1
|
Graziani G, Triunfo C, Magnabosco G, Fermani S, Montroni D, Ghezzi D, Cappelletti M, Baldini N, Falini G. A natural multifunction and multiscale hierarchical matrix as a drug-eluting scaffold for biomedical applications. J Mater Chem B 2024; 12:9695-9702. [PMID: 39193670 DOI: 10.1039/d4tb00482e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Sea urchin spines are biogenic single crystals of magnesium calcite that are stiff, strong, damage tolerant and light and have a bicontinuous porous structure. Here, we showed that the removal of their intraskeletal organic matrix materials did not affect the compressive mechanical properties and generated an open porosity. This matrix was able to adsorb and release oxytetracycline, a broad-spectrum antibiotic. The drug-loaded sea urchin matrix induced bacterial cell death after 4 and 8 hours of incubation of both Gram-negative E. coli and Gram-positive S. aureus strains and this process induces an inhibition of bacterial cell adhesion. In conclusion, this study shows that thermally treated sea urchin spines are a compressive resistant and lightweight matrix able to load drugs and with potential use in spine fusion, a challenging application that requires withstanding high compressive loading.
Collapse
Affiliation(s)
- Gabriela Graziani
- Biomedical Science, Technologies, and Nanobiotecnology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
| | - Carla Triunfo
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, Italy.
| | - Giulia Magnabosco
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, Italy.
| | - Simona Fermani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, Italy.
- Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna, 40064 Bologna, Italy
| | - Devis Montroni
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, Italy.
| | - Daniele Ghezzi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Martina Cappelletti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Nicola Baldini
- Biomedical Science, Technologies, and Nanobiotecnology Lab, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy.
- University of Bologna, Department of Biomedical and Neuromotor Sciences, Bologna, Italy
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Bologna, Italy.
| |
Collapse
|
2
|
Wan MC, Qin W, Lei C, Li QH, Meng M, Fang M, Song W, Chen JH, Tay F, Niu LN. Biomaterials from the sea: Future building blocks for biomedical applications. Bioact Mater 2021; 6:4255-4285. [PMID: 33997505 PMCID: PMC8102716 DOI: 10.1016/j.bioactmat.2021.04.028] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/15/2021] [Accepted: 04/17/2021] [Indexed: 02/08/2023] Open
Abstract
Marine resources have tremendous potential for developing high-value biomaterials. The last decade has seen an increasing number of biomaterials that originate from marine organisms. This field is rapidly evolving. Marine biomaterials experience several periods of discovery and development ranging from coralline bone graft to polysaccharide-based biomaterials. The latter are represented by chitin and chitosan, marine-derived collagen, and composites of different organisms of marine origin. The diversity of marine natural products, their properties and applications are discussed thoroughly in the present review. These materials are easily available and possess excellent biocompatibility, biodegradability and potent bioactive characteristics. Important applications of marine biomaterials include medical applications, antimicrobial agents, drug delivery agents, anticoagulants, rehabilitation of diseases such as cardiovascular diseases, bone diseases and diabetes, as well as comestible, cosmetic and industrial applications.
Collapse
Affiliation(s)
- Mei-chen Wan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Qin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Chen Lei
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Qi-hong Li
- Department of Stomatology, The Fifth Medical Centre, Chinese PLA General Hospital (Former 307th Hospital of the PLA), Dongda Street, Beijing, 100071, PR China
| | - Meng Meng
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ming Fang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Ji-hua Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
| | - Franklin Tay
- College of Graduate Studies, Augusta University, Augusta, GA, 30912, USA
| | - Li-na Niu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, PR China
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, PR China
| |
Collapse
|
3
|
Liu S, Li D, Chen X, Jiang L. Biomimetic cuttlebone polyvinyl alcohol/carbon nanotubes/hydroxyapatite aerogel scaffolds enhanced bone regeneration. Colloids Surf B Biointerfaces 2021; 210:112221. [PMID: 34838414 DOI: 10.1016/j.colsurfb.2021.112221] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 10/19/2022]
Abstract
Inspired by the ordered porous nanostructure of bone, biomimetic functionalization porous biomaterial could be considered as promising substitutes for bone regeneration. To realize the relevant biomimetic porous structure, polyvinyl alcohol (PVA)-based biomimetic cuttlebone aerogel scaffold which simultaneously contained modified carbon nanotubes (MCNTs) and hydroxyapatite (HAP) was first prepared using a one-step rapid freeze-drying method. By adjusting the MCNTs contents, both the surface hydrophilicity and the mechanical properties of the scaffold could be improved concurrently. Besides, the PVA/MCNTs/HAP enhanced the adhesion, differentiation and gene expression of osteogenic markers performances of MC3T3-E1 cells. Furthermore, the aerogel scaffolds were implanted into the calvarial defect model of SD IGS Rat to evaluate osteogenic performance in vivo. The Micro-CT characterization and bone content theoretical analysis after 8 weeks together indicated that the PVA/MCNTs/HAP aerogel scaffolds could accelerate bone regeneration without the contribution of endogenous cytokines. The unique biomimetic porous structure, superior mechanical properties and excellent bone regeneration capacity of PVA/MCNTs/HAP aerogel scaffolds made them potential materials for bone regeneration.
Collapse
Affiliation(s)
- Sudan Liu
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191,China
| | - Diansen Li
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191,China; Beijing Advanced Innovation Center for Biomedical Engineering, Beihang University, Beijing 100191,China.
| | - Xiangmei Chen
- Centre Infect Disease, School Basic Medicine Science, Health Science Centre, Peking University, Beijing 100191, China
| | - Lei Jiang
- Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology, Ministry of Education, School of Chemistry, Beihang University, Beijing 100191,China
| |
Collapse
|
4
|
Lauer C, Sillmann K, Haußmann S, Nickel KG. Strength, elasticity and the limits of energy dissipation in two related sea urchin spines with biomimetic potential. BIOINSPIRATION & BIOMIMETICS 2018; 14:016018. [PMID: 30523969 DOI: 10.1088/1748-3190/aaf531] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The calcitic spines of the sea urchins Heterocentrotus mamillatus and H. trigonarius are promising role models for lightweight applications, bone tissue scaffolds and energy dissipating processes due to their highly porous and organized structure. Therefore, mechanical properties including Young's Modulus, strength, failure behaviour and energy dissipation efficiency have been investigated in depth with uniaxial compression experiments, 3-point bending tests and resonance frequency damping analysis. It was found that despite a very similar structure, H. trigonarius has a significantly lower porosity than H. mamillatus leading to a higher strength and Young's Moduli, but limited ability to dissipate energy. In order to show reliable energy dissipation during failure in uniaxial compression, a transition porosity of 0.55-0.6 needs to be exceeded. The most effective structure for this purpose is a homogeneous, foam-like structure confined by a thin and dense shell that increases initial strength and was found in numerous spines of H. mamillatus. Sharp porosity changes induced by dense growth layers or prominent wedges of the spines' radiating building principle act as structural weaknesses, along which large flakes can be spalled, reducing the energy dissipation efficiency considerably. The high strength and Young's Modulus at the biologically necessary high porosity levels of the spines is useful for Heterocentrotus and their construction therefore remains to be a good example of biomimetics. However, the energy dissipative failure behaviour may be regarded as a mere side effect of the structure.
Collapse
|
5
|
Lauer C, Schmier S, Speck T, Nickel KG. Strength-size relationships in two porous biological materials. Acta Biomater 2018; 77:322-332. [PMID: 29981496 DOI: 10.1016/j.actbio.2018.07.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/24/2018] [Accepted: 07/03/2018] [Indexed: 11/29/2022]
Abstract
According to the Weibull theory for brittle materials, the mean experimental strength decreases with test specimen size. For the brittle parts of an organism this would mean that becoming larger in size results automatically in reducing strength. This unfavorable relationship was investigated for two porous, biological materials that are promising concept generators for crack deflective and energy dissipative applications in compressive overloading: the quasi-brittle coconut endocarp and the brittle spines of the sea urchin Heterocentrotus mamillatus. Segments in different volumes were prepared and tested in uniaxial compression experiments. Failure of both materials is Weibull distributed underlining that it is caused by statistically distributed flaws in the structure. However, the coconut endocarp has a much higher Weibull modulus (m = 14.1-16.5) than the spines (m = 5). The more predictable failure of the endocarp is probably attributed to a rather homogeneous microstructural design and water bound in the structure. In terms of the spines it was found that the Weibull modulus is structure dependent: More homogeneous spines feature a higher Weibull modulus than spines with a heterogeneous structure. Whereas the nearly dense endocarp exhibited, although less pronounced, the expected decrease in strength with increase in size, the spines showed a failure independently of size. This remarkable behavior may be explained with their highly porous internal structure. Small and large spines consist of struts of similar size, which constitute the porous internal structure, potentially limiting the flaw size to the size of the strut regardless of the spine size. STATEMENT OF SIGNIFICANCE Scaling is an important aspect of the biomimetic work process, since biological role models and structures have rarely the same size as their technical implementations. The algorithms of Weibull are a standard tool in material sciences to describe scaling effects in materials whose critical strength depends on statistically distributed flaws. The challenge is to apply this theory (developed for homogeneous, isotropic technical materials) to brittle and quasi-brittle biological materials with hierarchical structuring. This study is a first approach to verify whether the Weibull theory can be applied to the coconut endocarp and to sea urchin spines in order to model their size/volume/property-relations.
Collapse
Affiliation(s)
- Christoph Lauer
- University of Tübingen, Department of Geosciences, Division of Applied Mineralogy, Wilhelmstraße 56, D-72074 Tübingen, Germany.
| | - Stefanie Schmier
- University of Freiburg, Faculty of Biology, Botanic Garden, Plant Biomechanics Group, Schänzlestraße 1, D-79104 Freiburg, Germany; Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Thomas Speck
- University of Freiburg, Faculty of Biology, Botanic Garden, Plant Biomechanics Group, Schänzlestraße 1, D-79104 Freiburg, Germany; Freiburg Center for Interactive Materials and Bioinspired Technologies (FIT), Georges-Köhler-Allee 105, D-79110 Freiburg, Germany
| | - Klaus G Nickel
- University of Tübingen, Department of Geosciences, Division of Applied Mineralogy, Wilhelmstraße 56, D-72074 Tübingen, Germany
| |
Collapse
|
6
|
Macha IJ, Ben-Nissan B. Marine Skeletons: Towards Hard Tissue Repair and Regeneration. Mar Drugs 2018; 16:E225. [PMID: 30004435 PMCID: PMC6071272 DOI: 10.3390/md16070225] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/31/2022] Open
Abstract
Musculoskeletal disorders in the elderly have significantly increased due to the increase in an ageing population. The treatment of these diseases necessitates surgical procedures, including total joint replacements such as hip and knee joints. Over the years a number of treatment options have been specifically established which are either permanent or use temporary natural materials such as marine skeletons that possess unique architectural structure and chemical composition for the repair and regeneration of bone tissue. This review paper will give an overview of presently used materials and marine structures for hard tissue repair and regeneration, drugs of marine origin and other marine products which show potential for musculoskeletal treatment.
Collapse
Affiliation(s)
- Innocent J Macha
- Department of Mechanical and Industrial Engineering, University of Dar es Salaam, P.O. Box 35131, Dar es Salaam, Tanzania.
| | - Besim Ben-Nissan
- Advanced Tissue Regeneration & Drug Delivery Group, School of Life Sciences, University of Technology Sydney, P.O. Box 123, Broadway, NSW 2007, Australia.
| |
Collapse
|