1
|
Bae M, Oh JK, Liu S, Nagabandi N, Yegin Y, DeFlorio W, Cisneros-Zevallos L, Scholar EMA. Nanotoxicity of 2D Molybdenum Disulfide, MoS 2, Nanosheets on Beneficial Soil Bacteria, Bacillus cereus and Pseudomonas aeruginosa. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1453. [PMID: 34072663 PMCID: PMC8229097 DOI: 10.3390/nano11061453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 12/21/2022]
Abstract
Concerns arising from accidental and occasional releases of novel industrial nanomaterials to the environment and waterbodies are rapidly increasing as the production and utilization levels of nanomaterials increase every day. In particular, two-dimensional nanosheets are one of the most significant emerging classes of nanomaterials used or considered for use in numerous applications and devices. This study deals with the interactions between 2D molybdenum disulfide (MoS2) nanosheets and beneficial soil bacteria. It was found that the log-reduction in the survival of Gram-positive Bacillus cereus was 2.8 (99.83%) and 4.9 (99.9988%) upon exposure to 16.0 mg/mL bulk MoS2 (macroscale) and 2D MoS2 nanosheets (nanoscale), respectively. For the case of Gram-negative Pseudomonas aeruginosa, the log-reduction values in bacterial survival were 1.9 (98.60%) and 5.4 (99.9996%) for the same concentration of bulk MoS2 and MoS2 nanosheets, respectively. Based on these findings, it is important to consider the potential toxicity of MoS2 nanosheets on beneficial soil bacteria responsible for nitrate reduction and nitrogen fixation, soil formation, decomposition of dead and decayed natural materials, and transformation of toxic compounds into nontoxic compounds to adequately assess the environmental impact of 2D nanosheets and nanomaterials.
Collapse
Affiliation(s)
- Michael Bae
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (M.B.); (S.L.); (N.N.); (Y.Y.); (W.D.)
| | - Jun Kyun Oh
- Department of Polymer Science and Engineering, Dankook University, 152 Jukjeon-ro, Suji-gu, Yongin-si 16890, Gyeonggi-do, Korea;
| | - Shuhao Liu
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (M.B.); (S.L.); (N.N.); (Y.Y.); (W.D.)
| | - Nirup Nagabandi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (M.B.); (S.L.); (N.N.); (Y.Y.); (W.D.)
| | - Yagmur Yegin
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (M.B.); (S.L.); (N.N.); (Y.Y.); (W.D.)
| | - William DeFlorio
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (M.B.); (S.L.); (N.N.); (Y.Y.); (W.D.)
| | - Luis Cisneros-Zevallos
- Department of Nutrition and Food Science, Texas A&M University, College Station, TX 77843, USA;
- Department of Horticultural Science, Texas A&M University, College Station, TX 77843, USA
| | - Ethan M. A. Scholar
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA; (M.B.); (S.L.); (N.N.); (Y.Y.); (W.D.)
- Department of Materials Science and Engineering, Texas A&M University, College Station, TX 77843, USA
| |
Collapse
|
2
|
Wu X, Gao Y, Yao H, Sun K, Fan R, Li X, An Y, Lei Y, Zhang Y. Flexible and transparent polymer/cellulose nanocrystal nanocomposites with high thermal conductivity for thermal management application. J Appl Polym Sci 2019. [DOI: 10.1002/app.48864] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Xinfeng Wu
- College of Ocean Science and EngineeringShanghai Maritime University Shanghai 201306 China
| | - Yuan Gao
- College of Ocean Science and EngineeringShanghai Maritime University Shanghai 201306 China
| | - Hang Yao
- Key Laboratory of Advanced Technologies of Materials, Ministry of EducationSouthwest Jiaotong University Chengdu 610031 China
| | - Kai Sun
- College of Ocean Science and EngineeringShanghai Maritime University Shanghai 201306 China
| | - Runhua Fan
- College of Ocean Science and EngineeringShanghai Maritime University Shanghai 201306 China
| | - Xiaofeng Li
- College of Ocean Science and EngineeringShanghai Maritime University Shanghai 201306 China
| | - Yan An
- College of Ocean Science and EngineeringShanghai Maritime University Shanghai 201306 China
| | - Yanhua Lei
- College of Ocean Science and EngineeringShanghai Maritime University Shanghai 201306 China
| | - Yuliang Zhang
- College of Ocean Science and EngineeringShanghai Maritime University Shanghai 201306 China
| |
Collapse
|
3
|
Yue X, Zhang T, Yang D, Qiu F, Li Z, Wei G, Qiao Y. Ag nanoparticles coated cellulose membrane with high infrared reflection, breathability and antibacterial property for human thermal insulation. J Colloid Interface Sci 2018; 535:363-370. [PMID: 30316123 DOI: 10.1016/j.jcis.2018.10.009] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/28/2018] [Accepted: 10/04/2018] [Indexed: 12/13/2022]
Abstract
To maintain personal thermal comfort in cold weather, indoor heating consumes large amount of energy and is a primary source of greenhouse gas emission. Traditional clothes are too thick for thermal comfort in cold outdoor environment, resulting the lower wearing comfort. In this work, a multifunctional Ag nanoparticles/cellulose fibers thermal insulation membrane starting from waste paper cellulose fibers was prepared via simple silver mirror reaction and subsequent vacuum filtration process to improve the infrared reflection properties of membranes for human thermal insulation. The sphere-like Ag nanoparticles were tightly anchored on surface of waste paper cellulose fibers, forming an Ag nanoparticles infrared radiation reflection coating with high infrared reflectance, resulting in high thermal insulation capacity of the thermal insulation membrane. In addition, Ag nanoparticles endow the thermo insulation membrane with excellent antibacterial activity, and the thermo insulation membranes can effectively inhibit the growth of both Staphylococcus aureus and Escherichia coli. In this thermal insulation system, the thermo insulation membranes show superhydrophilicity and porosity, which allow the membranes to be breathable for comfortable wearing feeling. These promising results including high infrared reflection for high thermal insolating, high breathability for wearing comfort, and excellent antibacterial activity make the Ag/cellulose thermo insulation membranes promising candidates for applications in human thermal management, energy regulation and other facilities.
Collapse
Affiliation(s)
- Xuejie Yue
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Tao Zhang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| | - Dongya Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Fengxian Qiu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China.
| | - Zhangdi Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Gengyao Wei
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, Jiangsu Province, China
| | - Yu Qiao
- School of Environmental and Chemical Engineering, Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao 066000, Hebei Province, China
| |
Collapse
|
4
|
Scott RS, Veinot AJ, Stack DL, Gormley PT, Khuong BN, Vogels CM, Masuda JD, Baerlocher FJ, MacCormack TJ, Westcott SA. Synthesis, reactivity, and antimicrobial properties of boron-containing 4-ethyl-3-thiosemicarbazide derivatives. CAN J CHEM 2018. [DOI: 10.1139/cjc-2018-0108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The addition of 4-ethyl-3-thiosemicarbazide to benzaldehyde and boronic acid containing derivatives afforded the corresponding thiosemicarbazones (1–3) or benzodiazaborines (4–6) depending on the position of the boronic acid within the ring. All compounds have been characterized fully including an X-ray diffraction study of the methoxy-containing benzodiazaborine 6. Attempts to coordinate thiosemicarbazones 2 and 3 to palladium(II) acetate were unsuccessful; however, addition of the non-boron-containing derivative 1 to palladium afforded complex 7 whose molecular structure was determined by an X-ray diffraction study. The initial bioactivities of compounds 1–7 were examined against two fungi, Aspergillus niger and Saccharomyces cerevisiae, and two bacteria, Bacillus cereus and Pseudomonas aeruginosa.
Collapse
Affiliation(s)
- Ryan S. Scott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Alex J. Veinot
- Department of Chemistry, Saint Mary’s University, Halifax, NS B3H 3C3, Canada
| | - Darcie L. Stack
- Department of Chemistry, Saint Mary’s University, Halifax, NS B3H 3C3, Canada
| | - Patrick T. Gormley
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - B. Ninh Khuong
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Christopher M. Vogels
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Jason D. Masuda
- Department of Chemistry, Saint Mary’s University, Halifax, NS B3H 3C3, Canada
| | - Felix J. Baerlocher
- Department of Biology, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Tyson J. MacCormack
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| | - Stephen A. Westcott
- Department of Chemistry and Biochemistry, Mount Allison University, Sackville, NB E4L 1G8, Canada
| |
Collapse
|
5
|
Nagabandi N, Yegin C, Feng X, King C, Oh JK, Scholar EA, Narumanchi S, Akbulut M. Chemically linked metal-matrix nanocomposites of boron nitride nanosheets and silver as thermal interface materials. NANOTECHNOLOGY 2018; 29:105706. [PMID: 29315082 DOI: 10.1088/1361-6528/aaa668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Herein, novel hybrid nanocomposite thermal interface materials (TIMs) relying on the chemical linkage of silver, boron nitride nanosheets (BNNSs), and organic ligands are reported. These TIMs were prepared using a co-electrodeposition/chemisorption approach where the electrolytic reduction of silver ions into silver nano-/micro-crystals was coupled with the conjugation of ligand-coated nanosheets onto silver crystals. Furthermore, the influence of the bond strength of silver/nanosheet links on the thermal, mechanical, and structural properties is investigated using a combination of techniques including laser flash analysis, phase-sensitive transient thermoreflectance, nanoindentation, and electron microscopy. The internal nanostructure was found to be strongly dependent on the linker chemistry. While the chemical grafting of 4-cyano-benzoyl chloride (CBC) and 2-mercapto-5-benzimidazole carboxylic acid (MBCA) on BNNSs led to the uniform distribution of functionalized-nanosheets in the silver crystal matrix, the physical binding of 4-bromo-benzoyl chloride linkers on nanosheets caused the aggregation and phase separation. The thermal conductivity was 236-258 W m-1 K and 306-321 W m-1 K for physically and chemically conjugated TIMs, respectively, while their hardness varied from 400-495 MPa and from 240 to 360 MPa, respectively. The corresponding ratio of thermal conductivity to hardness, which is a critical parameter controlling the performance of TIMs, was ultrahigh for the chemically conjugated TIMs: 1.3 × 10-6 m2 K-1 s for MBCA-BNNS and 8.5 × 10-7 m2 K-1 s for CBC-BNNS. We anticipate that these materials can satisfy some of the emerging thermal management needs arising from the improved performance and efficiency, miniaturization, and/or high throughput of electronic devices, energy storage devices, energy conversion systems, light-emitting diodes, and telecommunication components.
Collapse
Affiliation(s)
- N Nagabandi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843-3122, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Hao L, Chen IC, Oh JK, Nagabandi N, Bassan F, Liu S, Scholar E, Zhang L, Akbulut M, Jiang B. Nanocomposite Foam Involving Boron Nitride Nanoplatelets and Polycaprolactone: Porous Structures with Multiple Length Scales for Oil Spill Cleanup. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.7b03911] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Li Hao
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - I-Cheng Chen
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Jun Kyun Oh
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Nirup Nagabandi
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Felipe Bassan
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Shuhao Liu
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
| | - Ethan Scholar
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| | - Luhong Zhang
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Mustafa Akbulut
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
- Department of Materials Science and Engineering, Texas A&M University, College Station, Texas 77843-3003, United States
- Texas A&M Energy Institute, Texas A&M University, College Station, Texas 77843-3372, United States
| | - Bin Jiang
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| |
Collapse
|