Gold Nanoparticles Conjugated to Oligonucleotides with a Poly(T) Sequence. ACS APPLIED MATERIALS & INTERFACES 2018; 10:5203-5212. [PMID: 29363938 DOI: 10.1021/acsami.7b16390] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
DNA-conjugated gold nanoparticles (AuNPs) have been shown to enhance the translation of mRNA. However, the specific sequence on the DNA dictates the specific mRNA to be enhanced. This study describes poly(thymine)-functionalized AuNPs (AuNP-p(T)DNA) capable of enhancing the translation of any mRNA template that is incorporated into pcDNA6 vector with bovine growth hormone (BGH) polyadenylation signal (P(A)). We demonstrated this by incorporating four genes: green fluorescence protein (GFP), general control nonderepressible 5 (GCN5), cAMP-responsive element binding protein 1 (CREB1), and X-box-binding protein 1-spliced (XBP-1S) separately into pcDNA6 vector with BGH P(A) before their expression in HeLa lysate. The addition of AuNP-p(T)DNA to HeLa lysate containing GFP, GCN5, CREB1, and XBP-1S mRNA increased protein synthesis 1.80, 1.99, 1.95, and 2.20 times, respectively. Similar translation enhancement was also observed in a multiplex reaction containing the mRNA of three genes together in the lysate. Complementary p(T)DNA hybridization to the poly(A) tail of the mRNA was critical as the removal of either p(T)DNA or BGH P(A) in XBP-1S mRNA or the replacement of p(T)DNA with p(A)DNA reduced the translation back to baseline level. Finally, an optimum length of 25 nucleotides for the DNA oligomer and a AuNP-p(T)DNA:mRNA ratio of 0.658 achieved a 3.08-fold translation enhancement. The AuNP-p(T)DNA nanoconstruct could be incorporated into commercial cell-free protein synthesis kits as a universal translation enhancer.
Collapse
Affiliation(s)
- Kian Ping Chan
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS) , #05-01, 28 Medical Drive, Singapore 117456, Singapore
- Bioprocessing Technology Institute, Agency for Science, Technology and Research , 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
- Department of Biomedical Engineering, National University of Singapore , 4 Engineering Drive 3, Blk E4, #04-08, Singapore 117583, Singapore
| | - Sheng-Hao Chao
- Bioprocessing Technology Institute, Agency for Science, Technology and Research , 20 Biopolis Way, #06-01 Centros, Singapore 138668, Singapore
- Department of Microbiology and Immunology, National University of Singapore , 5 Science Drive 2, Blk MD4, Level 3, Singapore 117597, Singapore
| | - James Chen Yong Kah
- NUS Graduate School for Integrative Sciences and Engineering, Centre for Life Sciences (CeLS) , #05-01, 28 Medical Drive, Singapore 117456, Singapore
- Department of Biomedical Engineering, National University of Singapore , 4 Engineering Drive 3, Blk E4, #04-08, Singapore 117583, Singapore
| |
Collapse
|
11
|
Charbgoo F, Nejabat M, Abnous K, Soltani F, Taghdisi SM, Alibolandi M, Thomas Shier W, Steele TW, Ramezani M. Gold nanoparticle should understand protein corona for being a clinical nanomaterial. J Control Release 2018; 272:39-53. [DOI: 10.1016/j.jconrel.2018.01.002] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 01/02/2018] [Accepted: 01/03/2018] [Indexed: 12/16/2022]
|
12
|
Yeo ELL, Thong PSP, Soo KC, Kah JCY. Protein corona in drug delivery for multimodal cancer therapy in vivo. NANOSCALE 2018; 10:2461-2472. [PMID: 29336463 DOI: 10.1039/c7nr08509e] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The protein corona is inevitably formed on nanoparticles (NPs) when they are introduced in vivo and has been associated with a reduction in targeting yield, immune recognition and rapid blood clearance, leading to poor tumor accumulation. We have recently shown that it is possible to exploit the protein corona for drug delivery by exploiting it for loading and triggering the release of a photosensitizer Chlorin e6 (Ce6) for simultaneous photodynamic (PDT) and photothermal therapy (PTT) in vitro. Here, we extended our previous in vitro studies to evaluate its effectiveness in vivo. Specifically, we pre-formed the protein corona from mouse serum (MS) around gold nanorods (NRs) and loaded it with Ce6 to form NR-MS-Ce6. The intravenous delivery of NR-MS-Ce6 at a dose of 10 mg kg-1 Au loaded with 9.63 μg kg-1 Ce6 into tumor-bearing NCr nude mice resulted in their tumor accumulation reaching a peak concentration of 560.3 μg Au per kg tissue (0.0752% dose) within 6 h post-injection. Subsequent localized laser irradiation of the xenograft tumor resulted in a significant tumor temperature increase of 16.85 °C within 20 min. Combined with the simultaneous reactive oxygen species (ROS) production by Ce6 for PDT, complete tumor regression was achieved within 19 days with no tumor regrowth up to 31 days. Similar to other NPs, significant gold accumulation was observed in the major reticuloendothelial system (RES) organs, particularly the liver and spleen, although no acute toxicity was observed histologically 31 days post-treatment. Our results demonstrated for the first time an in vivo application of the protein corona around NPs in the loading and delivery of drugs in small animals. The ease of drug loading and the biocompatibility of the endogenous serum-based protein corona could make it useful for drug delivery and therapeutic applications instead of merely being considered as a biological artefact to be eliminated.
Collapse
Affiliation(s)
- Eugenia Li Ling Yeo
- Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Blk E4, #04-08, Singapore 117583.
| | | | | | | |
Collapse
|
13
|
In-vitro in-vivo correlation (IVIVC) in nanomedicine: Is protein corona the missing link? Biotechnol Adv 2017; 35:889-904. [DOI: 10.1016/j.biotechadv.2017.08.003] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 08/04/2017] [Accepted: 08/19/2017] [Indexed: 12/17/2022]
|
14
|
Zheng B, Liu X, Wu Y, Yan L, Du J, Dai J, Xiong Q, Guo Y, Xiao D. Surfactant-free gold nanoparticles: rapid and green synthesis and their greatly improved catalytic activities for 4-nitrophenol reduction. Inorg Chem Front 2017. [DOI: 10.1039/c7qi00262a] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Surfactant-free AuNPs/r-CDs, synthesized by a green and rapid strategy, exhibit greatly improved catalytic activity for 4-nitrophenol reduction.
Collapse
Affiliation(s)
- Baozhan Zheng
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Xiaoxia Liu
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Yu Wu
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Lei Yan
- School of Criminal Investigation
- Southwest University of Political Science and Law
- Chongqing 401120
- China
| | - Juan Du
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Jianyuan Dai
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Qing Xiong
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Yong Guo
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| | - Dan Xiao
- College of Chemistry
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|