1
|
Prasannatha B, Ganivada MN, Nalla K, Kanade SR, Jana T. Hierarchical Structures of Amino Acid Derived Polyhydroxyurethanes: Promising Candidates as Drug Carriers and Cell Adhesive Scaffolds. ACS APPLIED BIO MATERIALS 2024; 7:7719-7729. [PMID: 39495894 DOI: 10.1021/acsabm.4c01282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
In this study, we examined the self-assembly of a series of biodegradable and biocompatible amino acid-based polyhydroxyurethanes (PHUs), investigating the structural influence of these polymers on their self-assembly and the resulting morphological features. The presence of hydrophilic and hydrophobic segments, along with carbonyl urethane, ester, and hydroxyl groups in the PHU backbone, facilitates intermolecular hydrogen bonding, enabling the formation of self-assemblies with hierarchical nanodimensional morphologies. We determined the critical aggregation concentration (CAC) and found that it largely depends on the PHU's structure. In-depth morphological studies demonstrated that the evolution of morphology proceeds in four steps: (1) the initial formation of micelles, which act as seeds at very low concentrations, (2) the elongation of these micelles into nanorod or nanopalette shapes below the CAC range, (3) the epitaxial growth of nanofibers at the CAC, and (4) the complete formation of fibrous mats above the CAC. Additionally, these hierarchical structures were utilized for the encapsulation and release of the drug doxorubicin (DOX). We observed that 75% of the encapsulated DOX was readily released in a mildly acidic environment, similar to the physiological conditions of cancer cells. Cellular uptake studies confirmed the effective uptake of the drug-loaded nanoassemblies into the cytoplasm of cells. Our studies also confirmed that these self-assembled structures can serve as effective cell adhesive scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
| | | | - Kirankumar Nalla
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Santosh Raja Kanade
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad 500046, India
| | - Tushar Jana
- School of Chemistry, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|
2
|
Cao Z, Zuo X, Liu X, Xu G, Yong KT. Recent progress in stimuli-responsive polymeric micelles for targeted delivery of functional nanoparticles. Adv Colloid Interface Sci 2024; 330:103206. [PMID: 38823215 DOI: 10.1016/j.cis.2024.103206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/20/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Stimuli-responsive polymeric micelles have emerged as a revolutionary approach for enhancing the in vivo stability, biocompatibility, and targeted delivery of functional nanoparticles (FNPs) in biomedicine. This article comprehensively reviews the preparation methods of these polymer micelles, detailing the innovative strategies employed to introduce stimulus responsiveness and surface modifications essential for precise targeting. We delve into the breakthroughs in utilizing these micelles to selectively deliver various FNPs including magnetic nanoparticles, upconversion nanoparticles, gold nanoparticles, and quantum dots, highlighting their transformative impact in the biomedical realm. Concluding, we present an insight into the current research landscape, addressing the challenges at hand, and envisioning the future trajectory in this burgeoning domain. Join us as we navigate the exciting confluence of polymer science and nanotechnology in reshaping biomedical solutions.
Collapse
Affiliation(s)
- Zhonglin Cao
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaoling Zuo
- College of Materials Science and Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Xiaochen Liu
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Gaixia Xu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Ken-Tye Yong
- School of Biomedical Engineering, The University of Sydney, Sydney, New South Wales 2006, Australia; The Biophotonics and Mechano-Bioengineering Lab, The University of Sydney, Sydney, New South Wales 2006, Australia.
| |
Collapse
|
3
|
Saddam Hussain M, Khetan R, Clulow AJ, Ganesan R, MacMillan A, Robinson N, Ahmed-Cox A, Krasowska M, Albrecht H, Blencowe A. Teaching an Old Dog New Tricks: A Global Approach to Enhancing the Cytotoxicity of Drug-Loaded, Non-responsive Micelles Using Oligoelectrolytes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:9736-9748. [PMID: 38349780 DOI: 10.1021/acsami.3c16551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Polymeric micelles have been extensively studied as vectors for the delivery of hydrophobic drugs for the treatment of cancers and other diseases. Despite intensive research, few formulations provide significant benefits, and even fewer have been clinically approved. While many traditional non-responsive micelles have excellent safety profiles, they lack the ability to respond to the intracellular environment and release their cargo in a spatiotemporally defined manner to effectively deliver large doses of cytotoxic drugs into the cytosol of cells that overwhelm efflux pumps. As a novel and adaptable strategy, we hypothesized that well-established non-responsive polymeric micelles could be augmented with a pH-trigger via the co-encapsulation of cytocompatible oligoelectrolytes, which would allow rapid cargo release in the endosome, leading to increased cytotoxicity. Herein, we demonstrate how this strategy can be applied to render non-responsive micelles pH-responsive, resulting in abrupt cargo release at specific and tunable pH values compatible with endosomal delivery, which significantly increased their cytotoxicity up to 3-fold in an ovarian adenocarcinoma (SKOV-3) cell line compared to non-responsive micelles. In comparison, the oligoelectrolyte-loaded micelles were significantly less toxic to healthy 3T3 fibroblasts, indicating a selective cargo release in cancer cell lines. Oligoelectrolytes can be co-encapsulated in the micelles along with drugs at high encapsulation efficiency percentages, which are both ejected from the micelle core upon oligoelectrolyte ionization. Mechanistically, the increase in cytotoxicity appears to also result from the accelerated endosomal escape of the cargo caused by disruption of the endosomal membrane by the simultaneous release of the oligoelectrolytes from the micelles. Furthermore, we show how this approach is broadly applicable to non-responsive micelles regardless of their composition and various classes of hydrophobic chemotherapeutics. The preliminary studies presented here reveal the versatility and wide scope of oligoelectrolyte-mediated, pH-triggered drug release as a compelling and powerful strategy to enhance the cytotoxicity of non-responsive polymeric micelles.
Collapse
Affiliation(s)
- Md Saddam Hussain
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Centre for Pharmaceutical Innovation (CPI), UniSA CHS, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Riya Khetan
- Centre for Pharmaceutical Innovation (CPI), UniSA CHS, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Andrew J Clulow
- Australian Synchrotron, Australian Nuclear Science and Technology Organisation (ANSTO), 800 Blackburn Road, Clayton, Victoria 3168, Australia
- Drug Delivery, Disposition & Dynamics, Monash Institute of Pharmaceutical Sciences, 381 Royal Parade, Parkville, Victoria 3052, Australia
| | - Raja Ganesan
- Centre for Cancer Biology, UniSA CHS, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Alexander MacMillan
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales 2033, Australia
| | - Nirmal Robinson
- Centre for Cancer Biology, UniSA CHS, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Aria Ahmed-Cox
- Katharina Gaus Light Microscopy Facility, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, New South Wales 2033, Australia
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, New South Wales 2750, Australia
- Australian Centre for Nanomedicine, Faculty of Engineering, University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Marta Krasowska
- Surface Interactions and Soft Matter (SISM) Group, Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes, South Australia 5095, Australia
| | - Hugo Albrecht
- Centre for Pharmaceutical Innovation (CPI), UniSA CHS, University of South Australia, Adelaide, South Australia 5000, Australia
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials (ACTB) Group, Centre for Pharmaceutical Innovation (CPI), UniSA CHS, University of South Australia, Adelaide, South Australia 5000, Australia
| |
Collapse
|
4
|
Qu JB, Che HJ, Gao B, Li GF, Zhang XF, Zhang YB, Wang X. Sub-50 nm core-shell nanoparticles with the pH-responsive squeezing release effect for targeting therapy of hepatocellular carcinoma. J Mater Chem B 2023; 11:4308-4317. [PMID: 37144625 DOI: 10.1039/d3tb00143a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The development of drug delivery systems with high drug loading capacity, low leakage at physiological pH, and rapid release at the lesion sites remains an ongoing challenge. In this work, core-shell poly(6-O-methacryloyl-D-galactose)@poly(tert-butyl methacrylate) (PMADGal@PtBMA) nanoparticles (NPs) of sub-50 nm are facilely synthesized by reversible addition-fragmentation chain transfer (RAFT) soap-free emulsion polymerization with the assistance of 12-crown-4. A hydrophilic poly(methacrylic acid) (PMAA) core can then be revealed after deprotection of the tert-butyl groups, which is negatively charged and can adsorb nearly 100% of incubated doxorubicin (DOX) from a solution at pH 7.4. The physical shrinkage of PMAA chains below pH 6.0 endows the core with the squeezing effect, therefore realizing rapid drug release. It is demonstrated that the DOX release rate of PMADGal@PMAA NPs at pH 5 was 4 times that at pH 7.4. Cellular uptake experiments confirm the high targeting ability of the galactose modified PMADGal shell to human hepatocellular carcinoma (HepG2) cells. The fluorescence intensity of DOX in HepG2 cells is 4.86 times that of HeLa cells after 3 h incubation. Moreover, 20% cross-linked NPs show the highest uptake efficiency by HepG2 cells due to their moderate surface charge, size and hardness. In summary, both the core and the shell of PMADGal@PMAA NPs promise the rapid site-specific release of DOX in HepG2 cells. This work provides a facile and an effective strategy to synthesize core-shell NPs for hepatocellular carcinoma targeting therapy.
Collapse
Affiliation(s)
- Jian-Bo Qu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Huan-Jie Che
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Bo Gao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Gang-Feng Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Xue-Fei Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Yi-Bo Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Xiaojuan Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| |
Collapse
|
5
|
Qu JB, Zhang XF, Zhang YB, Che HJ, Li GF, Li J, Wang X. Galactosylated Core-Shell Nanoparticles with pH/GSH Dual Sensitivity for Targeting Hepatocellular Carcinoma. ACS Macro Lett 2023; 12:201-207. [PMID: 36695919 DOI: 10.1021/acsmacrolett.2c00736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Galactosylated core-shell nanoparticles (NPs) with diameters of sub-50 nm were fabricated in one pot by reversible addition-fragmentation chain transfer (RAFT) soap-free emulsion polymerization. Their galactosylated shells and acidic cores endow them with high targeting and drug loading efficiencies, respectively. Morever, the physical shrinkage and cleavage of the disulfide cross-linked NPs can realize the rapid release of loaded doxorubicin (DOX) under pH 5.0 and reduced glutathione (GSH) conditions. The combination of these excellent properties resulted in an even lower IC50 of DOX-loaded NPs than free DOX, demonstrating that this platform would be promising in targeting the therapy of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jian-Bo Qu
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Xue-Fei Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Yi-Bo Zhang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Huan-Jie Che
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Gang-Feng Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Jing Li
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| | - Xiaojuan Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China), Qingdao 266580, People's Republic of China
| |
Collapse
|
6
|
Balafouti A, Pispas S. Hyperbranched Polyelectrolyte Copolymers as Novel Candidate Delivery Systems for Bio-Relevant Compounds. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1045. [PMID: 36770053 PMCID: PMC9921860 DOI: 10.3390/ma16031045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/12/2023]
Abstract
In this study, reversible addition-fragmentation chain transfer (RAFT) polymerization is utilized in order to synthesize novel hyperbranched poly(oligoethylene glycol) methyl ether methacrylate-co-tert-butyl methacrylate-co-methacrylic acid) (H-[P(OEGMA-co-tBMA-co-MAA)]) copolymers in combination with selective hydrolysis reactions. The copolymers showing amphiphilicity induced by the polar OEGMA and hydrophobic tBMA monomeric units, and polyelectrolyte character due to MAA units, combined with unique macromolecular architecture were characterized by physicochemical techniques, such as size exclusion chromatography (SEC) and 1H-NMR spectroscopy. The hyperbranched copolymers were investigated in terms of their ability to self-assemble into nanostructures when dissolved in aqueous media. Dynamic light scattering and fluorescence spectroscopy revealed multimolecular aggregates of nanoscale dimensions with low critical aggregation concentration, the size and mass of which depend on copolymer composition and solution conditions, whereas zeta potential measurements indicated pH sensitive features. In addition, aiming to evaluate their potential use as nanocarriers, the copolymers were studied in terms of their drug encapsulation and protein complexation ability utilizing curcumin and lysozyme, as a model hydrophobic drug and a model cationic protein, respectively.
Collapse
Affiliation(s)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| |
Collapse
|
7
|
Wang CG, Surat'man NEB, Mah JJQ, Qu C, Li Z. Surface antimicrobial functionalization with polymers: fabrication, mechanisms and applications. J Mater Chem B 2022; 10:9349-9368. [PMID: 36373687 DOI: 10.1039/d2tb01555b] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Undesirable adhesion of microbes such as bacteria, fungi and viruses onto surfaces affects many industries such as marine, food, textile, and healthcare. In particular in healthcare and food packaging, the effects of unwanted microbial contamination can be life-threatening. With the current global COVID-19 pandemic, interest in the development of surfaces with superior anti-viral and anti-bacterial activities has multiplied. Polymers carrying anti-microbial properties are extensively used to functionalize material surfaces to inactivate infection-causing and biocide-resistant microbes including COVID-19. This review aims to introduce the fabrication of polymer-based antimicrobial surfaces through physical and chemical modifications, followed by the discussion of the inactivation mechanisms of conventional biocidal agents and new-generation antimicrobial macromolecules in polymer-modified antimicrobial surfaces. The advanced applications of polymer-based antimicrobial surfaces on personal protective equipment against COVID-19, food packaging materials, biomedical devices, marine vessels and textiles are also summarized to express the research trend in academia and industry.
Collapse
Affiliation(s)
- Chen-Gang Wang
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.
| | - Nayli Erdeanna Binte Surat'man
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.
| | - Justin Jian Qiang Mah
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Chenyang Qu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore
| | - Zibiao Li
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore. .,Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Singapore.,Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore
| |
Collapse
|
8
|
Zhao JF, Zou FL, Zhu JF, Huang C, Bu FQ, Zhu ZM, Yuan RF. Nano-drug delivery system for pancreatic cancer: A visualization and bibliometric analysis. Front Pharmacol 2022; 13:1025618. [PMID: 36330100 PMCID: PMC9622975 DOI: 10.3389/fphar.2022.1025618] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 09/22/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Nano drug delivery system (NDDS) can significantly improve the delivery and efficacy of drugs against pancreatic cancer (PC) in many ways. The purpose of this study is to explore the related research fields of NDDS for PC from the perspective of bibliometrics. Methods: Articles and reviews on NDDS for PC published between 2003 and 2022 were obtained from the Web of Science Core Collection. CiteSpace, VOSviewer, R-bibliometrix, and Microsoft Excel were comprehensively used for bibliometric and visual analysis. Results: A total of 1329 papers on NDDS for PC were included. The number of papers showed an upward trend over the past 20 years. The United States contributed the most papers, followed by China, and India. Also, the United States had the highest number of total citations and H-index. The institution with the most papers was Chinese Acad Sci, which was also the most important in international institutional cooperation. Professors Couvreur P and Kazuoka K made great achievements in this field. JOURNAL OF CONTROLLED RELEASE published the most papers and was cited the most. The topics related to the tumor microenvironment such as "tumor microenvironment", "tumor penetration", "hypoxia", "exosome", and "autophagy", PC treatment-related topics such as "immunotherapy", "combination therapy", "alternating magnetic field/magnetic hyperthermia", and "ultrasound", and gene therapy dominated by "siRNA" and "miRNA" were the research hotspots in the field of NDDS for PC. Conclusion: This study systematically uncovered a holistic picture of the performance of NDDS for PC-related literature over the past 20 years. We provided scholars to understand key information in this field with the perspective of bibliometrics, which we believe may greatly facilitate future research in this field.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Rong-Fa Yuan
- Department of General Surgery, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China
| |
Collapse
|
9
|
Cao H, Lu Q, Wei H, Zhang S. Phosphorylcholine zwitterionic shell-detachable mixed micelles for enhanced cancerous cellular uptakes and increased DOX release. J Mater Chem B 2022; 10:5624-5632. [PMID: 35815797 DOI: 10.1039/d2tb01061e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To further enhance the cancerous cellular uptakes and increase the drug release of the drug loaded micelles, herein, we fabricated a series of mixed micelles with different mass ratios using two amphiphilic copolymers P(DMAEMA-co-MaPCL) and PCL-SS-PMPC. The mixed micelles showed a prolonged circulation time due to the zwitterionic shells in a physiological environment (pH 7.4). In addition, because of the protonation of tertiary amine groups in PDMAEMA and the breakage of the disulfide bond in PMPC-SS-PCL in a tumor microenvironment, the mixed micelles aggregated, which led to enhanced cancerous cellular penetration and increased DOX release. Moreover, cytotoxicity assay showed that the mixed micelles had good biocompatibility to L929, HeLa and MCF-7 cells, even at a concentration of up to 1 mg mL-1. Furthermore, enhanced antitumour activity and cellular uptake of HeLa and MCF-7 cells were detected after loading with DOX, which was determined by confocal laser scanning microscopy (CLSM) and flow cytometry (FC), especially for the DOX@MIX 3 micelles (20% mass ratio of the P(DMAEMA-co-MaPCL)). Therefore, the mixed strategy provides a simple and efficient ways to promote anticancer drug delivery.
Collapse
Affiliation(s)
- Haimei Cao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China.
| | - Qian Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China.
| | - Henan Wei
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China.
| | - Shiping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, National Demonstration Center for Experimental Chemistry Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China.
| |
Collapse
|
10
|
Han Z, McAlpine SR, Chapman R. Delivering hydrophilic peptide inhibitors of heat shock protein 70 into cancer cells. Bioorg Chem 2022; 122:105713. [DOI: 10.1016/j.bioorg.2022.105713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Revised: 02/24/2022] [Accepted: 02/27/2022] [Indexed: 11/02/2022]
|
11
|
Das M, Joshi A, Devkar R, Seshadri S, Thakore S. Vitamin-H Channeled Self-Therapeutic P-gp Inhibitor Curcumin-Derived Nanomicelles for Targeting the Tumor Milieu by pH- and Enzyme-Triggered Hierarchical Disassembly. Bioconjug Chem 2022; 33:369-385. [PMID: 35015523 DOI: 10.1021/acs.bioconjchem.1c00614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An effective nanocarrier-mediated drug delivery to cancer cells primarily faces limitations like the presence of successive drug delivery barriers, insufficient circulation time, drug leakage, and decreased tumor penetration capacity. With the aim of addressing this paradox, a self-therapeutic, curcumin-derived copolymer was synthesized by conjugation with PEGylated biotin via enzyme- and acid-labile ester and acetal linkages. This copolymer is a prodrug of curcumin and self-assembles into ∼150-200 nm-sized nanomicelles; it is capable of encapsulating doxorubicin (DOX) and hence can be designated as self-therapeutic. pH- and enzyme-responsive linkages in the polymer skeleton assist in its hierarchical disassembly only in the tumor microenvironment. Further, the conjugation of biotin and poly(ethylene glycol) (PEG) imparts features of tumor specificity and improved circulation times to the nanocarrier. The dynamic light scattering (DLS) analysis supports this claim and demonstrates rapid swelling and disruption of micelles under acidic pH. UV-vis spectroscopy provided evidence of an accelerated acetal degradation at pH 4.0 and 5.0. The in vitro release studies revealed a controlled release of DOX under acidic conditions and curcumin release in response to the enzyme. The value of the combination index calculated on HepG2 cells was found to be <1, and hence, the drug pair curcumin and DOX acts synergistically for tumor regression. To prove the efficiency of acid-labile linkages and the prodrug strategy for effective cancer therapy, curcumin-derived polymers devoid of sensitive linkages were also prepared. The prodrug stimuli-responsive nanomicelles showed enhanced cell cytotoxicity and tumor penetration capability on HepG2 cells as well as drug-resistant MCF-7 cell lines and no effect on normal NIH/3T3 fibroblasts as compared to the nonresponsive micelles. The results were also supported by in vivo evidence on a hepatocellular carcinoma (HCC)-induced nude mice model. An evident decrease in MMP-2, MMP-9, and α-fetoprotein (AFP), the biomarkers specific to tumor progression, was observed along with metastasis upon treatment with the drug-loaded dual-responsive nanomicelles. These observations corroborated with the SGOT and SGPT data as well as the histoarchitecture of the liver tissue in mice.
Collapse
Affiliation(s)
- Manita Das
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Apeksha Joshi
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Ranjitsinh Devkar
- Department of Zoology, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| | - Sriram Seshadri
- Institute of Science, Nirma University, Ahmedabad 382 481, India
| | - Sonal Thakore
- Department of Chemistry, Faculty of Science, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India.,Institute of Interdisciplinary Studies, The Maharaja Sayajirao University of Baroda, Vadodara 390 002, India
| |
Collapse
|
12
|
Nabiyan A, Max JB, Schacher FH. Double hydrophilic copolymers - synthetic approaches, architectural variety, and current application fields. Chem Soc Rev 2022; 51:995-1044. [PMID: 35005750 DOI: 10.1039/d1cs00086a] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Solubility and functionality of polymeric materials are essential properties determining their role in any application. In that regard, double hydrophilic copolymers (DHC) are typically constructed from two chemically dissimilar but water-soluble building blocks. During the past decades, these materials have been intensely developed and utilised as, e.g., matrices for the design of multifunctional hybrid materials, in drug carriers and gene delivery, as nanoreactors, or as sensors. This is predominantly due to almost unlimited possibilities to precisely tune DHC composition and topology, their solution behavior, e.g., stimuli-response, and potential interactions with small molecules, ions and (nanoparticle) surfaces. In this contribution we want to highlight that this class of polymers has experienced tremendous progress regarding synthesis, architectural variety, and the possibility to combine response to different stimuli within one material. Especially the implementation of DHCs as versatile building blocks in hybrid materials expanded the range of water-based applications during the last two decades, which now includes also photocatalysis, sensing, and 3D inkjet printing of hydrogels, definitely going beyond already well-established utilisation in biomedicine or as templates.
Collapse
Affiliation(s)
- Afshin Nabiyan
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Johannes B Max
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| | - Felix H Schacher
- Institute of Organic Chemistry and Macromolecular Chemistry (IOMC), Friedrich-Schiller University Jena, Lessingstraße 8, D-07743 Jena, Germany. .,Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.,Center for Energy and Environmental Chemistry Jena (CEEC Jena), Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
13
|
Du X, Gao Y, Kang Q, Xing J. Design and Applications of Tumor Microenvironment-Responsive Nanogels as Drug Carriers. Front Bioeng Biotechnol 2021; 9:771851. [PMID: 34746113 PMCID: PMC8569621 DOI: 10.3389/fbioe.2021.771851] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 10/08/2021] [Indexed: 12/03/2022] Open
Abstract
In recent years, the exploration of tumor microenvironment has provided a new approach for tumor treatment. More and more researches are devoted to designing tumor microenvironment-responsive nanogels loaded with therapeutic drugs. Compared with other drug carriers, nanogel has shown great potential in improving the effect of chemotherapy, which is attributed to its stable size, superior hydrophilicity, excellent biocompatibility, and responsiveness to specific environment. This review primarily summarizes the common preparation techniques of nanogels (such as free radical polymerization, covalent cross-linking, and physical self-assembly) and loading ways of drug in nanogels (including physical encapsulation and chemical coupling) as well as the controlled drug release behaviors. Furthermore, the difficulties and prospects of nanogels as drug carriers are also briefly described.
Collapse
Affiliation(s)
- Xinjing Du
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Yuting Gao
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Qi Kang
- Department of Cardiology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jinfeng Xing
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
14
|
Pereira P, Serra AC, Coelho JF. Vinyl Polymer-based technologies towards the efficient delivery of chemotherapeutic drugs. Prog Polym Sci 2021. [DOI: 10.1016/j.progpolymsci.2021.101432] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Zhang S, Bilal M, Zdarta J, Cui J, Kumar A, Franco M, Ferreira LFR, Iqbal HMN. Biopolymers and nanostructured materials to develop pectinases-based immobilized nano-biocatalytic systems for biotechnological applications. Food Res Int 2021; 140:109979. [PMID: 33648214 DOI: 10.1016/j.foodres.2020.109979] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/27/2020] [Accepted: 12/08/2020] [Indexed: 02/08/2023]
Abstract
Pectinases are the emerging enzymes of the biotechnology industry with a 25% share in the worldwide food and beverage enzyme market. These are green and eco-friendly tools of nature and hold a prominent place among the commercially produced enzymes. Pectinases exhibit applications in various industrial bioprocesses, such as clarification of fruit juices and wine, degumming, and retting of plant fibers, extraction of antioxidants and oil, fermentation of tea/coffee, wastewater remediation, modification of pectin-laden agro-industrial waste materials for high-value products biosynthesis, manufacture of cellulose fibres, scouring, bleaching, and size reduction of fabric, cellulosic biomass pretreatment for bioethanol production, etc. Nevertheless, like other enzymes, pectinases also face the challenges of low operational stability, recoverability, and recyclability. To address the above-mentioned problems, enzyme immobilization has become an eminently promising approach to improve their thermal stability and catalytic characteristics. Immobilization facilitates easy recovery and recycling of the biocatalysts multiple times, leading to enhanced performance and commercial feasibility.In this review, we illustrate recent developments on the immobilization of pectinolytic enzymes using polymers and nanostructured materials-based carrier supports to constitute novel biocatalytic systems for industrial exploitability. The first section reviewed the immobilization of pectinases on polymers-based supports (ca-alginate, chitosan, agar-agar, hybrid polymers) as a host matrix to construct robust pectinases-based biocatalytic systems. The second half covers nanostructured supports (nano-silica, magnetic nanostructures, hybrid nanoflowers, dual-responsive polymeric nanocarriers, montmorillonite clay), and cross-linked enzyme aggregates for enzyme immobilization. The biotechnological applications of the resulted immobilized robust pectinases-based biocatalytic systems are also meticulously vetted. Finally, the concluding remarks and future recommendations are also given.
Collapse
Affiliation(s)
- Shuangshuang Zhang
- School of Food Science and Technology, Jiangsu Food and Pharmaceutical Science College, Huai'an 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai'an 223003, China.
| | - Jakub Zdarta
- Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, Poznan University of Technology, Berdychowo 4, PL-60965 Poznan, Poland
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, PR China
| | - Ashok Kumar
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh 173 234, India
| | - Marcelo Franco
- Department of Exact and Technological Sciences, State University of Santa Cruz, 45654-370 Ilhéus, Brazil
| | - Luiz Fernando Romanholo Ferreira
- Graduate Program in Process Engineering, Tiradentes University, Murilo Dantas Avenue, 300, Farolândia, 49032-490 Aracaju, Sergipe, Brazil; Institute of Technology and Research, Murilo Dantas Avenue, 300, Farolândia, 49032-490 Aracaju, Sergipe, Brazil
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| |
Collapse
|
16
|
Wen W, Guo C, Guo J. Acid-Responsive Adamantane-Cored Amphiphilic Block Polymers as Platforms for Drug Delivery. NANOMATERIALS 2021; 11:nano11010188. [PMID: 33451051 PMCID: PMC7828523 DOI: 10.3390/nano11010188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/06/2021] [Accepted: 01/09/2021] [Indexed: 12/19/2022]
Abstract
Four-arm star-shaped (denoted as ‘S’) polymer adamantane-[poly(lactic-co-glycolic acid)-b-poly(N,N’-diethylaminoethyl methacrylate) poly(ethylene glycol) monomethyl ether]4 (S-PLGA-D-P) and its linear (denoted as ‘L’) counterpart (L-PLGA-D-P) were synthesized, then their self-assembled micelles were further developed to be platforms for anticancer drug delivery. Two types of polymeric micelles exhibited strong pH-responsiveness and good drug loading capacity (21.6% for S-PLGA-D-P and 22.9% for L-PLGA-D-P). Using doxorubicin (DOX) as the model drug, their DOX-loaded micelles displayed well controlled drug release behavior (18.5–19.0% of DOX release at pH 7.4 and 77.6–78.8% of DOX release at pH 5.0 within 80 h), good cytocompatibility against NIH-3T3 cells and effective anticancer efficacy against MCF-7 cells. However, the star-shaped polymeric micelles exhibited preferable stability, which was confirmed by the lower critical micelle concentration (CMC 0.0034 mg/mL) and decrease rate of particle sizes after 7 days incubation (3.5%), compared with the linear polymeric micelle L-PLGA-D-P (CMC 0.0070 mg/mL, decrease rate of particle sizes was 9.6%). Overall, these developed polymeric micelles have promising application as drug delivery system in cancer therapy.
Collapse
Affiliation(s)
- Weiqiu Wen
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China;
| | - Chong Guo
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China;
| | - Jianwei Guo
- School of Chemical Engineering & Light Industry, Guangdong University of Technology, Guangzhou 510006, China;
- Correspondence:
| |
Collapse
|
17
|
Sarkar J, Chan KBJ, Goto A. Reduction-responsive double hydrophilic block copolymer nano-capsule synthesized via RCMP-PISA. Polym Chem 2021. [DOI: 10.1039/d0py01764g] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Double hydrophilic block copolymer vesicles synthesized via RCMP-PISA are degradable under a reductive conditions.
Collapse
Affiliation(s)
- Jit Sarkar
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore
| | - Kai Bin Jonathan Chan
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore
| | - Atsushi Goto
- Division of Chemistry and Biological Chemistry
- School of Physical and Mathematical Sciences
- Nanyang Technological University
- Singapore
| |
Collapse
|
18
|
Bone-targeting polymer vesicles for simultaneous imaging and effective malignant bone tumor treatment. Biomaterials 2020; 269:120345. [PMID: 33172607 DOI: 10.1016/j.biomaterials.2020.120345] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 08/02/2020] [Accepted: 08/23/2020] [Indexed: 02/07/2023]
Abstract
We present a bone-targeting polymer vesicle with excellent single photon emission computed tomography/computed tomography (SPECT/CT) imaging capability and high antitumor drug delivery efficiency as an integrated platform for the simultaneous diagnosing and treatment of malignant bone tumors. This polymer vesicle can be self-assembled from poly(ε-caprolactone)67-b-poly[(L-glutamic acid)6-stat-(L-glutamic acid-alendronic acid)16] (PCL67-b-P[Glu6-stat-(Glu-ADA)16]), directly in water without the aid of a cosolvent. SPECT/CT dynamically tracked the drug distribution in the bone tumor rabbit models, and the tumor size was significantly reduced from >2.0 cm3 to <0.6 cm3 over 11 days. The pathological analysis demonstrated obvious necrosis and apoptosis of the tumor cells. Overall, this bone-targeting polymer vesicle provides us with a new platform for the combination of real-time diagnosis and therapy of malignant bone tumors.
Collapse
|
19
|
Göktaş M. Synthesis and characterization of temperature-responsive block copolymers using macromonomeric initiator. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-020-01074-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
20
|
Gurnani P, Perrier S. Controlled radical polymerization in dispersed systems for biological applications. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101209] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Farazi S, Chen F, Foster H, Boquiren R, McAlpine SR, Chapman R. Real time monitoring of peptide delivery in vitro using high payload pH responsive nanogels. Polym Chem 2020. [DOI: 10.1039/c9py01120j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pH responsive pMAA nanogel that demonstrates high loading capacity and rapid intracellular delivery of hydrophilic peptides.
Collapse
Affiliation(s)
- Shegufta Farazi
- School of Chemistry
- UNSW Sydney
- Australia
- Centre for Advanced Macromolecular Design (CAMD)
- UNSW Sydney
| | - Fan Chen
- School of Chemistry
- UNSW Sydney
- Australia
- Centre for Advanced Macromolecular Design (CAMD)
- UNSW Sydney
| | - Henry Foster
- School of Chemistry
- UNSW Sydney
- Australia
- Centre for Advanced Macromolecular Design (CAMD)
- UNSW Sydney
| | | | | | - Robert Chapman
- School of Chemistry
- UNSW Sydney
- Australia
- Centre for Advanced Macromolecular Design (CAMD)
- UNSW Sydney
| |
Collapse
|
22
|
Khine YY, Batchelor R, Raveendran R, Stenzel MH. Photo‐Induced Modification of Nanocellulose: The Design of Self‐Fluorescent Drug Carriers. Macromol Rapid Commun 2019; 41:e1900499. [DOI: 10.1002/marc.201900499] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/02/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Yee Yee Khine
- Center for Advanced Macromolecular DesignSchool of ChemistryThe University of New South Wales Sydney 2052 Australia
| | - Rhiannon Batchelor
- Center for Advanced Macromolecular DesignSchool of ChemistryThe University of New South Wales Sydney 2052 Australia
| | - Radhika Raveendran
- Center for Advanced Macromolecular DesignSchool of ChemistryThe University of New South Wales Sydney 2052 Australia
| | - Martina H. Stenzel
- Center for Advanced Macromolecular DesignSchool of ChemistryThe University of New South Wales Sydney 2052 Australia
| |
Collapse
|
23
|
Mackiewicz M, Romanski J, Krug P, Mazur M, Stojek Z, Karbarz M. Tunable environmental sensitivity and degradability of nanogels based on derivatives of cystine and poly(ethylene glycols) of various length for biocompatible drug carrier. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.06.031] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
24
|
Rahimi MN, Foster HG, Farazi SN, Chapman R, McAlpine SR. Polymer mediated transport of the Hsp90 inhibitor LB76, a polar cyclic peptide, produces an Hsp90 cellular phenotype. Chem Commun (Camb) 2019; 55:4515-4518. [PMID: 30920570 DOI: 10.1039/c9cc00890j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
LB76 is a cyclic peptide that shows great promise as a selective heat shock protein 90 (Hsp90) inhibitor. However despite strong binding to and inhibition of Hsp90 in cell lysate its polar structure prevents it from crossing the cell membrane. We have developed a pH responsive polymer nanoparticle that effectively encapsulates LB76 from solution without need for purification. The nanoparticle releases the molecule upon crossing the cell membrane. Treatment of human colon cancer HCT116 cells with nanoparticles laden with LB76 produces the typical phenotype associated with Hsp90 inhibition, providing evidence of a therapeutically active payload.
Collapse
Affiliation(s)
- Marwa N Rahimi
- School of Chemistry, University of New South Wales, Gate 2 High street, Dalton 219, Sydney, Australia.
| | | | | | | | | |
Collapse
|
25
|
Lei L, Liu J, Ma X, Yang H, Lei Z. A novel strategy to synthesize dual-responsive polymeric nanocarriers for investigating the activity and stability of immobilized pectinase. Biotechnol Appl Biochem 2019; 66:376-388. [PMID: 30715751 DOI: 10.1002/bab.1734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 02/01/2019] [Indexed: 12/12/2022]
Abstract
A dual-stimuli-responsive support material for pectinase immobilization through ionic bonding was prepared. Specifically, polystyrene-b-polymethylacrylic (PS-b-PMAA), light- and pH-sensitive polystyrene-(5-propargylether-2-nitrobenzyl bromoisobutyrate)-b-poly(diethylamino)ethyl methacrylate-b-poly(polyethylene glycol methacrylate) (PS-ONB-PDEAEMA-b-PPEGMA) were synthesized through atom transfer radical polymerization, click chemistry, and hydrolysis. The two parts could self-assemble into the micelles in an aqueous solution. The micelles shrunk at a higher pH, and their size reduced under UV irradiation. The stimuli-responsive properties of micelles were characterized by dynamic light scattering and transmission electron microscopy. It has been found that this support was able to adsorb 10 U/mL of immobilized pectinase (approximately 223 mg/g) at pH 5.0 and 60 °C for 60 Min. Meanwhile, the highest relative activity of immobilized pectinase was up to approximately 95% at pH 5.0 and 60 °C. The immobilized pectinase retained more than 50% of the initial activity after eight cycles. The relative activity of the pectinase immobilized on the supports without UV irradiation was approximately 3% lower than that after UV irradiation at 60 °C, indicating that tailoring of enzyme activity was achieved by changing environmental conditions. Apparently, the original enzymatic support material had a great application prospect on enzyme immobilization.
Collapse
Affiliation(s)
- Lei Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Jiangtao Liu
- College of Pharmacy, Shaanxi University of Chinese Medicine, Xianyang, People's Republic of China
| | - Xiao Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Hong Yang
- Basic Experimental Teaching Center, Shaanxi Normal University, Xi'an, People's Republic of China
| | - Zhongli Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi'an, People's Republic of China
| |
Collapse
|
26
|
Al Nakeeb N, Kochovski Z, Li T, Zhang Y, Lu Y, Schmidt BVKJ. Poly(ethylene glycol) brush-b-poly(N-vinylpyrrolidone)-based double hydrophilic block copolymer particles crosslinked via crystalline α-cyclodextrin domains. RSC Adv 2019; 9:4993-5001. [PMID: 35514641 PMCID: PMC9060675 DOI: 10.1039/c8ra10672j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 01/31/2019] [Indexed: 11/22/2022] Open
Abstract
Self-assembly of block copolymers is a significant area of polymer science. The self-assembly of completely water-soluble block copolymers is of particular interest, albeit a challenging task. In the present work the self-assembly of a linear-brush architecture block copolymer, namely poly(N-vinylpyrrolidone)-b-poly(oligoethylene glycol methacrylate) (PVP-b-POEGMA), in water is studied. Moreover, the assembled structures are crosslinked via α-CD host/guest complexation in a supramolecular way. The crosslinking shifts the equilibrium toward aggregate formation without switching off the dynamic equilibrium of double hydrophilic block copolymer (DHBC). As a consequence, the self-assembly efficiency is improved without extinguishing the unique DHBC self-assembly behavior. In addition, decrosslinking could be induced without a change in concentration by adding a competing complexation agent for α-CD. The self-assembly behavior was followed by DLS measurement, while the presence of the particles could be observed via cryo-TEM before and after crosslinking. Self-assembly of the double hydrophilic block copolymer poly(N-vinylpyrrolidone)-b-poly(oligoethylene glycol methacrylate) and supramolecular crosslinking via α-cyclodextrin in water is presented.![]()
Collapse
Affiliation(s)
- Noah Al Nakeeb
- Max-Planck Institute of Colloids and Interfaces
- Department of Colloid Chemistry
- 14476 Potsdam
- Germany
| | - Zdravko Kochovski
- Soft Matter and Functional Materials
- Helmholtz-Zentrum Berlin für Materialien und Energie
- 14109 Berlin
- Germany
| | - Tingting Li
- Max-Planck Institute of Colloids and Interfaces
- Department of Colloid Chemistry
- 14476 Potsdam
- Germany
- State Key Laboratory of Fine Chemicals
| | - Youjia Zhang
- Max-Planck Institute of Colloids and Interfaces
- Department of Colloid Chemistry
- 14476 Potsdam
- Germany
| | - Yan Lu
- Soft Matter and Functional Materials
- Helmholtz-Zentrum Berlin für Materialien und Energie
- 14109 Berlin
- Germany
- Institute of Chemistry
| | | |
Collapse
|
27
|
Zhang K, Liu J, Ma X, Lei L, Li Y, Yang H, Lei Z. Temperature, pH, and reduction triple-stimuli-responsive inner-layer crosslinked micelles as nanocarriers for controlled release. J Appl Polym Sci 2018. [DOI: 10.1002/app.46714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Kehu Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering; Shaanxi Normal University; Xi'an 710062 China
| | - Jiangtao Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering; Shaanxi Normal University; Xi'an 710062 China
- College of Pharmacy; Shaanxi University of Chinese Medicine; Xianyang 712046 China
| | - Xiao Ma
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering; Shaanxi Normal University; Xi'an 710062 China
| | - Lei Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering; Shaanxi Normal University; Xi'an 710062 China
| | - Yan Li
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering; Shaanxi Normal University; Xi'an 710062 China
| | - Hong Yang
- Basic Experimental Teaching Center; Shaanxi Normal University; Xi'an 710062 China
| | - Zhongli Lei
- Key Laboratory of Applied Surface and Colloid Chemistry, School of Chemistry & Chemical Engineering; Shaanxi Normal University; Xi'an 710062 China
| |
Collapse
|
28
|
Feng H, Wang C, Zhou J, Liu J, Zhang J, Guo R, Liu J, Dong A, Deng L. pH-Responsive Nanoparticles for Controllable Curcumin Delivery: The Design of Polycation Core with Different Structures. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hailiang Feng
- Department of Polymer Science and Technology; Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Changrong Wang
- Department of Polymer Science and Technology; Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Junhui Zhou
- Department of Polymer Science and Technology; Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Jinjian Liu
- Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Science and Peking Union College; Tianjin 300192 China
| | - Jianhua Zhang
- Department of Polymer Science and Technology; Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Ruiwei Guo
- Department of Polymer Science and Technology; Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Jianfeng Liu
- Tianjin Key Laboratory of Radiation and Molecular Nuclear Medicine; Institute of Radiation Medicine; Chinese Academy of Medical Science and Peking Union College; Tianjin 300192 China
| | - Anjie Dong
- Department of Polymer Science and Technology; Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| | - Liandong Deng
- Department of Polymer Science and Technology; Key Laboratory of Systems Bioengineering of the Ministry of Education; School of Chemical Engineering and Technology; Tianjin University; Tianjin 300072 China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 China
| |
Collapse
|
29
|
Ponraj T, Vivek R, Paulpandi M, Rejeeth C, Nipun Babu V, Vimala K, Anand K, Sivaselvam S, Vasanthakumar A, Ponpandian N, Kannan S. Mitochondrial dysfunction-induced apoptosis in breast carcinoma cells through a pH-dependent intracellular quercetin NDDS of PVPylated-TiO 2NPs. J Mater Chem B 2018; 6:3555-3570. [PMID: 32254451 DOI: 10.1039/c8tb00769a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
In this article, we report the validation of cancer nanotherapy for the treatment of cancers using quercetin (Qtn). Much attention has been paid to the use of nanoparticles (NPs) to deliver drugs of interest in vitro/in vivo. Highly developed NPs-based nano drug delivery systems (NDDS) are an attractive approach to target cancer cell apoptosis, which is related to the onset and progression of cancer. Conventional chemotherapy has some notable drawbacks, such as lack of specificity, requirement of high drug doses, adverse effects, and gradual development of multidrug resistance (MDR), that decrease the efficacy of cancer therapy. To overcome these challenges of chemotherapy, the achievement of high drug loading in combination with low leakage at physiological pH, minimal toxicity toward healthy cells, and tunable controlled release at the site of action is an ongoing challenge. To assist drug delivery, we have prepared PVPylated-TiO2NPs containing Qtn with high loading efficiency (26.6% w/w) as a NDDS. The Qtn-PVPylated-TiO2NPs are uptaken via endocytosis by cancer cells and can generate intracellular reactive oxygen species (ROS) in order to increase mitochondrial membrane potential loss (Δψm) and enable release of cytochrome-c, followed by dysregulation of Bcl-2 into the cytosol and activation of caspase-3 to induce cancer cell apoptosis. These novel nanocombinations can be utilized to improve cancer nanotherapy by induction of apoptosis in vitro. Analysis at the molecular level revealed that the Qtn-PVPylated-TiO2NPs nanocombinations induced Δψm-mediated apoptotic signaling pathways. Overall, this study demonstrated that careful design of non-toxic nanocarriers for cancer nanotherapy can yield affordable NDDS.
Collapse
Affiliation(s)
- Thondhi Ponraj
- Proteomics and Molecular Cell Physiology Lab, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Zhang L, Bei HP, Piao Y, Wang Y, Yang M, Zhao X. Polymer-Brush-Grafted Mesoporous Silica Nanoparticles for Triggered Drug Delivery. Chemphyschem 2018; 19:1956-1964. [DOI: 10.1002/cphc.201800018] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Li Zhang
- Department of Biomedical Engineering; The Hong Kong Polytechnic University; Hung Hom, Kowloon Hong Kong China
| | - Ho Pan Bei
- Department of Biomedical Engineering; The Hong Kong Polytechnic University; Hung Hom, Kowloon Hong Kong China
| | - Yun Piao
- Department of Biomedical Engineering; The Hong Kong Polytechnic University; Hung Hom, Kowloon Hong Kong China
| | - Yufeng Wang
- Department of Chemistry; The University of Hong Kong; Pokfulum Road Hong Kong China
| | - Mo Yang
- Department of Biomedical Engineering; The Hong Kong Polytechnic University; Hung Hom, Kowloon Hong Kong China
| | - Xin Zhao
- Department of Biomedical Engineering; The Hong Kong Polytechnic University; Hung Hom, Kowloon Hong Kong China
| |
Collapse
|
31
|
Zhao Y, Guo W, Lu Q, Zhang S. Preparation of poly(butylene succinate)-poly[2-(dimethylamino)ethyl methacrylate] copolymers and their applications as carriers for drug delivery. POLYM INT 2018. [DOI: 10.1002/pi.5559] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yuping Zhao
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi PR China
| | - Weihong Guo
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi PR China
| | - Qian Lu
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi PR China
| | - Shiping Zhang
- College of Chemistry and Materials Science; Northwest University; Xi'an Shaanxi PR China
| |
Collapse
|
32
|
|