1
|
Abstract
![]()
With the rapid development of optoelectronic fields,
electrochromic
(EC) materials and devices have received remarkable attention and
have shown attractive potential for use in emerging wearable and portable
electronics, electronic papers/billboards, see-through displays, and
other new-generation displays, due to the advantages of low power
consumption, easy viewing, flexibility, stretchability, etc. Despite
continuous progress in related fields, determining how to make electrochromics
truly meet the requirements of mature displays (e.g., ideal overall
performance) has been a long-term problem. Therefore, the commercialization
of relevant high-quality products is still in its infancy. In this
review, we will focus on the progress in emerging EC materials and
devices for potential displays, including two mainstream EC display
prototypes (segmented displays and pixel displays) and their commercial
applications. Among these topics, the related materials/devices, EC
performance, construction approaches, and processing techniques are
comprehensively disscussed and reviewed. We also outline the current
barriers with possible solutions and discuss the future of this field.
Collapse
Affiliation(s)
- Chang Gu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Ai-Bo Jia
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yu-Mo Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Sean Xiao-An Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
2
|
Stratton BFC, Pierre AJ, Riser EA, Grinalds NJ, Edwards CW, Wohlwend AM, Bauer JS, Spera RJ, Pferdmenges LS, Griffith KM, Hunter BW, Bobadova-Parvanova P, Day CS, Lundin PM, Fogarty KH. Synthesis and Optical Characterization of a Rhodamine B Spirolactam Dimer. J Phys Chem A 2022; 126:4211-4220. [PMID: 35749658 DOI: 10.1021/acs.jpca.2c02665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Amide derivatives of xanthene dyes such as rhodamine B are useful in a variety of sensing applications due to their colorimetric responses to stimuli such as acidity changes and UV light. The optical properties of these molecules can be influenced by intermolecular associations into dimeric structures, but the exact impact can be hard to predict. We have designed a covalently linked intramolecular dimer of the dye rhodamine B utilizing p-phenylenediamine to link the two dyes via amide bonds. The doubly closed spirolactam version of this dimer, RSL2, is isolated as a colorless solid. Under acidic conditions or UV exposure, RSL2 solutions develop a pink color that is expected for the ring-opened form of the molecule. However, nuclear magnetic resonance (NMR) and single-crystal diffraction data show that the equilibrium still prefers the closed dimer state. Interestingly, the emission profile of RSL2 shows solvatochromic blue fluorescence. Control studies of model compounds with similar structural motifs do not display similar blue fluorescence, indicating that this optical behavior is unique to the dimeric form. This behavior may lend itself to applications of such xanthene dimers to more sophisticated sensors beyond those with traditional binary on/off fluorescence profiles.
Collapse
Affiliation(s)
- Brandy-Fey C Stratton
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Angelina J Pierre
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Elizabeth A Riser
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Nathan J Grinalds
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Charles W Edwards
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Anna M Wohlwend
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Jacob S Bauer
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Rachel J Spera
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Lauren S Pferdmenges
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Kaitlyn M Griffith
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Brandon W Hunter
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Petia Bobadova-Parvanova
- Department of Chemistry and Fermentation Sciences, Appalachian State University, Boone, North Carolina 28608, United States
| | - Cynthia S Day
- Department of Chemistry, Wake Forest University, Winston Salem, North Carolina 27109, United States
| | - Pamela M Lundin
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| | - Keir H Fogarty
- Department of Chemistry, High Point University, High Point, North Carolina 27268, United States
| |
Collapse
|
3
|
Wang Y, Shen R, Wang S, Zhang YM, Zhang SXA. Dynamic Metal-Ligand Interaction of Synergistic Polymers for Bistable See-Through Electrochromic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2104413. [PMID: 34894163 DOI: 10.1002/adma.202104413] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Bistable electrochromic materials are a promising alternative solution to reduce energy consumption in displays. Limited by the mechanism and lack of a design strategy, only a few electrochromic materials have truly been able achieve bistability. Herein, a novel strategy is proposed to design bistable electrochromic materials based on polymer-assisted dynamic metal-ligand coordination. The mechanism and materials of such unconventional electrochromic systems are proved by sufficient characterization. Synergistic stabilization of polymerized switchable dyes and the ionic ligand polymer are attracted to each other by supramolecular forces. The color states of the dye molecules are controlled and stabilized by valence changes of the metal ions. Meanwhile, through the polymerization of the electrochromic material and the nearby metal-ligand material, the metal ions of the electroinduced valence change are tightly fixed, and the related diffusion problem of the active EC component is also almost completely suppressed. This strategy successfully enables preparation of the corresponding transparent electrochromic displays with good performances, such as, the display information is clearly visible for more than 1.5 h without consuming energy. Furthermore, the new way of dynamic coordination or dissociation bistable displays could likely prosper the development of the electrochromic area and inspire other fields.
Collapse
Affiliation(s)
- Yuyang Wang
- Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 1130012, China
| | - Ruipeng Shen
- Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 1130012, China
| | - Shuo Wang
- Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 1130012, China
| | - Yu-Mo Zhang
- Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 1130012, China
| | - Sean Xiao-An Zhang
- Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 1130012, China
| |
Collapse
|
4
|
Li J, Li J, Li H, Wang C, Sheng M, Zhang L, Fu S. Bistable Elastic Electrochromic Ionic Gels for Energy-Saving Displays. ACS APPLIED MATERIALS & INTERFACES 2021; 13:27200-27208. [PMID: 34061499 DOI: 10.1021/acsami.1c05768] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The diversification of electrochromic materials greatly expands the application fields of electrochromic devices. However, highly flexible electrochromic materials remain challenging due to the inherent limitations associated with the existing electrochromic processes. Inspired by the hydrogen bonding effect in the hydrogel structure, a highly elastic and bistable electrochromic ionic gel based on a hydrogen bonding cross-linking network is prepared by solution polymerization having excellent tensile resilience, uniform coloring, reversible switching (≤24.3 s), maximum transmittance change (≥80%), bistability (54 h), reversibility (>500 cycles), and coloration efficiency (≥85.3 cm2·C-1). This method has been used to develop bistable electrochromic displays. The unconventional exploration of the bistable design principle may provide a new idea for the realization of bistable electrochromic devices.
Collapse
Affiliation(s)
- Jiashuang Li
- Key Laboratory of Science & Technology of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, China
| | - Jingjing Li
- The First Scientific Research Institute of Wuxi, Wuxi, Jiangsu 214122, China
| | - Hongbin Li
- The First Scientific Research Institute of Wuxi, Wuxi, Jiangsu 214122, China
| | - Chengcheng Wang
- Key Laboratory of Science & Technology of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, China
| | - Mingfei Sheng
- Key Laboratory of Science & Technology of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, China
| | - Liping Zhang
- Key Laboratory of Science & Technology of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, China
| | - Shaohai Fu
- Key Laboratory of Science & Technology of Eco-Textile, Jiangnan University, Ministry of Education, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Wang Y, Nie H, Han J, An Y, Zhang YM, Zhang SXA. Green revolution in electronic displays expected to ease energy and health crises. LIGHT, SCIENCE & APPLICATIONS 2021; 10:33. [PMID: 33550329 PMCID: PMC7867656 DOI: 10.1038/s41377-020-00455-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 12/02/2020] [Accepted: 12/14/2020] [Indexed: 06/02/2023]
Abstract
The technological revolution of long-awaited energy-saving and vision-friendly displays represented by bistable display technology is coming. Here we discuss methods, challenges, and opportunities for implementing bistable displays in terms of molecular design, device structure, further expansion, and required criteria, hopefully benefiting the light-related community.
Collapse
Affiliation(s)
- Yuyang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Hui Nie
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California, 93106, USA
| | - Jinsong Han
- State Grid Heilongjiang Electric Power Co., Ltd, Heihe Power Supply Company, Heihe, 164300, China
| | - Yaxun An
- Jiaxing IrS Display Technology Co., Ltd, Jiashan, 314113, China
| | - Yu-Mo Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Sean Xiao-An Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| |
Collapse
|
6
|
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 South Korea
- Faculty of Science and Engineering Meijo University Nagoya Aichi 468‐0073 Japan
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 South Korea
- Research Institute for Basic Sciences Ewha Womans University Seoul 03760 South Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul 03760 South Korea
| |
Collapse
|
7
|
Wang Y, Wang S, Wang X, Zhang W, Zheng W, Zhang YM, Zhang SXA. A multicolour bistable electronic shelf label based on intramolecular proton-coupled electron transfer. NATURE MATERIALS 2019; 18:1335-1342. [PMID: 31501553 DOI: 10.1038/s41563-019-0471-8] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 07/29/2019] [Indexed: 05/20/2023]
Abstract
Bistable electrochromic materials have been explored as a viable alternative to reduce energy consumption in display applications. However, the development of ideal bistable electrochromic displays (especially multicolour displays) remains challenging due to the intrinsic limitations associated with existing electrochromic processes. Here, a bistable electrochromic device with good overall performance-including bistability (>52 h), reversibility (>12,000 cycles), colouration efficiency (≥1,240 cm2 C-1) and transmittance change (70%) with fast switching (≤1.5 s)-was designed and developed based on concerted intramolecular proton-coupled electron transfer. This approach was used to develop black, magenta, yellow and blue displays as well as a multicolour bistable electrochromic shelf label. The design principles derived from this unconventional exploration of concerted intramolecular proton-coupled electron transfer may also be useful in different optoelectronic applications.
Collapse
Affiliation(s)
- Yuyang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Shuo Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Xiaojun Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Weiran Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Wenxuan Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China
| | - Yu-Mo Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.
| | - Sean Xiao-An Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, China.
| |
Collapse
|
8
|
Zhang W, Wang X, Wang Y, Yang G, Gu C, Zheng W, Zhang YM, Li M, Zhang SXA. Bio-inspired ultra-high energy efficiency bistable electronic billboard and reader. Nat Commun 2019; 10:1559. [PMID: 30952867 PMCID: PMC6450890 DOI: 10.1038/s41467-019-09556-5] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 03/18/2019] [Indexed: 11/28/2022] Open
Abstract
Bistable display has been a long-awaited goal due to its zero energy cost when maintaining colored or colorless state and electrochromic material has been highly considered as a potential way to achieve bistable display due to its simple structure and possible manipulation. However, it is extremely challenging with insurmountable technical barriers related to traditional electrochromic mechanisms. Herein a prototype for bistable electronic billboard and reader with high energy efficiency is demonstrated with excellent bistability (decay 7% in an hour), reversibility (104 cycles), coloration efficiency (430 cm2 C−1) and very short voltage stimulation time (2 ms) for color switching, which greatly outperforms current products. This is achieved by stabilization of redox molecule via intermolecular ion transfer to the supramolecular bonded colorant and further stabilization of the electrochromic molecules in semi-solid media. This promising approach for ultra-energy-efficient display will promote the development of switching molecules, devices and applications in various fields of driving/navigation/industry as display to save energy. For electrochromic materials to reach their full potential for high efficiency bistable displays, technical challenges related to their underlying mechanism must be addressed. Here, the authors, through intelligent molecular design, report a solid bistable device with state-of-the-art performance.
Collapse
Affiliation(s)
- Weiran Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Xiaojun Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yuyang Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Guojian Yang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Chang Gu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Wenxuan Zheng
- College of Chemical Engineering and New Energy Materials, Zhuhai College of Jilin University, Zhuhai, 519041, China.,Changzhou IrS Optoelectronics Technology Co., Ltd., Changzhou, 213164, China
| | - Yu-Mo Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China.
| | - Minjie Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Sean Xiao-An Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China. .,College of Chemical Engineering and New Energy Materials, Zhuhai College of Jilin University, Zhuhai, 519041, China.
| |
Collapse
|
9
|
Jarosz T, Gebka K, Stolarczyk A, Domagala W. Transparent to Black Electrochromism-The "Holy Grail" of Organic Optoelectronics. Polymers (Basel) 2019; 11:E273. [PMID: 30960257 PMCID: PMC6419085 DOI: 10.3390/polym11020273] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/31/2019] [Accepted: 02/01/2019] [Indexed: 11/16/2022] Open
Abstract
In the rapidly developing field of conjugated polymer science, the attribute of electrochromism these materials exhibit provides for a multitude of innovative application opportunities. Featuring low electric potential driven colour change, complemented by favourable mechanical and processing properties, an array of non-emissive electrochromic device (ECD) applications lays open ahead of them. Building up from the simplest two-colour cell, multielectrochromic arrangements are being devised, taking advantage of new electrochromic materials emerging at a fast pace. The ultimate device goal encompasses full control over the intensity and spectrum of passing light, including the two extremes of complete and null transmittance. With numerous electrochromic device architectures being explored and their operating parameters constantly ameliorated to pursue this target, a summary and overview of developments in the field is presented. Discussing the attributes of reported electrochromic systems, key research points and challenges are identified, providing an outlook for this exciting topic of polymer material science.
Collapse
Affiliation(s)
- Tomasz Jarosz
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland.
- Department of Inorganic Chemistry, Analytical Chemistry and Electrochemistry, Silesian University of Technology, 6 Krzywoustego Street, 44-100 Gliwice, Poland.
| | - Karolina Gebka
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland.
| | - Agnieszka Stolarczyk
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland.
| | - Wojciech Domagala
- Department of Physical Chemistry and Technology of Polymers, Silesian University of Technology, 9 Strzody Street, 44-100 Gliwice, Poland.
| |
Collapse
|