1
|
Liu Y, Liu X, Liu H, Wang J, Zhang Y, Zhao W, Zhou J. DNA‐Gated N‐CDs@SiO
2
Nanoparticles‐Based Biosensor for MUC1 Detection. ChemistrySelect 2022. [DOI: 10.1002/slct.202104309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yuhong Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
- College of Life Sciences Key Laboratory of Applied Photochemistry Nanjing Normal University Nanjing 210023 China
| | - Xuan Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Huaxiao Liu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Jingzhi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Yawen Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Wenbo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials School of Chemistry and Materials Science Nanjing Normal University Nanjing 210023 China
| | - Jiahong Zhou
- College of Life Sciences Key Laboratory of Applied Photochemistry Nanjing Normal University Nanjing 210023 China
| |
Collapse
|
2
|
Li Z, He Y, Klausen LH, Yan N, Liu J, Chen F, Song W, Dong M, Zhang Y. Growing vertical aligned mesoporous silica thin film on nanoporous substrate for enhanced degradation, drug delivery and bioactivity. Bioact Mater 2021; 6:1452-1463. [PMID: 33251381 PMCID: PMC7670213 DOI: 10.1016/j.bioactmat.2020.10.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/28/2020] [Accepted: 10/28/2020] [Indexed: 12/18/2022] Open
Abstract
Mesoporous silica thin film has been widely used in various fields, particularly the medical implant coating for drug delivery. However, some drawbacks remain with the films produced by traditional method (evaporation-induced self-assembly, EISA), such as the poor permeability caused by their horizontal aligned mesochannels. In this study, the vertical aligned mesoporous silica thin film (VMSTF) is uniformly grown alongside the walls of titania nanotubes array via a biphase stratification growth method, resulting in a hierarchical two-layered nanotubular structure. Due to the exposure of opened mesopores, VMSTF exhibits more appealing performances, including rapid degradation, efficient small-molecular drug (dexamethasone) loading and release, enhanced early adhesion and osteogenic differentiation of MC3T3-E1 cells. This is the first time successfully depositing VMSTF on nanoporous substrate and our findings suggest that the VMSTF may be a promising candidate for bone implant surface coating to obtain bioactive performances.
Collapse
Key Words
- ALP, alkaline phosphatase
- DEX, dexamethasone
- Drug delivery
- HAP, hydroxylapatite nanoparticles
- HMSTF, hybrid organic-inorganic MSTF
- MSTF, mesoporous silica thin film
- Mesoporous silica film
- OCN, osteocalcin
- OPN, osteopontin
- Osteoblasts
- PMSTF, parallel aligned MSTF
- PT, polished titanium
- RUNX2, runt-related transcription factor 2
- TNN, titania nanonet
- TNT, titania nanotube
- Titania nanotubes array
- Ti–OH, hydroxylated titanium
- VMSTF, vertical aligned MSTF
- Vertical aligned mesochannels
Collapse
Affiliation(s)
- Zhe Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Yide He
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | | | - Ning Yan
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Jing Liu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Fanghao Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Wen Song
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Aarhus, 8000, Denmark
| | - Yumei Zhang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, China
| |
Collapse
|
3
|
|
4
|
Zhao C, Tian S, Liu Q, Xiu K, Lei I, Wang Z, Ma PX. Biodegradable nanofibrous temperature-responsive gelling microspheres for heart regeneration. ADVANCED FUNCTIONAL MATERIALS 2020. [PMID: 33071711 DOI: 10.1002/adfm.201909539] [Citation(s) in RCA: 85] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Myocardial infarction (heart attack) is the number one killer of heart patients. Existing treatments for heart attack do not address the underlying problem of cardiomyocyte (CM) loss and cannot regenerate the myocardium. Introducing exogenous cardiac cells is required for heart regeneration due to the lack of resident progenitor cells and very limited proliferative potential of adult CMs. Poor retention of transplanted cells is the critical bottleneck of heart regeneration. Here, we report the invention of a poly(l-lactic acid)-b-poly(ethylene glycol)-b-poly(N-Isopropylacrylamide) copolymer and its self-assembly into nanofibrous gelling microspheres (NF-GMS). The NF-GMS undergo thermally responsive transition to form not only a 3D hydrogel after injection in vivo, but also exhibit architectural and structural characteristics mimicking the native extracellular matrix (ECM) of nanofibrous proteins and gelling proteoglycans or polysaccharides. By integrating the ECM-mimicking features, injectable form, and the capability of maintaining 3D geometry after injection, the transplantation of hESC-derived CMs carried by NF-GMS led to a striking 10-fold graft size increase over direct CM injection in an infarcted rat model, which is the highest reported engraftment to date. Furthermore, NF-GMS carried CM transplantation dramatically reduced infarct size, enhanced integration of transplanted CMs, stimulated vascularization in the infarct zone, and led to a substantial recovery of cardiac function. The NF-GMS may also serve as advanced injectable and integrative biomaterials for cell/biomolecule delivery in a variety of biomedical applications.
Collapse
Affiliation(s)
- Chao Zhao
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Shuo Tian
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109
| | - Qihai Liu
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Kemao Xiu
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
| | - Ienglam Lei
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109
| | - Zhong Wang
- Department of Cardiac Surgery, Frankel Cardiovascular Center, University of Michigan, Ann Arbor, MI 48109
| | - Peter X Ma
- Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109
- Macromolecular Science and Engineering Center, University of Michigan, Ann Arbor, MI 48109
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
5
|
Li X, Wang Q, Yu Y, Fang L, Wang X, Miao Z, Wan M, Wang F, Mao C. In Situ Doping of Metal Nanoparticles into Medical Polymer Membranes and Their Biomedical Application. ChemistrySelect 2020. [DOI: 10.1002/slct.202000024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Xiaoyun Li
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
- School of EnvironmentNanjing Normal University Nanjing 210023 China
| | - Yueqi Yu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Leyi Fang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Xingwen Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Zhuoyue Miao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Fenghe Wang
- School of EnvironmentNanjing Normal University Nanjing 210023 China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| |
Collapse
|
6
|
Li N, Li T, Qiao XY, Li R, Yao Y, Gong YK. Universal Strategy for Efficient Fabrication of Blood Compatible Surfaces via Polydopamine-Assisted Surface-Initiated Activators Regenerated by Electron Transfer Atom-Transfer Radical Polymerization of Zwitterions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12337-12344. [PMID: 32096981 DOI: 10.1021/acsami.9b22574] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Implant and blood-contacting biomaterials are challenged by biofouling and thrombus formation at their interface. Zwitterionic polymer brush coating can achieve excellent hemocompatibility, but the preparation often involves tedious, expensive, and complicated procedures that are designed for specific substrates. Here, we report a facile and universal strategy of creating zwitterionic polymer brushes on variety of materials by polydopamine (PDA)-assisted and surface-initiated activators regenerated by electron transfer atom-transfer radical polymerization (PDA-SI-ARGET-ATRP). A PDA adhesive layer is first dipcoated on a substrate, followed by covalent immobilization of 3-trimethoxysilyl propyl 2-bromo-2-methylpropionate (SiBr, ATRP initiator) on the PDA via condensation. Meanwhile, the trimethoxysilyl group of SiBr also cross-links the PDA oligomers forming stabilized PDA/SiBr complex coating. Finally, SI-ARGET-ATRP is performed in a zwitterionic monomer solution catalyzed by the parts per million level of CuBr2 without deoxygenization. The conveniently fabricated zwitterionic polymer brush coatings are demonstrated to have stable, ultralow fouling, and extremely blood compatible and functionalizable characteristics. This facile, versatile, and universal surface modification strategy is expected to be widely applicable in various advanced biomaterials and devices.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
- Institute of Materials Science and New Technology, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Tong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
- Institute of Materials Science and New Technology, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Xin-Yu Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
- Institute of Materials Science and New Technology, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Rong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
- Institute of Materials Science and New Technology, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Yao Yao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
- Institute of Materials Science and New Technology, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Yong-Kuan Gong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
- Institute of Materials Science and New Technology, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| |
Collapse
|
7
|
Poly[2-(methacryloyloxy)ethyl choline phosphate] functionalized polylactic acid film with improved degradation resistance both in vitro and in vivo. Colloids Surf B Biointerfaces 2020; 185:110630. [DOI: 10.1016/j.colsurfb.2019.110630] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/04/2019] [Accepted: 11/06/2019] [Indexed: 12/29/2022]
|
8
|
Chen H, Shao S, Yu Y, Huang Y, Zhu X, Zhang S, Fan J, Yin GY, Chi B, Wan M, Mao C. A dual-responsive biosensor for blood lead detection. Anal Chim Acta 2019; 1093:131-141. [PMID: 31735206 DOI: 10.1016/j.aca.2019.09.062] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 09/23/2019] [Indexed: 12/17/2022]
Abstract
Simple and accurate detection of trace heavy metals in blood is very important. A novel dual-responsive electrochemical/fluorescent biosensor based on magnetic hyperbranched polyamide with heparin modification (MHPAM-H) for blood lead detection has been successfully developed. Upon conjugated with blood lead ions, dual-biosensor could not only display electrochemical signal but also fluorescence signal owing to the enriched amino groups, cavity structure, and good fluorescence properties of HPAM. Blood biocompatibility, construction of the dual-responsive biosensor, electrochemical/fluorescent detection of lead ions in water phase and blood condition, selectivity and stability of the dual-responsive biosensor were investigated in detail. The proposed dual-responsive biosensor displays good linear relationship (1.5 pM- 4.8 × 103 pM for electrochemical detection and 0.5 pM-4.8 × 103 pM for fluorescent detection) with low detection limit (4.4 pM for electrochemical detection and 1.0 pM for fluorescent detection) for blood lead, providing potential application for blood lead detection in the future.
Collapse
Affiliation(s)
- Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Shuibin Shao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yueqi Yu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Yangyang Huang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Xiaotan Zhu
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Shiyan Zhang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China
| | - Jin Fan
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Guo Yong Yin
- Department of Orthopaedics, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 211166, China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, China
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| |
Collapse
|
9
|
Wan MM, Xu TT, Chi B, Wang M, Huang Y, Wang Q, Li T, Yan WQ, Chen H, Xu P, Mao C, Zhao B, Shen J, Xu H, Shi DQ. A Safe and Efficient Strategy for the Rapid Elimination of Blood Lead In Vivo Based on a Capture–Fix–Separate Mechanism. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201904044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mi Mi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Ting Ting Xu
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Food Science and Light IndustryJiangsu National Synergetic Innovation Center for Advanced, MaterialsNanjing Tech University Nanjing 211816 China
| | - Meng Wang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Yangyang Huang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Wen Qiang Yan
- Department of Sports Medicine and Adult Reconstructive SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School Nanjing 210008 China
| | - Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Ping Xu
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Bo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Food Science and Light IndustryJiangsu National Synergetic Innovation Center for Advanced, MaterialsNanjing Tech University Nanjing 211816 China
| | - Dong Quan Shi
- Department of Sports Medicine and Adult Reconstructive SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School Nanjing 210008 China
| |
Collapse
|
10
|
Wan MM, Xu TT, Chi B, Wang M, Huang Y, Wang Q, Li T, Yan WQ, Chen H, Xu P, Mao C, Zhao B, Shen J, Xu H, Shi DQ. A Safe and Efficient Strategy for the Rapid Elimination of Blood Lead In Vivo Based on a Capture–Fix–Separate Mechanism. Angew Chem Int Ed Engl 2019; 58:10582-10586. [DOI: 10.1002/anie.201904044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/05/2019] [Indexed: 11/05/2022]
Affiliation(s)
- Mi Mi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Ting Ting Xu
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Bo Chi
- State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Food Science and Light IndustryJiangsu National Synergetic Innovation Center for Advanced, MaterialsNanjing Tech University Nanjing 211816 China
| | - Meng Wang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Yangyang Huang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Ting Li
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Wen Qiang Yan
- Department of Sports Medicine and Adult Reconstructive SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School Nanjing 210008 China
| | - Huan Chen
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Ping Xu
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Bo Zhao
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional MaterialsSchool of Chemistry and Materials ScienceNanjing Normal University Nanjing 210023 China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical EngineeringCollege of Food Science and Light IndustryJiangsu National Synergetic Innovation Center for Advanced, MaterialsNanjing Tech University Nanjing 211816 China
| | - Dong Quan Shi
- Department of Sports Medicine and Adult Reconstructive SurgeryNanjing Drum Tower HospitalThe Affiliated Hospital of Nanjing University Medical School Nanjing 210008 China
| |
Collapse
|
11
|
Bernardos A, Piacenza E, Sancenón F, Hamidi M, Maleki A, Turner RJ, Martínez-Máñez R. Mesoporous Silica-Based Materials with Bactericidal Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1900669. [PMID: 31033214 DOI: 10.1002/smll.201900669] [Citation(s) in RCA: 103] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/25/2019] [Indexed: 05/27/2023]
Abstract
Bacterial infections are the main cause of chronic infections and even mortality. In fact, due to extensive use of antibiotics and, then, emergence of antibiotic resistance, treatment of such infections by conventional antibiotics has become a major concern worldwide. One of the promising strategies to treat infection diseases is the use of nanomaterials. Among them, mesoporous silica materials (MSMs) have attracted burgeoning attention due to high surface area, tunable pore/particle size, and easy surface functionalization. This review discusses how one can exploit capacities of MSMs to design and fabricate multifunctional/controllable drug delivery systems (DDSs) to combat bacterial infections. At first, the emergency of bacterial and biofilm resistance toward conventional antimicrobials is described and then how nanoparticles exert their toxic effects upon pathogenic cells is discussed. Next, the main aspects of MSMs (e.g., physicochemical properties, multifunctionality, and biosafety) which one should consider in the design of MSM-based DDSs against bacterial infections are introduced. Finally, a comprehensive analysis of all the papers published dealing with the use of MSMs for delivery of antibacterial chemicals (antimicrobial agents functionalized/adsorbed on mesoporous silica (MS), MS-loaded with antimicrobial agents, gated MS-loaded with antimicrobial agents, MS with metal-based nanoparticles, and MS-loaded with metal ions) is provided.
Collapse
Affiliation(s)
- Andrea Bernardos
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València. Camí de Vera s/n, 46022, València, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, València, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012, València, Spain
| | - Elena Piacenza
- Faculty of Science, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València. Camí de Vera s/n, 46022, València, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, València, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012, València, Spain
- Departamento de Química, Universitat Politècnica de València, Camí de Vera s/n, 46022, València, Spain
- Unidad Mixta de Investigacion en Nanomedicina y Sensores, Universitat Politecnica de Valencia, Instituto de Investigacion Sanitaria La Fe, 46026, Valencia, Spain
| | - Mehrdad Hamidi
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184, Zanjan, Iran
| | - Aziz Maleki
- Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184, Zanjan, Iran
| | - Raymond J Turner
- Faculty of Science, Department of Biological Sciences, University of Calgary, Calgary, AB, Canada
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València. Camí de Vera s/n, 46022, València, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, València, Universitat Politècnica de València, Centro de Investigación Príncipe Felipe, 46012, València, Spain
- Departamento de Química, Universitat Politècnica de València, Camí de Vera s/n, 46022, València, Spain
- Unidad Mixta de Investigacion en Nanomedicina y Sensores, Universitat Politecnica de Valencia, Instituto de Investigacion Sanitaria La Fe, 46026, Valencia, Spain
| |
Collapse
|
12
|
Wang Q, Wang Y, Guo B, Shao S, Yu Y, Zhu X, Wan M, Zhao B, Bo C, Mao C. Novel heparin-loaded mesoporous tubular micromotors formed via template-assisted electrochemical deposition. J Mater Chem B 2019; 7:2688-2695. [PMID: 32255001 DOI: 10.1039/c9tb00131j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on the concept of the active drug delivery of micro- and nanomotors and the longer cycle time in the blood for drug-loaded tubular particles, it is important to develop novel tubular micromotors that could increase drug loading and achieve more effective treatments in the biomedical field. Here, a novel kind of mesoporous tubular micromotor used to load heparin (Hep) and formed via template-assisted electrochemical deposition is presented. Firstly, the mesoporous tubular micromotors were composed of poly(3,4-ethylenedioxythiophene) (PEDOT), mesoporous silica (MS) and manganese dioxide (MnO2), and were simply fabricated via template-assisted electrochemical growth. Then, the drug Hep was loaded into PEDOT/MS/MnO2via a simple soaking process. Finally, the release process, cytotoxicity, and blood compatibility tests and motion study for these mesoporous tubular micromotors of PEDOT/MS/MnO2-Hep were performed. Results indicated that the micromotors we prepared showed good controlled release of Hep, anticoagulant effects, non-cytotoxicity and autonomous motion ability. The new drug carrier and motion mode will give rise to more potential applications of Hep in the biomedical field.
Collapse
Affiliation(s)
- Qi Wang
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Liu J, Yang W, Tao B, Shen T, He Y, Shen X, Cai K. Preparing and immobilizing antimicrobial osteogenic growth peptide on titanium substrate surface. J Biomed Mater Res A 2018; 106:3021-3033. [DOI: 10.1002/jbm.a.36491] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 06/14/2018] [Accepted: 06/18/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Ju Liu
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing, 400044 China
| | - Weihu Yang
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing, 400044 China
| | - Bailong Tao
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing, 400044 China
| | - Tingting Shen
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing, 400044 China
| | - Ye He
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing, 400044 China
| | - Xinkun Shen
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing, 400044 China
- School of Life Science; Chongqing University; Chongqing, 400044 People's Republic of China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology; Ministry of Education, College of Bioengineering, Chongqing University; Chongqing, 400044 China
| |
Collapse
|
14
|
Bhanja P, Mishra S, Manna K, Das Saha K, Bhaumik A. Porous Polymer Bearing Polyphenolic Organic Building Units as a Chemotherapeutic Agent for Cancer Treatment. ACS OMEGA 2018; 3:529-535. [PMID: 30023782 PMCID: PMC6045373 DOI: 10.1021/acsomega.7b01672] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/02/2018] [Indexed: 05/05/2023]
Abstract
Cancer is one of the most deadly diseases worldwide. Although several chemotherapeutic agents are available at present for its treatment, they have their own limitations. The main problems of these chemotherapeutic agents are cost involvement and severe life-threatening antagonistic effects. Here, we report a new biodegradable N-rich porous organic polymer methylenedianiline-triformyl phloroglucinol (MDTFP-1) synthesized via a Schiff base condensation reaction between two reactive monomers, that is, 4,4'-methylenedianiline and 2,4,6-triformyl phloroglucinol under inert atmosphere. Because this porous polymer contains polyphenolic building units and has a high Brunauer-Emmett-Teller surface area (283 m2 g-1), it has been explored in the anticancer activity using HCT 116, A549, and MIA PaCa-2 cell lines. We have carried out the flow cytometric assessment using Annexin-V-FITC/PI staining through the exposed level of phosphatidylserine in the outer membrane of cells with MDTFP-1-induced apoptosis. Our results suggested that apoptosis of cells have been enhanced in a time-dependent manner in the presence of this novel porous polymer.
Collapse
Affiliation(s)
- Piyali Bhanja
- Department
of Materials Science, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Snehasis Mishra
- Cancer
& Inflammatory Disorder Division, CSIR-Indian
Institute of Chemical Biology, Kolkata 700032, India
| | - Krishnendu Manna
- Cancer
& Inflammatory Disorder Division, CSIR-Indian
Institute of Chemical Biology, Kolkata 700032, India
| | - Krishna Das Saha
- Cancer
& Inflammatory Disorder Division, CSIR-Indian
Institute of Chemical Biology, Kolkata 700032, India
| | - Asim Bhaumik
- Department
of Materials Science, Indian Association
for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
15
|
Cheng T, Qu H, Zhang G, Zhang X. Osteogenic and antibacterial properties of vancomycin-laden mesoporous bioglass/PLGA composite scaffolds for bone regeneration in infected bone defects. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:1935-1947. [PMID: 29113502 DOI: 10.1080/21691401.2017.1396997] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Tao Cheng
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Haiyun Qu
- Analysis and Testing Center for Inorganic Materials, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China
| | - Guoyou Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xianlong Zhang
- Department of Orthopaedic Surgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|