1
|
Zhang H, Wang M, Song B, Huang XL, Zhang W, Zhang E, Cheng Y, Lu K. Quasi-Solid Sulfur Conversion for Energetic All-Solid-State Na-S Battery. Angew Chem Int Ed Engl 2024; 63:e202402274. [PMID: 38415322 DOI: 10.1002/anie.202402274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/21/2024] [Accepted: 02/28/2024] [Indexed: 02/29/2024]
Abstract
The high theoretical energy density (1274 Wh kg-1) and high safety enable the all-solid-state Na-S batteries with great promise for stationary energy storage system. However, the uncontrollable solid-liquid-solid multiphase conversion and its associated sluggish polysulfides redox kinetics pose a great challenge in tunning the sulfur speciation pathway for practical Na-S electrochemistry. Herein, we propose a new design methodology for matrix featuring separated bi-catalytic sites that control the multi-step polysulfide transformation in tandem and direct quasi-solid reversible sulfur conversion during battery cycling. It is revealed that the N, P heteroatom hotspots are more favorable for catalyzing the long-chain polysulfides reduction, while PtNi nanocrystals manipulate the direct and full Na2S4 to Na2S low-kinetic conversion during discharging. The electrodeposited Na2S on strongly coupled PtNi and N, P-codoped carbon host is extremely electroreactive and can be readily recovered back to S8 without passivation of active species during battery recharging, which delivers a true tandem electrocatalytic quasi-solid sulfur conversion mechanism. Accordingly, stable cycling of the all-solid-state soft-package Na-S pouch cells with an attractive specific capacity of 876 mAh gS -1 and a high energy of 608 Wh kgcathode -1 (172 Wh kg-1, based on the total mass of cathode and anode) at 60 °C are demonstrated.
Collapse
Affiliation(s)
- Hong Zhang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230026, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Mingli Wang
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230026, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang 150001, China
| | - Bin Song
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu 215123, China
| | - Xiang-Long Huang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, China
| | - Wenli Zhang
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Erhuan Zhang
- Global Institute of Future Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yingwen Cheng
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | - Ke Lu
- Institutes of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui 230601, China
- Hefei National Laboratory for Physical Sciences at the Microscale, Hefei, Anhui 230026, China
| |
Collapse
|
2
|
Huang H, Guo X, Zhang C, Yang L, Jiang Q, He H, Amin MA, Alshahrani WA, Zhang J, Xu X, Yamauchi Y. Advancements in Noble Metal-Decorated Porous Carbon Nanoarchitectures: Key Catalysts for Direct Liquid Fuel Cells. ACS NANO 2024; 18:10341-10373. [PMID: 38572836 DOI: 10.1021/acsnano.3c08486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Noble-metal nanocrystals have emerged as essential electrode materials for catalytic oxidation of organic small molecule fuels in direct liquid fuel cells (DLFCs). However, for large-scale commercialization of DLFCs, adopting cost-effective techniques and optimizing their structures using advanced matrices are crucial. Notably, noble metal-decorated porous carbon nanoarchitectures exhibit exceptional electrocatalytic performances owing to their three-dimensional cross-linked porous networks, large accessible surface areas, homogeneous dispersion (of noble metals), reliable structural stability, and outstanding electrical conductivity. Consequently, they can be utilized to develop next-generation anode catalysts for DLFCs. Considering the recent expeditious advancements in this field, this comprehensive review provides an overview of the current progress in noble metal-decorated porous carbon nanoarchitectures. This paper meticulously outlines the associated synthetic strategies, precise microstructure regulation techniques, and their application in electrooxidation of small organic molecules. Furthermore, the review highlights the research challenges and future opportunities in this prospective research field, offering valuable insights for both researchers and industry experts.
Collapse
Affiliation(s)
- Huajie Huang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Xiangjie Guo
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Lu Yang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Quanguo Jiang
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Haiyan He
- College of Mechanics and Materials, Hohai University, Nanjing 210098, China
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Wafa Ali Alshahrani
- Department of Chemistry, College of Science, University of Bisha, Bisha 61922, Saudi Arabia
| | - Jian Zhang
- New Energy Technology Engineering Lab of Jiangsu Province, College of Science, Nanjing University of Posts & Telecommunications (NUPT), Nanjing 210023, China
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, Zhoushan, Zhejiang 316022, China
| | - Yusuke Yamauchi
- School of Chemical Engineering and Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
- Department of Chemical and Biomolecular Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| |
Collapse
|
3
|
Ye W, Wu Z, Zhang S, Sun Y, Zhang X, Zhou W, Cao W, Wang T, Cheng D, Xie H. PtNi alloy nanoparticles grown in situ on nitrogen doped carbon for the efficient oxygen reduction reaction. Dalton Trans 2023. [PMID: 37485687 DOI: 10.1039/d3dt01124k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Currently, Pt based materials are still the most efficient oxygen reduction reaction (ORR) catalysts. However, their poor stability obstructs the commercial viability of fuel cells. To lower the reaction potential barrier and enhance the stability, we constructed alloy PtNi nanoparticles (NPs) with a Pt-rich surface supported on nitrogen-doped carbon (NC) via a simple one-step solvothermal method using easily accessible reagents. The synthesized PtNi/NC exhibits enhanced mass activity (MA), specific activity (SA), and positive onset potential compared with commercial Pt/C catalysts. Meanwhile, the half-wave potential shifted negatively to only 18 mV after 5000 cycles for PtNi/NC, indicating excellent stability. The enhanced ORR performance can be ascribed to the introduction of Ni into Pt optimizing the adsorption energy of Pt towards oxygen by adjusting the d band center of the Pt atom and stronger interaction between the metal NPs and support. Our work provides a potential synthesis strategy for developing a Pt-based catalyst with a low Pt loading and high ORR performance.
Collapse
Affiliation(s)
- Weiqi Ye
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Zhenyu Wu
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Shengqi Zhang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Yi Sun
- Aerospace Hydrogen Energy Technology (Shanghai) Co. Ltd, Shanghai 201800, P. R. China.
| | - Xiaoyan Zhang
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Wei Zhou
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Weimin Cao
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Tao Wang
- Aerospace Hydrogen Energy Technology (Shanghai) Co. Ltd, Shanghai 201800, P. R. China.
| | - Danhong Cheng
- Department of Chemistry, College of Sciences, Shanghai University, Shanghai 200444, P. R. China.
| | - Haijiao Xie
- Hangzhou Yanqu Information Technology Co., Ltd, Hangzhou 310003, P. R. China
| |
Collapse
|
4
|
Kamyabi MA, Jadali S, Sharifi Khangheshlaghi L, Hashemi Heris MK. A high-performance Pt-based catalyst for the methanol oxidation reaction: effect of electrodeposition mode and cocatalyst on electrocatalytic activity. NEW J CHEM 2023. [DOI: 10.1039/d2nj05164h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The influence of supporting material, cocatalyst, and electrodeposition mode on MOR activity.
Collapse
Affiliation(s)
- Mohammad Ali Kamyabi
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Postal Code 45371-38791, Zanjan, Iran
| | - Salma Jadali
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Postal Code 45371-38791, Zanjan, Iran
| | - Leila Sharifi Khangheshlaghi
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Postal Code 45371-38791, Zanjan, Iran
| | - Mir Karim Hashemi Heris
- Electroanalytical Chemistry Laboratory, Department of Chemistry, Faculty of Science, University of Zanjan, Postal Code 45371-38791, Zanjan, Iran
| |
Collapse
|
5
|
Medrano-Banda A, Crespo-Yapur A, Velasco-Soto MÁ, Videa M. Galvanostatically Deposited PtNi Thin-Films as Electrocatalysts for the Hydrogen Evolution Reaction. ChemistryOpen 2022; 11:e202100241. [PMID: 35103419 PMCID: PMC8805383 DOI: 10.1002/open.202100241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/16/2022] [Indexed: 12/03/2022] Open
Abstract
The synthesis of hybrid platinum materials is fundamental to enable alkaline water electrolysis for cost-effective H2 generation. In this work, we have used a galvanostatic method to co-deposit PtNi films onto polycrystalline gold. The surface concentrations of Ni (ΓNi ) and Pt (ΓPt ) were calculated from electrochemical measurements; the ΓPt /ΓNi ratio and electrocatalytic activity of these materials towards hydrogen evolution reaction (HER) in 1 M KOH show a strong dependence on the current density pulse applied during the electrodeposition. Analysis of the Tafel parameters hints that, on these deposits, HER proceeds through a Volmer-Heyrovsky mechanism. The galvanostatically deposited PtNi layers present a high current output per Pt gram, 3199 A gPt -1 , which is significantly larger compared to other PtNi-based materials obtained by more extended and more complex synthesis methods.
Collapse
Affiliation(s)
- Alejandra Medrano-Banda
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. E. Garza Sada 2501 Sur, Monterrey, N.L. c.p. 64849, México
| | - Alfonso Crespo-Yapur
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. E. Garza Sada 2501 Sur, Monterrey, N.L. c.p. 64849, México
| | - Miguel Ángel Velasco-Soto
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. E. Garza Sada 2501 Sur, Monterrey, N.L. c.p. 64849, México
| | - Marcelo Videa
- School of Engineering and Sciences, Tecnologico de Monterrey, Av. E. Garza Sada 2501 Sur, Monterrey, N.L. c.p. 64849, México
| |
Collapse
|
6
|
A promising star-like PtNi and coral reefs-like PtCo nano-structured materials for direct methanol fuel cell application. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.139370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Fang Z, Chen W. Recent advances in formic acid electro-oxidation: from the fundamental mechanism to electrocatalysts. NANOSCALE ADVANCES 2021; 3:94-105. [PMID: 36131880 PMCID: PMC9419285 DOI: 10.1039/d0na00803f] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/09/2020] [Indexed: 05/29/2023]
Abstract
Direct formic acid fuel cells have attracted significant attention because of their low fuel crossover, high safety, and high theoretical power density among all the proton-exchange membrane fuel cells. Much effort has been devoted to the study of formic acid oxidation, including the reaction processes and electrocatalysts. However, as a model reaction, the anodic electro-oxidation process of formic acid is still not very clear, especially regarding the confirmation of the intermediates, which is not helpful for the design and synthesis of high-performance electrocatalysts for formic acid oxidation or conducive to understanding the reaction mechanisms of other small fuel molecules. Herein, we briefly review the recent advances in investigating the mechanism of formic acid electro-oxidation and the basic design concepts of formic acid oxidation electrocatalysts. Rather than an exhaustive overview of all aspects of this topic, this mini-review mainly outlines the progress of this field in recent years.
Collapse
Affiliation(s)
- Zhongying Fang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 Jilin China
- University of Science and Technology of China Hefei 230029 Anhui China
| | - Wei Chen
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences Changchun 130022 Jilin China
- University of Science and Technology of China Hefei 230029 Anhui China
| |
Collapse
|
8
|
Luo Y, Zhong W, Huang P, Ou H, Fu H, Liu C, Xiao Z, Xu S. Improved electrocatalytic activity of Pt catalyst supported on core–shell CMs@NiO for methanol oxidation. NEW J CHEM 2021. [DOI: 10.1039/d1nj01934a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The as-prepared Pt catalyst supported on core–shell CMs@NiO for the methanol oxidation with the extraordinary electrocatalytic performance and durability.
Collapse
Affiliation(s)
- Yongping Luo
- Jiangxi Key Laboratory of Advanced Materials and Applications for Solar Cells
- Xinyu University
- Xinyu
- China
| | - Wei Zhong
- Jiangxi Key Laboratory of Advanced Materials and Applications for Solar Cells
- Xinyu University
- Xinyu
- China
| | - Ping Huang
- Jiangxi Key Laboratory of Advanced Materials and Applications for Solar Cells
- Xinyu University
- Xinyu
- China
- School of Materials Science and Engineering
| | - Hui Ou
- Jiangxi Key Laboratory of Advanced Materials and Applications for Solar Cells
- Xinyu University
- Xinyu
- China
| | - Haiyan Fu
- Jiangxi Key Laboratory of Advanced Materials and Applications for Solar Cells
- Xinyu University
- Xinyu
- China
| | - Chen Liu
- Jiangxi Key Laboratory of Advanced Materials and Applications for Solar Cells
- Xinyu University
- Xinyu
- China
| | - Zonghu Xiao
- Jiangxi Key Laboratory of Advanced Materials and Applications for Solar Cells
- Xinyu University
- Xinyu
- China
| | - Shunjian Xu
- Jiangxi Key Laboratory of Advanced Materials and Applications for Solar Cells
- Xinyu University
- Xinyu
- China
| |
Collapse
|
9
|
Facile synthesis of alloyed PtNi/CNTs electrocatalyst with enhanced catalytic activity and stability for methanol oxidation. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108130] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Fang B, Liu Z, Bao Y, Feng L. Unstable Ni leaching in MOF-derived PtNi-C catalyst with improved performance for alcohols fuel electro-oxidation. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.02.045] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Wu F, Eid K, Abdullah AM, Niu W, Wang C, Lan Y, Elzatahry AA, Xu G. Unveiling One-Pot Template-Free Fabrication of Exquisite Multidimensional PtNi Multicube Nanoarchitectonics for the Efficient Electrochemical Oxidation of Ethanol and Methanol with a Great Tolerance for CO. ACS APPLIED MATERIALS & INTERFACES 2020; 12:31309-31318. [PMID: 32538605 DOI: 10.1021/acsami.0c01668] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Multidimensional bimetallic Pt-based nanoarchitectonics are highly promising in electrochemical energy conversion technologies because of their fancy structural merits and accessible active sites; however, hitherto their precise template-free fabrication remains a great challenge. We report a template-free solvothermal one-pot approach for the rational design of cocentric PtNi multicube nanoarchitectonics via adjusting the oleylamine/oleic acid ratio with curcumin. The obtained multidimensional PtNi multicubes comprise multiple small interlace-stacked nanocube subunits assembled in spatially porous branched nanoarchitectonics and bound by high-index facets. The synthetic mechanism is driven by spontaneous isolation among prompt nucleation and oriented attachment epitaxial growth. These inimitable architectural and compositional merits of PtNi multicubes endowed the ethanol oxidation mass and specific activity by 5.6 and 9.03 times than the Pt/C catalyst, respectively, along with the enhancement of methanol oxidation mass activity by 2.3 times. Moreover, PtNi multicubes showed superior durability and a higher tolerance for CO poisoning than the Pt/C catalyst. This work may pave the way for tailored preparation of Pt-based nanoarchitectonics for myriad catalytic reactions.
Collapse
Affiliation(s)
- Fengxia Wu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Anhui 230026, China
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar
| | - Kamel Eid
- Center for Advanced Materials, Qatar University, Doha P.O. Box 2713, Qatar
| | | | - Wenxin Niu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Anhui 230026, China
| | - Chao Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Yixiang Lan
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Ahmed A Elzatahry
- Materials Science and Technology Program, College of Arts and Sciences, Qatar University, Doha 2713, Qatar
| | - Guobao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- University of Science and Technology of China, Anhui 230026, China
| |
Collapse
|
12
|
Li P, Du C, Gao X, Zhuang Z, Xiang D, Zhang C, Chen W. Insights into the morphology and composition effects of one-dimensional CuPt nanostructures on the electrocatalytic activities and methanol oxidation mechanism by in situ FTIR. NANOSCALE 2020; 12:13688-13696. [PMID: 32573577 DOI: 10.1039/d0nr01095b] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Morphology modulation and surface structure-controlled synthesis are two effective ways to tune the electrocatalytic activities of metal nanomaterials. Pt-based binary or ternary metal nanostructures have become a class of promising catalysts toward the oxygen reduction reaction (ORR) and the methanol oxidation reaction (MOR) for direct methanol fuel cells. Herein to reveal the morphology and surface structure effects of one-dimensional (1D) Pt-based nanostructures on their electrocatalytic properties, two types of 1D CuPt nanowires (CuPt NWs) and CuPt nanotubes (CuPt NTs) with tunable surface structures and compositions were fabricated using a convenient and easy strategy. It was found that among all the studied samples, CuPt2.22 NWs exhibited the highest efficiency catalytic performances for both the ORR and MOR in an acidic electrolyte. For the ORR, CuPt2.22 NWs exhibited an onset potential (Eonset) of 0.749 V and a half-wave potential (E1/2) of 0.577 V, which are more positive than those of the commercial Pt/C (0.668 V and 0.558 V). On the other hand, CuPt2.22 NWs show a specific activity of 20.76 mA cm-2 and a mass activity of 0.171 mA μgPt-1 for the MOR, which are 7.75 and 1.82 times, respectively, larger than those of Pt/C (2.679 mA cm-2 and 0.094 mA μgPt-1). Meanwhile, the reaction mechanism of the MOR on CuPt2.22 NWs was examined by in situ FTIR. From the enhanced IR absorption, the linear- and bridge-adsorbed CO intermediates can be determined during the methanol oxidation on CuPt2.22 NWs, from which the MOR proceeds through a dual reaction pathway. This work reveals that rationally tuning the electronic structures of 1D metal nanomaterials by well-controlling the composition and surface morphology on the nanoscale could greatly enhance the catalytic properties, which are very important for their application in fuel cells.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China.
| | | | | | | | | | | | | |
Collapse
|
13
|
Sahoo MK, Rao GR. Enhanced Methanol Electro‐Oxidation Activity of Pt/rGO Electrocatalyst Promoted by NbC/Mo
2
C Phases. ChemistrySelect 2020. [DOI: 10.1002/slct.202000170] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Malaya K. Sahoo
- Malaya K. Sahoo and Prof. G. Ranga RaoDepartment of Chemistry and DST-Solar Energy Harnessing Centre (DSEHC)Indian Institute of Technology Madras Chennai 600036 India
| | - G. Ranga Rao
- Malaya K. Sahoo and Prof. G. Ranga RaoDepartment of Chemistry and DST-Solar Energy Harnessing Centre (DSEHC)Indian Institute of Technology Madras Chennai 600036 India
| |
Collapse
|
14
|
Yin S, Wang Z, Li C, Yu H, Deng K, Xu Y, Li X, Wang L, Wang H. Mesoporous Pt@PtM (M = Co, Ni) cage-bell nanostructures toward methanol electro-oxidation. NANOSCALE ADVANCES 2020; 2:1084-1089. [PMID: 36133045 PMCID: PMC9417950 DOI: 10.1039/d0na00020e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 02/08/2020] [Indexed: 06/16/2023]
Abstract
Rational design of Pt-based nanostructures with a controllable morphology and composition is vital for electrocatalysis. Herein, we demonstrate a dual-template strategy to fabricate well-defined cage-bell nanostructures including a Pt core and a mesoporous PtM (M = Co, Ni) bimetallic shell (Pt@mPtM (M = Co, Ni) CBs). Owing to their unique nanostructure and bimetallic properties, Pt@mPtM (M = Co, Ni) CBs show higher catalytic activity, better durability and stronger CO tolerance for the methanol oxidation reaction than commercial Pt/C. This work provides a general method for convenient preparation of cage-bell nanostructures with a mesoporous bimetallic shell, which have high promising potential for application in electrocatalytic fields.
Collapse
Affiliation(s)
- Shuli Yin
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Chunjie Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Kai Deng
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology Hangzhou 310014 P. R. China
| |
Collapse
|
15
|
Tong J, Li T, Bo L, Li W, Li Y, Zhang Y. Porous Nitrogen Self‐Doped Carbon Wrapped Iron Phosphide Hollow Spheres as Efficient Bifunctional Electrocatalysts for Water Splitting. ChemElectroChem 2019. [DOI: 10.1002/celc.201900513] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jinhui Tong
- Key Laboratory of Polymer Materials of Gansu Province Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou, Gansu 730070 China
| | - Tao Li
- Key Laboratory of Polymer Materials of Gansu Province Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou, Gansu 730070 China
| | - Lili Bo
- College of ScienceGansu Agricultural University Lanzhou 730070 China
| | - Wenyan Li
- Key Laboratory of Polymer Materials of Gansu Province Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou, Gansu 730070 China
| | - Yuliang Li
- Key Laboratory of Polymer Materials of Gansu Province Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou, Gansu 730070 China
| | - Yi Zhang
- Key Laboratory of Polymer Materials of Gansu Province Key Laboratory of Eco-Environment-Related Polymer Materials Ministry of Education College of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou, Gansu 730070 China
| |
Collapse
|
16
|
Abstract
Low-noble metal electrocatalysts are attracting massive attention for anode and cathode reactions in fuel cells. Pt transition metal alloy nanostructures have demonstrated their advantages in high performance low-noble metal electrocatalysts due to synergy effects. The basic of designing this type of catalysts lies in understanding structure-performance correlation at the atom and electron level. Herein, design threads of highly active and durable Pt transition metal alloy nanocatalysts are summarized, with highlighting their synthetic realization. Microscopic and electron structure characterization methods and their prospects will be introduced. Recent progress will be discussed in high active and durable Pt transition metal alloy nanocatalysts towards oxygen reduction and methanol oxidation, with their structure-performance correlations illustrated. Lastly, an outlook will be given on promises and challenges in future developing of Pt transition metal alloy nanostructures towards fuel cells catalysis uses.
Collapse
|
17
|
Wang H, Yu H, Yin S, Li Y, Xue H, Li X, Xu Y, Wang L. One-step fabrication of bimetallic PtNi mesoporous nanospheres as an efficient catalyst for the oxygen reduction reaction. NANOSCALE 2018; 10:16087-16093. [PMID: 30109334 DOI: 10.1039/c8nr04526g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The controlled synthesis of Pt-based bimetallic porous nanostructures is highly important for the design of electrocatalysts with high performance. Herein, we report a one-step method for the direct synthesis of well-dispersed bimetallic PtNi mesoporous nanospheres (PtNi MNs) at high yield. Benefitting from the synergistic effect of composition (bimetallic PtNi) and structure (mesoporous and highly open structure), the as-obtained PtNi MNs exhibit superior catalytic activity and stability for the oxygen reduction reaction.
Collapse
Affiliation(s)
- Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, P.R. China.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Cai W, Mu R, Zha S, Sun G, Chen S, Zhao ZJ, Li H, Tian H, Tang Y, Tao F(F, Zeng L, Gong J. Subsurface catalysis-mediated selectivity of dehydrogenation reaction. SCIENCE ADVANCES 2018; 4:eaar5418. [PMID: 30105302 PMCID: PMC6086612 DOI: 10.1126/sciadv.aar5418] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 07/06/2018] [Indexed: 06/08/2023]
Abstract
Progress in heterogeneous catalysis is often hampered by the difficulties of constructing active architectures and understanding reaction mechanisms at the molecular level due to the structural complexity of practical catalysts, in particular for multicomponent catalysts. Although surface science experiments and theoretical simulations help understand the detailed reaction mechanisms over model systems, the direct study of the nature of nanoparticle catalysts remains a grand challenge. This paper describes a facile construction of well-defined Pt-skin catalysts modified by different 3d transition metal (3dTM) atoms in subsurface regions. However, on the catalyst containing both surface and subsurface 3dTMs, the selectivity of propane dehydrogenation decreases in the sequences of Pt ~ PtFe > PtCo > PtNi due to the easier C-C cracking on exposed Co and Ni sites. After the exposed 3dTMs were removed completely, the C3H6 selectivity was found to increase markedly in the row Pt < PtNi@Pt < PtCo@Pt < PtFe@Pt, which is in line with the calculated trend of d-band center shifting. The established relationship between reactivity and d-band center shifting illustrates the role of subsurface catalysis in dehydrogenation reaction.
Collapse
Affiliation(s)
- Weiting Cai
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Rentao Mu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Shenjun Zha
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Guodong Sun
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Sai Chen
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Hao Li
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Hao Tian
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Yu Tang
- Departments of Chemical and Petroleum Engineering and Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Franklin (Feng) Tao
- Departments of Chemical and Petroleum Engineering and Chemistry, University of Kansas, Lawrence, KS 66045, USA
| | - Liang Zeng
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
19
|
Liu H, Liu Y, Da H, Yuan R. Pt incorporated mesoporous carbon spheres: controllable structure with enhanced catalytic activity and stability. RSC Adv 2018; 8:13964-13969. [PMID: 35539359 PMCID: PMC9079855 DOI: 10.1039/c8ra01453a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Accepted: 04/08/2018] [Indexed: 12/02/2022] Open
Abstract
We report a simple synthesis process to prepare well-dispersed Pt nanoparticles incorporated in mesoporous carbon spheres. By manipulating the relative ratio of Pt precursor and resorcinol-formaldehyde resin (RF), Pt/carbon composites with different morphologies and Pt content were achieved. The as-prepared Pt/C composite materials show higher catalytic activity and reusability for the reduction of 4-nitrophenol (4-NP) than the Pt deposited commercial activated carbon (Pt/AC), which can be ascribed to the high dispersion of Pt nanoparticles in the carbon spheres. We report a simple synthesis process to prepare well-dispersed Pt nanoparticles incorporated in mesoporous carbon spheres.![]()
Collapse
Affiliation(s)
- Hongyan Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 P. R. China
| | - Yaling Liu
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 P. R. China
| | - Huimei Da
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 P. R. China
| | - Ruo Yuan
- Key Laboratory of Luminescent and Real-Time Analytical Chemistry, Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 P. R. China
| |
Collapse
|
20
|
Du C, Gao X, Cheng C, Zhuang Z, Li X, Chen W. Metal organic framework for the fabrication of mutually interacted Pt CeO2C ternary nanostructure: advanced electrocatalyst for oxygen reduction reaction. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.02.035] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|