1
|
Liu Y, Chen W, Mu W, Zhou Q, Liu J, Li B, Liu T, Yu T, Hu N, Chen X. Physiological Microenvironment Dependent Self-Cross-Linking of Multifunctional Nanohybrid for Prolonged Antibacterial Therapy via Synergistic Chemodynamic-Photothermal-Biological Processes. NANO LETTERS 2024; 24:6906-6915. [PMID: 38829311 DOI: 10.1021/acs.nanolett.4c00671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Herein, a multifunctional nanohybrid (PL@HPFTM nanoparticles) was fabricated to perform the integration of chemodynamic therapy, photothermal therapy, and biological therapy over the long term at a designed location for continuous antibacterial applications. The PL@HPFTM nanoparticles consisted of a polydopamine/hemoglobin/Fe2+ nanocomplex with comodification of tetrazole/alkene groups on the surface as well as coloading of antimicrobial peptides and luminol in the core. During therapy, the PL@HPFTM nanoparticles would selectively cross-link to surrounding bacteria via tetrazole/alkene cycloaddition under chemiluminescence produced by the reaction between luminol and overexpressed H2O2 at the infected area. The resulting PL@HPFTM network not only significantly damaged bacteria by Fe2+-catalyzed ROS production, effective photothermal conversion, and sustained release of antimicrobial peptides but dramatically enhanced the retention time of these therapeutic agents for prolonged antibacterial therapy. Both in vitro and in vivo results have shown that our PL@HPFTM nanoparticles have much higher bactericidal efficiency and remarkably longer periods of validity than free antibacterial nanoparticles.
Collapse
Affiliation(s)
- Yi Liu
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
- Institute of Precision Medicine, Zigong Academy of Big Data and Artificial Intelligence in Medical Science, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
- Sichuan Clinical Research Center for Clinical Laboratory, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
| | - Wei Chen
- Institute of Precision Medicine, Zigong Academy of Big Data and Artificial Intelligence in Medical Science, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
- Department of Urology, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
- Sichuan Clinical Research Center for Clinical Laboratory, Zigong Fourth People's Hospital, Zigong 643000, People's Republic of China
| | - Wenyun Mu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| | - Qian Zhou
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| | - Jie Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| | - Baixue Li
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| | - Tao Liu
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| | - Tingting Yu
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
| | - Nan Hu
- College of Chemical Engineering, Sichuan University of Science & Engineering, Zigong 643000, People's Republic of China
| | - Xin Chen
- Department of Chemical Engineering, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institution of Polymer Science in Chemical Engineering, School of Chemical Engineering and Technology, Xi'an Jiao Tong University, Xi'an 710049, People's Republic of China
| |
Collapse
|
2
|
Amiri A, Fazaeli Y, Zare H, Eslami-Kalantari M, Feizi S, Shahedi Z, Afrasyabi M. Radiolabeled florescent-magnetic graphene oxide nanosheets: probing the biodistribution of a potential PET-MRI hybrid imaging agent for detection of fibrosarcoma tumor. Ann Nucl Med 2024; 38:350-359. [PMID: 38347280 DOI: 10.1007/s12149-024-01902-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 01/03/2024] [Indexed: 04/15/2024]
Abstract
PURPOSE Radiolabeled graphene oxide (GO) nanosheets has been one of the most extensively studied nanoplatform for in vivo radioisotope delivery. Herein, we describe the functionalization of the surface of GO nanosheets with Fe3O4 magnetic nanoparticles, cysteine amino acid as an interface ligand, and cadmium telluride quantum dots. MATERIALS AND METHODS To enable In vivo PET imaging, the GO@Fe3O4-cys-CdTe QDs were labeled with 68Ga to yield [68Ga] Ga-Go@ Fe3O4-Cys-CdTe QDs. Furthermore, serum stability tests were performed and the biological behavior of the nanocomposite was evaluated in rats bearing fibrosarcoma tumor. RESULTS Liver, blood and tumor were the most accumulated sites at 1 h after the injection, and the radiolabeled nanocomposite as a PET/MRI imaging agent showed fast depletion from body and acceptable tumor uptake. CONCLUSION Magnetic (Fe3O4) and fluorescent components (CdTe QDs) along with a positron-emitting radionuclide will help to design a multimodal imaging system (PET/MRI/OI) which will offer the advantages of combined imaging techniques and further possible used in localized radionuclide therapy. Overall, [68Ga] Ga-GO@Fe3O4-cys-CdTe QDs nanocomposite shows great promise as a radiolabeled imaging agent owing to high accumulation in tumor region.
Collapse
Affiliation(s)
- Ahad Amiri
- Department of Physics, Yazd University, P.O. Box 89195-714, Yazd, Iran
| | - Yousef Fazaeli
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Moazzen Blvd., Rajaeeshahr, P.O. Box 31485-498, Karaj, Iran.
| | - Hakimeh Zare
- Department of Physics, Yazd University, P.O. Box 89195-714, Yazd, Iran
| | | | - Shahzad Feizi
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Moazzen Blvd., Rajaeeshahr, P.O. Box 31485-498, Karaj, Iran
| | - Zahra Shahedi
- Department of Physics, Yazd University, P.O. Box 89195-714, Yazd, Iran
| | - Mohammadreza Afrasyabi
- Radiation Application Research School, Nuclear Science and Technology Research Institute (NSTRI), Moazzen Blvd., Rajaeeshahr, P.O. Box 31485-498, Karaj, Iran
| |
Collapse
|
3
|
He R, Jia B, Peng D, Chen W. Caged Polyprenylated Xanthones in Garcinia hanburyi and the Biological Activities of Them. Drug Des Devel Ther 2023; 17:3625-3660. [PMID: 38076632 PMCID: PMC10710250 DOI: 10.2147/dddt.s426685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 11/02/2023] [Indexed: 12/18/2023] Open
Abstract
The previous phytochemical analyses of Garcinia hanburyi revealed that the main structural characteristic associated with its biological activity is the caged polyprenylated xanthones with a unique 4-oxatricyclo [4.3.1.03,7] dec-2-one scaffold, which contains a highly substituted tetrahydrofuran ring with three quaternary carbons. Based on the progress in research of the chemical constituents, pharmacological effects and modification methods of the caged polyprenylated xanthones, this paper presents a preliminary predictive analysis of their drug-like properties based on the absorption, distribution, metabolism, excretion and toxicity (ADME/T) properties. It was found out that these compounds have very similar pharmacokinetic properties because they possess the same caged xanthone structure, the 9,10-double bond in a,b-unsaturated ketones are critical for the antitumor activity. The author believes that there is an urgent need to seek new breakthroughs in the study of these caged polyprenylated xanthones. Thus, the research on the route of administration, therapeutic effect, structural modification and development of such active ingredients is of great interest. It is hoped that this paper will provide ideas for researchers to develop and utilize the active ingredients derived from natural products.
Collapse
Affiliation(s)
- Ruixi He
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Buyun Jia
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Daiyin Peng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Weidong Chen
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| |
Collapse
|
4
|
Ashique S, Anand K. Radiolabelled Extracellular Vesicles as Imaging Modalities for Precise Targeted Drug Delivery. Pharmaceutics 2023; 15:pharmaceutics15051426. [PMID: 37242668 DOI: 10.3390/pharmaceutics15051426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/20/2023] [Accepted: 04/26/2023] [Indexed: 05/28/2023] Open
Abstract
Extracellular vesicles (ECVs) have been abandoned as bio-inspired drug delivery systems (DDS) in the biomedical field. ECVs have a natural ability to cross over extracellular and intracellular barriers, making them superior to manufactured nanoparticles. Additionally, they have the ability to move beneficial biomolecules among far-flung bodily cells. These advantages and the accomplishment of favorable in vivo results convincingly show the value of ECVs in medication delivery. The usage of ECVs is constantly being improved, as it might be difficult to develop a consistent biochemical strategy that is in line with their useful clinical therapeutic uses. Extracellular vesicles (ECVs) have the potential to enhance the therapy of diseases. Imaging technologies, particularly radiolabelled imaging, have been exploited for non-invasive tracking to better understand their in vivo activity.
Collapse
Affiliation(s)
- Sumel Ashique
- Department of Pharmaceutics, Bharat Institute of Technology (BIT), School of Pharmacy, Meerut 250103, India
| | - Krishnan Anand
- Department of Chemical Pathology, School of Pathology, Faculty of Health Sciences, University of the Free State, Bloemfontein 9300, South Africa
| |
Collapse
|
5
|
Liu T, Cai B, Yuan P, Wang L, Tian R, Dai T, Weng L, Chen X. Manipulation and elimination of circulating tumor cells using multi-responsive nanosheet for malignant tumor therapy. Biomater Sci 2023; 11:2590-2602. [PMID: 36804554 DOI: 10.1039/d2bm01986h] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Tumor recurrence caused by metastasis is a major cause of death for patients. Thus, a strategy to manipulate the circulating tumor cells (CTCs, initiators of tumor metastasis ) and eliminate them along with the primary tumor has significant clinical significance for malignant tumor therapy. In this study, a magnet-NIR-pH multi-responsive nanosheet (Fe3O4@SiO2-GO-PEG-FA/AMP-DOX, FGPFAD) was fabricated to capture CTCs in circulation, then magnetically transport them to the primary tumor, and finally perform NIR-dependent photothermal therapy as well as acidic-environment-triggered chemotherapy to destroy both the CTCs and the primary tumor. The FGPFAD nanosheet consists of silica-coated ferroferric oxide nanoparticles (Fe3O4@SiO2, magnetic targeting agent), graphene oxide (GO, photothermal therapy agent), polyethylene glycol (PEG, antifouling agent for sustained circulation), folic acid (FA, capturer of CTCs) and antimicrobial-peptide-conjugated doxorubicin (AMP-DOX, agent for chemotherapy), in which the AMP-DOX was bound to the FGPFAD nanosheet via a cleavable Schiff base to achieve acidic-environment-triggered drug release for tumor-specific chemotherapy. Both in vitro and in vivo results indicated that the effective capture and magnetically guided transfer of CTCs to the primary tumor, as well as the multimodal tumor extermination performed by our FGPFAD nanosheet, significantly inhibited the primary tumor and its metastasis.
Collapse
Affiliation(s)
- Tao Liu
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an 710049, P. R. China. .,National & Local Joint Engineering Research Center of Biodiagnosis and Biotherapy, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bolei Cai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Pingyun Yuan
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an 710049, P. R. China.
| | - Le Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Ran Tian
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an 710049, P. R. China.
| | - Taiqiang Dai
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Lin Weng
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an 710049, P. R. China.
| | - Xin Chen
- School of Chemical Engineering and Technology, Shaanxi Key Laboratory of Energy Chemical Process Intensification, Institute of Polymer Science in Chemical Engineering, Xi'an Jiao Tong University, Xi'an 710049, P. R. China.
| |
Collapse
|
6
|
Dong M, Liu W, Yang Y, Xie M, Yuan H, Ni C. Load and release of gambogic acid via dual-target ellipsoidal-Fe 3O 4@SiO 2@mSiO 2-C 18@dopamine hydrochloride -graphene quantum dots-folic acid and its inhibition to VX2 tumor cells. NANOTECHNOLOGY 2022; 34:105101. [PMID: 36542353 DOI: 10.1088/1361-6528/aca76f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Ellipsoidal-Fe3O4@SiO2@mSiO2-C18@dopamine hydrochloride-graphene quantum dots-folic acid (ellipsoidal-HMNPs@PDA-GQDs-FA), a dual-functional drug carrier, was stepwise constructed. Theα-Fe2O3ellipsoidal nanoparticles were prepared by a hydrothermal method, and then coated with SiO2by Stöber method. The resulting core-shell structure, Fe3O4@SiO2@mSiO2-C18magnetic nano hollow spheres, abbreviated as HMNPs, was finally grafted with graphene quantum dots (GQDs), dopamine hydrochloride (PDA) and folic acid (FA) by amide reaction to obtain HMNPs@PDA-GQDs-FA. Transmission electron microscopy, Fourier transform infrared spectroscopy, fluorescence spectroscopy and element analysis proved the successful construction of the HMNPs@PDA-GQDs-FA nanoscale carrier-cargo composite. The carrier HMNPs@PDA-GQDs-FA has higher load (51.63 ± 1.53%) and release (38.56 ± 1.95%) capacity for gambogic acid (GA). Cytotoxicity test showed that the cell survival rate was above 95%, suggesting the cytotoxicity of the carrier-cargo was very low. The cell lethality (74.91 ± 1.2%) is greatly improved after loading GA because of the magnetic targeting of HMNPs, the targeting performance of FA to tumor cells, and the pH response to the surrounding environment of tumor cells of PDA. All results showed that HMNPs@PDA-GQDs-FA had good biocompatibility and could be used in the treatment of VX2 tumor cells after loading GA.
Collapse
Affiliation(s)
- Mengyang Dong
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, People's Republic of China
| | - Wenwen Liu
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, People's Republic of China
| | - Yuxiang Yang
- School of Chemistry and Molecular Engineering, East China University of Science & Technology, Shanghai 200237, People's Republic of China
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States of America
| | - Meng Xie
- School of Pharmacy, Jiangsu University, Zhenjiang212013, People's Republic of China
| | - Hongming Yuan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Chaoying Ni
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, United States of America
| |
Collapse
|
7
|
Xiong H, Fan Y, Mao X, Guo L, Yan A, Guo X, Wan Y, Wan H. Thermosensitive and magnetic molecularly imprinted polymers for selective recognition and extraction of aristolochic acid I. Food Chem 2022; 372:131250. [PMID: 34627093 DOI: 10.1016/j.foodchem.2021.131250] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 08/27/2021] [Accepted: 09/26/2021] [Indexed: 12/11/2022]
Abstract
Recently, the natural compound of aristolochic acid I (AAI) has attracted wide attentions due to its strong nephrotoxicity and carcinogenicity. However, the extraction of AAI based on conventional molecularly imprinted polymers (MIPs) are tedious with extensive eluent, causing secondary pollution and poor regeneration. Herein, thermosensitive and magnetic MIPs (TMMIPs) were synthesized by a surface imprinting method, which achieved thermosensitive capture/release of AAI, along with rapid magnetic separation, significantly shortening the elution time and reducing organic-solvent consumption. TMMIPs with dual-stimuli responses exhibited superior affinity, selectivity, kinetics, and regeneration ability towards AAI. TMMIPs were applied to analyze AAI in Houttuynia cordata via dispersive solid-phase extraction (d-SPE) coupled with high performance liquid chromatography (HPLC), yielding satisfactory recoveries (79.03-99.67%) and relative standard deviations (≤5.78%). The limit of detection of AAI was as low as 26.67 µg/L. TMMIPs demonstrate great applicability for fast, selective and eco-friendly extraction of AAI in complicated matrices.
Collapse
Affiliation(s)
- Huihuang Xiong
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yong Fan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Xuejin Mao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Lan Guo
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China
| | - Aiping Yan
- Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China
| | - Xian Guo
- College of Chemistry, Nanchang University, Nanchang 330031, China
| | - Yiqun Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China; Jiangxi Province Key Laboratory of Modern Analytical Science, Nanchang University, Nanchang 330031, China.
| | - Hao Wan
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
8
|
Shende P, Gandhi S. Current strategies of radiopharmaceuticals in theranostic applications. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102594] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Guan Y, Yang Y, Wang X, Yuan H, Yang Y, Li N, Ni C. Multifunctional Fe3O4@SiO2-CDs magnetic fluorescent nanoparticles as effective carrier of gambogic acid for inhibiting VX2 tumor cells. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114783] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Izci M, Maksoudian C, Manshian BB, Soenen SJ. The Use of Alternative Strategies for Enhanced Nanoparticle Delivery to Solid Tumors. Chem Rev 2021; 121:1746-1803. [PMID: 33445874 PMCID: PMC7883342 DOI: 10.1021/acs.chemrev.0c00779] [Citation(s) in RCA: 256] [Impact Index Per Article: 64.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Indexed: 02/08/2023]
Abstract
Nanomaterial (NM) delivery to solid tumors has been the focus of intense research for over a decade. Classically, scientists have tried to improve NM delivery by employing passive or active targeting strategies, making use of the so-called enhanced permeability and retention (EPR) effect. This phenomenon is made possible due to the leaky tumor vasculature through which NMs can leave the bloodstream, traverse through the gaps in the endothelial lining of the vessels, and enter the tumor. Recent studies have shown that despite many efforts to employ the EPR effect, this process remains very poor. Furthermore, the role of the EPR effect has been called into question, where it has been suggested that NMs enter the tumor via active mechanisms and not through the endothelial gaps. In this review, we provide a short overview of the EPR and mechanisms to enhance it, after which we focus on alternative delivery strategies that do not solely rely on EPR in itself but can offer interesting pharmacological, physical, and biological solutions for enhanced delivery. We discuss the strengths and shortcomings of these different strategies and suggest combinatorial approaches as the ideal path forward.
Collapse
Affiliation(s)
- Mukaddes Izci
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Christy Maksoudian
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Bella B. Manshian
- Translational
Cell and Tissue Research Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| | - Stefaan J. Soenen
- NanoHealth
and Optical Imaging Group, Translational Cell and Tissue Research
Unit, Department of Imaging and Pathology, KU Leuven, Herestraat 49, B3000 Leuven, Belgium
| |
Collapse
|
11
|
Xu Y, Deng C, Xiao Z, Chen C, Luo X, Zhou Y, Jiang Q. A Nanosensor for Naked-Eye Identification and Adsorption of Cadmium Ion Based on Core-Shell Magnetic Nanospheres. MATERIALS 2020; 13:ma13173678. [PMID: 32825384 PMCID: PMC7504229 DOI: 10.3390/ma13173678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 07/31/2020] [Accepted: 08/05/2020] [Indexed: 11/16/2022]
Abstract
Fe3O4@SiO2 nanospheres with a core-shell structure were synthesized and functionalized with bis(2-pyridylmethyl)amine (BPMA). The photoresponses of the as-obtained Fe3O4@SiO2-BPMA for Cr3+, Cd2+, Hg2+ and Pb2+ ions were evaluated through irradiation with a 352 nm ultraviolet lamp, and Fe3O4@SiO2-BPMA exhibited remarkable fluorescence enhancement toward the Cd2+ ion. The adsorption experiments revealed that Fe3O4@SiO2-BPMA had rapid and effective adsorption toward the Cd2+ ion. The adsorption reaction was mostly complete within 30 min, the adsorption efficiency reached 99.3%, and the saturated adsorption amount was 342.5 mg/g based on Langmuir linear fitting. Moreover, Fe3O4@SiO2-BPMA displayed superparamagnetic properties with the saturated magnetization of 20.1 emu/g, and its strong magnetic sensitivity made separation simple and feasible. Our efforts in this work provide a potential magnetic functionalized nanosensor for naked-eye identification and adsorption toward the Cd2+ ion.
Collapse
Affiliation(s)
- Yaohui Xu
- Laboratory for Functional Materials, School of Electronics and Materials Engineering, Leshan Normal University, Leshan 614000, China; (Y.X.); (C.D.); (Z.X.); (C.C.); (X.L.)
| | - Chi Deng
- Laboratory for Functional Materials, School of Electronics and Materials Engineering, Leshan Normal University, Leshan 614000, China; (Y.X.); (C.D.); (Z.X.); (C.C.); (X.L.)
| | - Zhigang Xiao
- Laboratory for Functional Materials, School of Electronics and Materials Engineering, Leshan Normal University, Leshan 614000, China; (Y.X.); (C.D.); (Z.X.); (C.C.); (X.L.)
| | - Chang Chen
- Laboratory for Functional Materials, School of Electronics and Materials Engineering, Leshan Normal University, Leshan 614000, China; (Y.X.); (C.D.); (Z.X.); (C.C.); (X.L.)
| | - Xufeng Luo
- Laboratory for Functional Materials, School of Electronics and Materials Engineering, Leshan Normal University, Leshan 614000, China; (Y.X.); (C.D.); (Z.X.); (C.C.); (X.L.)
| | - Yang Zhou
- School of Textile Science and Engineering, National Engineering Laboratory for Advanced Yarn and Clean Production, Wuhan Textile University, Wuhan 430200, China
- Correspondence: (Y.Z.); (Q.J.); Tel.: +86-0833-2276270 (Q.J.)
| | - Qiang Jiang
- Laboratory for Functional Materials, School of Electronics and Materials Engineering, Leshan Normal University, Leshan 614000, China; (Y.X.); (C.D.); (Z.X.); (C.C.); (X.L.)
- Correspondence: (Y.Z.); (Q.J.); Tel.: +86-0833-2276270 (Q.J.)
| |
Collapse
|
12
|
Bioinspired red blood cell membrane-encapsulated biomimetic nanoconstructs for synergistic and efficacious chemo-photothermal therapy. Colloids Surf B Biointerfaces 2020; 189:110842. [DOI: 10.1016/j.colsurfb.2020.110842] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 12/21/2022]
|
13
|
Fonseca LC, de Sousa M, Maia DLS, Visani de Luna L, Alves OL. Understanding the driving forces of camptothecin interactions on the surface of nanocomposites based on graphene oxide decorated with silica nanoparticles. NANOSCALE ADVANCES 2020; 2:1290-1300. [PMID: 36133053 PMCID: PMC9417694 DOI: 10.1039/c9na00752k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/05/2020] [Indexed: 05/29/2023]
Abstract
Camptothecin (CPT) is a potent antitumor drug frequently used in studies of drug delivery systems. The poor water solubility and unfavourable pharmacokinetic conditions of CPT and the development of nanomaterials such as mesoporous silica nanoparticles (MSNs), graphene oxide (GO) and a new family of GO decorated with MSNs (GO-MSNs) motivated the present work, which sought to solve these challenges. In this context, release assays showed rapid and prolonged release, respectively, by silica and GO/GO-MSN nanomaterials; release was faster at pH 7.4 and slower at pH 5.0 in all situations. In particular, GO-MSNs presented an important advantage compared to GO due to their slower drug release at pH 7.4 (physiological conditions in blood; slowest release is expected under these conditions) and faster drug delivery at pH 5.0 (acidic conditions in endosomes of cancer cells; fastest release is expected under these conditions). The results, therefore, present the GO-MSN nanomaterial as a potential candidate for antitumor applications. The main drug-nanocarrier chemical interactions (London forces, hydrogen bonds, and electrostatic and dipole-dipole interactions) are also exhaustively described in order to understand the observed differences in drug delivery properties among these nanomaterials and to comprehend the influence of pH on concomitant and dynamic interactions.
Collapse
Affiliation(s)
- Leandro C Fonseca
- Laboratory of Solid State Chemistry, Institute of Chemistry, Universidade Estadual de Campinas 13083-970 Campinas São Paulo Brazil
| | - Marcelo de Sousa
- Laboratory of Solid State Chemistry, Institute of Chemistry, Universidade Estadual de Campinas 13083-970 Campinas São Paulo Brazil
| | - Djalma L S Maia
- Laboratory of Solid State Chemistry, Institute of Chemistry, Universidade Estadual de Campinas 13083-970 Campinas São Paulo Brazil
| | - Luis Visani de Luna
- Laboratory of Solid State Chemistry, Institute of Chemistry, Universidade Estadual de Campinas 13083-970 Campinas São Paulo Brazil
| | - Oswaldo L Alves
- Laboratory of Solid State Chemistry, Institute of Chemistry, Universidade Estadual de Campinas 13083-970 Campinas São Paulo Brazil
| |
Collapse
|
14
|
Fang W, Dai YJ, Wang T, Gao HT, Huang P, Yu J, Huang HP, Wang DL, Zong WL. Aminated β-cyclodextrin-grafted Fe 3O 4-loaded gambogic acid magnetic nanoparticles: preparation, characterization, and biological evaluation. RSC Adv 2019; 9:27136-27146. [PMID: 35529223 PMCID: PMC9070625 DOI: 10.1039/c9ra04955j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 07/30/2019] [Indexed: 11/21/2022] Open
Abstract
Based on aminated β-cyclodextrin (6-NH2-β-CD)-grafted Fe3O4 and gambogic acid (GA) clathrate complexes, a nanoparticle delivery system was developed with the aim to achieve low irritation, strong targeting, and high bioavailability of a gambogic acid magnetic nanopreparation. 6-NH2-β-CD grafted onto Fe3O4 MNPs was demonstrated by high-resolution transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, zeta potential, and magnetic measurements. The average particle size of the Fe3O4@NH2-β-CD MNPs was 147.4 ± 0.28 nm and the PDI was 0.072 ± 0.013. The encapsulation efficiency, drug loading, zeta potential, and magnetic saturation values of the Fe3O4@NH2-β-CD MNPs were 85.71 ± 3.47%, 4.63 ± 0.04%, −29.3 ± 0.42 mV, and 46.68 emu g−1, respectively. Compared with free GA, the in vitro release profile of GA from Fe3O4@NH2-β-CD MNPs was characterized by two phases: an initial fast release and a delayed-release phase. The Fe3O4@NH2-β-CD MNPs displayed continuously increased cytotoxicity against HL-60 and HepG2 cell lines in 24 h, whereas the carrier Fe3O4@NH2-β-CD MNPs showed almost no cytotoxicity, indicating that the release of GA from the nanoparticles had a sustained profile and Fe3O4@NH2-β-CD MNPs as a tumor tissue-targeted drug delivery system have great potential. Besides, blood vessel irritation tests suggested that the vascular irritation could be reduced by the use of Fe3O4@NH2-β-CD MNPs encapsulation for GA. The t1/2 and the AUC of the Fe3O4@NH2-β-CD@GA MNPs were found to be higher than those for the GA solution by approximately 2.71-fold and 2.42-fold in a pharmacokinetic study, respectively. The better biocompatibility and the combined properties of specific targeting and complexation ability with hydrophobic drugs make the Fe3O4@NH2-β-CD MNPs an exciting prospect for the targeted delivery of GA. Based on aminated β-cyclodextrin (6-NH2-β-CD)-grafted Fe3O4 and gambogic acid clathrate complexes, a nanoparticle delivery system was developed with the aim of achieving low irritation, strong targeting and high bioavailability of a gambogic acid magnetic nanopreparation.![]()
Collapse
Affiliation(s)
- Wei Fang
- The College of Pharmacy, Anhui University of Chinese Medicine Hefei 230012 Anhui China +86-0551-68129028 +86-0551-68129159
| | - Ya Ji Dai
- The College of Pharmacy, Anhui University of Chinese Medicine Hefei 230012 Anhui China +86-0551-68129028 +86-0551-68129159.,Anhui Second People's Hospital Hefei 230041 Anhui China
| | - Ting Wang
- The College of Pharmacy, Anhui University of Chinese Medicine Hefei 230012 Anhui China +86-0551-68129028 +86-0551-68129159
| | - Hai Tao Gao
- The College of Pharmacy, Anhui University of Chinese Medicine Hefei 230012 Anhui China +86-0551-68129028 +86-0551-68129159
| | - Peng Huang
- The College of Pharmacy, Anhui University of Chinese Medicine Hefei 230012 Anhui China +86-0551-68129028 +86-0551-68129159
| | - Juan Yu
- The College of Pharmacy, Anhui University of Chinese Medicine Hefei 230012 Anhui China +86-0551-68129028 +86-0551-68129159
| | - He Ping Huang
- The College of Pharmacy, Anhui University of Chinese Medicine Hefei 230012 Anhui China +86-0551-68129028 +86-0551-68129159
| | - Dian Lei Wang
- The College of Pharmacy, Anhui University of Chinese Medicine Hefei 230012 Anhui China +86-0551-68129028 +86-0551-68129159.,Anhui Province Key Laboratory of Chinese Medicinal Formula Hefei 230012 Anhui China
| | - Wei Lu Zong
- The College of Pharmacy, Anhui University of Chinese Medicine Hefei 230012 Anhui China +86-0551-68129028 +86-0551-68129159
| |
Collapse
|
15
|
Maiti D, Tong X, Mou X, Yang K. Carbon-Based Nanomaterials for Biomedical Applications: A Recent Study. Front Pharmacol 2019; 9:1401. [PMID: 30914959 PMCID: PMC6421398 DOI: 10.3389/fphar.2018.01401] [Citation(s) in RCA: 280] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 11/15/2018] [Indexed: 01/08/2023] Open
Abstract
The study of carbon-based nanomaterials (CBNs) for biomedical applications has attracted great attention due to their unique chemical and physical properties including thermal, mechanical, electrical, optical and structural diversity. With the help of these intrinsic properties, CBNs, including carbon nanotubes (CNT), graphene oxide (GO), and graphene quantum dots (GQDs), have been extensively investigated in biomedical applications. This review summarizes the most recent studies in developing of CBNs for various biomedical applications including bio-sensing, drug delivery and cancer therapy.
Collapse
Affiliation(s)
- Debabrata Maiti
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| | - Xiangmin Tong
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Xiaozhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital, Hangzhou, China
| | - Kai Yang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, China
| |
Collapse
|
16
|
Feng Y, Chen H, Shao B, Zhao S, Wang Z, You H. Renal-Clearable Peptide-Functionalized Ba 2GdF 7 Nanoparticles for Positive Tumor-Targeting Dual-Mode Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25511-25518. [PMID: 29989405 DOI: 10.1021/acsami.8b07129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Considering the dilemma between the effective tumor targeting and the avoidance of potential toxicity, it is desired to design nanoprobes with positive tumor-targeting and good renal clearance ability. In the present work, we developed epidermal growth factor receptor (EGFR)-targeted peptide-functionalized Ba2GdF7 nanoparticles (termed as pEGFR-targeted Ba2GdF7 NPs) for positive tumor-targeting magnetic resonance imaging and X-ray computed tomography (MRI/CT) dual-mode bioimaging. The positive tumor-targeting ability of pEGFR-targeted Ba2GdF7 NPs is achieved by conjugation of EGFR-targeted peptides on the 6.5 nm Ba2GdF7 NP surface through the formation of Gd-phosphonate coordinate bonds. The pEGFR-targeted Ba2GdF7 NPs display desirable cytocompatibility in the test concentration range and high binding affinity with lung cancer cells. In vivo MR and CT imaging results demonstrate that the pEGFR-targeted Ba2GdF7 NPs are able to be accumulated and detained within an engrafted A549 lung carcinoma, which enhances both MR and CT contrast in the tumor tissue. Systematic in vivo experimental results further demonstrate that the pEGFR-targeted Ba2GdF7 NPs have favorable in vivo renal clearance kinetics as well as reasonable in vivo biocompatibility.
Collapse
Affiliation(s)
- Yang Feng
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Hongda Chen
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | | | - Shuang Zhao
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | | | | |
Collapse
|
17
|
Jiang D, Li X, Lv X, Jia Q. A magnetic hydrazine-functionalized dendrimer embedded with TiO 2 as a novel affinity probe for the selective enrichment of low-abundance phosphopeptides from biological samples. Talanta 2018; 185:461-468. [PMID: 29759228 DOI: 10.1016/j.talanta.2018.04.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 03/30/2018] [Accepted: 04/01/2018] [Indexed: 12/25/2022]
Abstract
Dendrimers exhibit tunable terminal functionality and bio-friendly nature, making them of being promising materials for applications in the field of separation and enrichment. In this work, we prepared magnetic hydrazide-functionalized poly-amidoamine (PAMAM) dendrimer embedded with TiO2 for the enrichment of phosphopeptides. The novel affinity probe possessed superparamagnetism, realizing its rapid separation from sample solution. Electrostatic attraction and hydrogen bonding existed between PAMAM and phosphopeptides while Lewis acid-base interaction was originated between TiO2 and the targets. The combined synergistic strength of multiple binding interactions contributed to the highly selective enrichment of phosphopeptides. The specificity for the capture of phosphopeptides was reflected in quantities as low as 1:1000 mass ratio of phosphopeptides to non-phosphopeptides. The detection limit of β-casein digests was low to 0.4 fmol, indicating the high sensitivity of the developed method. Fifteen and four phosphopeptides could be selectively captured from non-fat milk digests and human serum samples, which further confirmed the great potential of the affinity probe in the extraction of low-abundance phosphopeptides from real complex biological samples.
Collapse
Affiliation(s)
- Dandan Jiang
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiqian Li
- China-Japan Hospital of Jilin University, Changchun 130033, China
| | - Xueju Lv
- College of Chemistry, Jilin University, Changchun 130012, China
| | - Qiong Jia
- College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|