1
|
Programmable, Universal DNAzyme Amplifier Supporting Pancreatic Cancer-Related miRNAs Detection. CHEMOSENSORS 2022. [DOI: 10.3390/chemosensors10070276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The abnormal expression of miRNA is closely related to the occurrence of pancreatic cancer. Herein, a programmable DNAzyme amplifier for the universal detection of pancreatic cancer-related miRNAs was proposed based on its programmability through the rational design of sequences. The fluorescence signal recovery of the DNAzyme amplifier showed a good linear relationship with the concentration of miR-10b in the range of 10–60 nM, with a detection limit of 893 pM. At the same time, this method displayed a high selectivity for miR-10b, with a remarkable discrimination of a single nucleotide difference. Furthermore, this method was also successfully used to detect miR-21 in the range of 10–60 nM based on the programmability of the DNA amplifier, exhibiting the universal application feasibility of this design. Overall, the proposed programmable DNAzyme cycle amplifier strategy shows promising potential for the simple, rapid, and universal detection of pancreatic cancer-related miRNAs, which is significant for improving the accuracy of pancreatic cancer diagnosis.
Collapse
|
2
|
Wang X, Lv W, Wu J, Li H, Li F. In situ generated nanozyme-initiated cascade reaction for amplified surface plasmon resonance sensing. Chem Commun (Camb) 2020; 56:4571-4574. [DOI: 10.1039/d0cc01117g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A novel nanozyme-amplified surface plasmon resonance (SPR) sensor was successfully developed based on target-induced in situ generation of AuNPs and a AuNP-guided cascade amplification reaction, with Hg2+ as the target analyte.
Collapse
Affiliation(s)
- Xin Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao, 266109
- People's Republic of China
| | - Wenxin Lv
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao, 266109
- People's Republic of China
| | - Jiahui Wu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao, 266109
- People's Republic of China
| | - Haiyin Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao, 266109
- People's Republic of China
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao, 266109
- People's Republic of China
| |
Collapse
|
4
|
Guk K, Hwang SG, Lim J, Son HY, Choi Y, Huh YM, Kang T, Jung J, Lim EK. Fluorescence amplified sensing platforms enabling miRNA detection by self-circulation of a molecular beacon circuit. Chem Commun (Camb) 2019; 55:3457-3460. [PMID: 30735212 DOI: 10.1039/c9cc00351g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We have proposed a novel strategy for miRNA detection through enzyme-free signal amplification by self-circulation of the hybridization between the miRNAs and molecular beacon (MB) circuits. Unlike general MB-based miRNA detection based on the one-to-one (1 : 1) hybridization between MBs and miRNA, our system consists of four species of MBs (MBs A, B, C and D) (MB circuits) and is activated by a hybridization chain reaction. MBs stably coexist as hairpin structures that hardly show fluorescence signals in the absence of target miRNA. After miRNA detection, this MB circuit is able to generate fluorescence signals and amplify the fluorescence signal, contributing to improvement in detection sensitivity under iso-thermal conditions without an enzyme. Furthermore, in vitro and in vivo studies have proven that MB circuits can detect low levels of miRNA with high sensitivity, compared to when only one MB alone is used. Therefore, the MB circuits can provide a useful platform for target miRNA detection.
Collapse
Affiliation(s)
- Kyeonghye Guk
- BioNano Technology Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Lone SA, Sadhu KK. Formation of Growth-Mediated Gold Nanoflowers: Roles of the Reducing Agent and Amine-Modified, Single-Strand DNA Sequences. Chempluschem 2019; 84:112-118. [DOI: 10.1002/cplu.201800529] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 11/28/2018] [Indexed: 12/14/2022]
Affiliation(s)
- Shahbaz Ahmad Lone
- Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee 247667, Uttarakhand India
| | - Kalyan K. Sadhu
- Department of Chemistry; Indian Institute of Technology Roorkee; Roorkee 247667, Uttarakhand India
| |
Collapse
|
6
|
Jinn WS, Shin MK, Kang B, Oh S, Moon CE, Mun B, Ji YW, Lee HK, Haam S. A visually distinguishable light interfering bioresponsive silica nanoparticle hydrogel sensor fabricated through the molecular imprinting technique. J Mater Chem B 2019; 7:7120-7128. [DOI: 10.1039/c9tb01579e] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Methods of the early detection of diseases are based on recognition of the smallest change in the levels of a disease-specific biomarker in body fluids.
Collapse
Affiliation(s)
- Woo Seok Jinn
- Department of Chemical and Biomolecular Engineering
- College of Engineering
- Yonsei University
- Seoul 120-749
- Republic of Korea
| | - Moo-Kwang Shin
- Department of Chemical and Biomolecular Engineering
- College of Engineering
- Yonsei University
- Seoul 120-749
- Republic of Korea
| | - Byunghoon Kang
- BioNanotechnology Research Center
- Korea Research Institue of Bioscience and Biotechnology(KRIBB)
- Daejeon 34141
- Republic of Korea
| | - Seungjae Oh
- Department of Radiology
- College of Medicine
- Yonsei University
- Seoul 120-752
- Republic of Korea
| | - Chae-Eun Moon
- Department of Ophthalmology
- College of Medicine
- Yonsei University
- Seoul 120-752
- Republic of Korea
| | - Byeonggeol Mun
- Department of Chemical and Biomolecular Engineering
- College of Engineering
- Yonsei University
- Seoul 120-749
- Republic of Korea
| | - Yong Woo Ji
- Department of Ophthalmology
- National Health Insurance Service Ilsan Hospital
- Goyang 10444
- Republic of Korea
| | - Hyung Keun Lee
- Department of Ophthalmology
- College of Medicine
- Yonsei University
- Seoul 120-752
- Republic of Korea
| | - Seungjoo Haam
- Department of Chemical and Biomolecular Engineering
- College of Engineering
- Yonsei University
- Seoul 120-749
- Republic of Korea
| |
Collapse
|
7
|
Zhu D, Zhao D, Huang J, Zhu Y, Chao J, Su S, Li J, Wang L, Shi J, Zuo X, Weng L, Li Q, Wang L. Poly-adenine-mediated fluorescent spherical nucleic acid probes for live-cell imaging of endogenous tumor-related mRNA. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2018; 14:1797-1807. [PMID: 29777876 DOI: 10.1016/j.nano.2018.05.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 04/22/2018] [Accepted: 05/04/2018] [Indexed: 12/22/2022]
Abstract
Identification of tumor-related mRNA in living cells hold great promise for early cancer diagnosis and pathological research. Herein, we present poly-adenine (polyA)-mediated fluorescent spherical nucleic acid (FSNA) probes for intracellular mRNA detection with regulable sensitivities by programmably adjusting the loading density of DNA on gold nano-interface. Gold nanoparticles (AuNPs) functionalized with polyA-tailed recognition sequences were hybridized to fluorescent "reporter" strands to fabricate fluorescence-quenched FSNA probes. While exposed to target gene, the "reporter" strands were released from FSNA through strand displacement and fluorescence was recovered. With polyA20 tail as the attaching block, the detection limit of FSNA probes was calculated to be 0.31 nM, which is ~55 fold lower than that of thiolated probes without surface density regulation. Quantitative intracellular mRNA detection and imaging could be achieved with polyA-mediated FSNA probes within 2 hours, indicating their application potential in rapid and sensitive intracellular target imaging.
Collapse
Affiliation(s)
- Dan Zhu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Dongxia Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China; College of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Jiaxuan Huang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Yu Zhu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Jie Chao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Shao Su
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China
| | - Jiang Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Lihua Wang
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China
| | - Jiye Shi
- UCB Pharma, Slough, United Kingdom
| | - Xiaolei Zuo
- Institute of Molecular Medicine, Renji Hospital, School of Medicine and School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Lixing Weng
- College of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing, China.
| | - Qian Li
- Division of Physical Biology & Bioimaging Center, Shanghai Synchrotron Radiation Facility, Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, China.
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, China.
| |
Collapse
|
8
|
Grijalvo S, Alagia A, Jorge AF, Eritja R. Covalent Strategies for Targeting Messenger and Non-Coding RNAs: An Updated Review on siRNA, miRNA and antimiR Conjugates. Genes (Basel) 2018; 9:E74. [PMID: 29415514 PMCID: PMC5852570 DOI: 10.3390/genes9020074] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/11/2022] Open
Abstract
Oligonucleotide-based therapy has become an alternative to classical approaches in the search of novel therapeutics involving gene-related diseases. Several mechanisms have been described in which demonstrate the pivotal role of oligonucleotide for modulating gene expression. Antisense oligonucleotides (ASOs) and more recently siRNAs and miRNAs have made important contributions either in reducing aberrant protein levels by sequence-specific targeting messenger RNAs (mRNAs) or restoring the anomalous levels of non-coding RNAs (ncRNAs) that are involved in a good number of diseases including cancer. In addition to formulation approaches which have contributed to accelerate the presence of ASOs, siRNAs and miRNAs in clinical trials; the covalent linkage between non-viral vectors and nucleic acids has also added value and opened new perspectives to the development of promising nucleic acid-based therapeutics. This review article is mainly focused on the strategies carried out for covalently modifying siRNA and miRNA molecules. Examples involving cell-penetrating peptides (CPPs), carbohydrates, polymers, lipids and aptamers are discussed for the synthesis of siRNA conjugates whereas in the case of miRNA-based drugs, this review article makes special emphasis in using antagomiRs, locked nucleic acids (LNAs), peptide nucleic acids (PNAs) as well as nanoparticles. The biomedical applications of siRNA and miRNA conjugates are also discussed.
Collapse
Affiliation(s)
- Santiago Grijalvo
- Institute of Advanced Chemistry of Catalonia (IQAC, CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Adele Alagia
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Andreia F Jorge
- Coimbra Chemistry Centre, (CQC), Department of Chemistry, University of Coimbra, Rua Larga, 3004-535 Coimbra, Portugal.
| | - Ramon Eritja
- Institute of Advanced Chemistry of Catalonia (IQAC, CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain.
- Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|