1
|
Park S, Bisht H, Park S, Jeong J, Hong Y, Chu D, Koh M, Hong D. Melanin-Inspired Maleimide Coatings on Various Substrates for Rapid Thiol Functionalization. Macromol Biosci 2025; 25:e2400616. [PMID: 39973616 DOI: 10.1002/mabi.202400616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 02/05/2025] [Indexed: 02/21/2025]
Abstract
In this study, a substrate-independent maleimide film is developed that can be formed under mild aqueous conditions (pH 7.4), and which allows rapid and efficient external thiol immobilization onto the coated surfaces. For the coating block, tyrosine-conjugated maleimide (Tyr-Mal) containing a phenolic amine moiety is prepared as a substrate-independent dormant coating precursor, wherein the maleimide component permits a rapid Michael addition reaction with the thiol moiety of interest. By mimicking natural melanogenesis, Tyr-Mal acts as a substrate for tyrosinase under physiological conditions (pH 7.4) to form a melanin-inspired maleimide (Mel-Mal) film on various substrates, including living cell surfaces. The resulting film undergoes a rapid surface reaction (< 30 min) with external thiol groups under mild aqueous conditions. Considering that a typical polydopamine film requires a long reaction time (≈3 h) under alkaline conditions (pH 8.5) to achieve thiol functionalization with low efficiency, the current surface platform demonstrates significant improvements in terms of its reaction kinetics and usability. Moreover, considering that thiol functionalization and surface coating are performed under mild aqueous conditions, it is expected that the developed Mel-Mal film will be a useful tool in the fields of cell surface engineering, microarrays, and high-throughput screening.
Collapse
Affiliation(s)
- Suho Park
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Himani Bisht
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Seongchul Park
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Jaehoon Jeong
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Yubin Hong
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Daeun Chu
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Minseob Koh
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| | - Daewha Hong
- Department of Chemistry, Pusan National University, Busan, 46241, Republic of Korea
| |
Collapse
|
2
|
Dizon GVC, Chang CL, Yeh CC, Chou CJ, Jhong JF, Zheng J, Chang Y. Bioinert Fibrous Polypropylene Membranes via In Situ Polymerization of Zwitterionic Poly(sulfobetaine methacrylate). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4524-4532. [PMID: 39927842 DOI: 10.1021/acs.langmuir.4c04226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2025]
Abstract
This study reports the fabrication of a biocompatible polypropylene (PP) fibrous membrane via an in situ polymerization process, generating a dual network of PP fibers and poly(sulfobetaine methacrylate) (poly(SBMA)). In this method, the synthesis of the polymer and the modification process happen in a single step. Notably, the modification was achieved without the incorporation of hydrophobic groups in the modifying polymer, demonstrating that the physical entanglement of poly(SBMA) and PP was sufficient to produce a stable biocompatible membrane. The presence of the poly(SBMA) coating was confirmed through various characterization techniques. A reduction in the water contact angle indicated increased hydrophilicity, while Fourier-transform infrared spectroscopy and X-ray photoelectron spectroscopy analyses verified the presence of poly(SBMA) on the PP membrane surface. The PP membranes were modified with varying sulfobetaine methacrylate solid. The physical morphology of the modified membranes was observed via SEM, and it was seen that membranes modified with higher solid content (4.00, 7.50, 15.0, and 30.0 wt %) showed significant polymer aggregates, making the membranes significantly denser than the original PP membrane. Therefore, optimal modification was achieved with 1.00 wt % poly(SBMA), which balanced enhanced hydrophilicity with preservation of the structural integrity of the membrane. This modification resulted in a 70% reduction in bacterial (Escherichia coli) attachment and a 60% reduction in blood cell attachment compared to the unmodified PP membrane.
Collapse
Affiliation(s)
- Gian Vincent Canlas Dizon
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd, Taoyuan 32023, Taiwan
| | - Chiao-Ling Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd, Taoyuan 32023, Taiwan
| | - Chih-Chen Yeh
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd, Taoyuan 32023, Taiwan
| | - Chung-Jung Chou
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd, Taoyuan 32023, Taiwan
| | | | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yung Chang
- R&D Center for Membrane Technology and Department of Chemical Engineering, Chung Yuan Christian University, 200 Chung Pei Rd, Taoyuan 32023, Taiwan
| |
Collapse
|
3
|
Zhao B, Xiong CR, Liu Y, Yu QC, Chen X. Rapid detection of SARS-CoV-2 spike protein using a magnetic-assisted electrochemical biosensor based on functionalized CoFe 2O 4 magnetic nanomaterials. Talanta 2024; 274:125986. [PMID: 38537348 DOI: 10.1016/j.talanta.2024.125986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 03/09/2024] [Accepted: 03/22/2024] [Indexed: 05/04/2024]
Abstract
The outbreak of novel coronavirus pneumonia (COVID-19) in 2019 has garnered widespread attention. The virus exhibits high contagiousness, and in certain cases, it can lead to recurrent infections. Therefore, it is imperative to develop portable, sensitive, and accurate sensors to promptly detect infected individuals, control the virus's transmission, and determine suitable treatment strategies. In this study, we proposed a magnetically-assisted method employing CFO@CS-Au MNP as the substrate material, which was functionalized with human angiotensin-converting enzyme (ACE2) for efficient capture of SARS-CoV-2 spike protein in solution. Subsequently, the captured protein was sensitively detected through differential pulse voltammetry (DPV) electrical analysis. The linear detection range of the labeled GCE/MNP/GA/ACE2/BSA electrochemical sensor is from 1 pg/mL to 10 μg/mL, with a minimum detection limit of 0.15 pg/mL. Furthermore, the fabricated GCE/MNP/GA/ACE2/BSA sensor achieved satisfactory recoveries of SARS-CoV-2 spike protein in saliva and nasal swab samples within 10 min. These results indicate that this magnetically-assisted biosensor has established a solid foundation for the swift on-site detection of COVID-19.
Collapse
Affiliation(s)
- Bing Zhao
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, PR China; School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Chan-Ru Xiong
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, PR China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Yao Liu
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, PR China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| | - Qing-Cai Yu
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, PR China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Xing Chen
- Key Lab of Aerospace Structural Parts Forming Technology and Equipment of Anhui Province, Institute of Industry and Equipment Technology, Hefei University of Technology, Hefei, 230009, PR China; School of Resources and Environmental Engineering, Hefei University of Technology, Hefei, 230009, PR China; School of Materials Science and Engineering, Hefei University of Technology, Hefei, 230009, PR China.
| |
Collapse
|
4
|
Fu C, Wang Z, Zhou X, Hu B, Li C, Yang P. Protein-based bioactive coatings: from nanoarchitectonics to applications. Chem Soc Rev 2024; 53:1514-1551. [PMID: 38167899 DOI: 10.1039/d3cs00786c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
Protein-based bioactive coatings have emerged as a versatile and promising strategy for enhancing the performance and biocompatibility of diverse biomedical materials and devices. Through surface modification, these coatings confer novel biofunctional attributes, rendering the material highly bioactive. Their widespread adoption across various domains in recent years underscores their importance. This review systematically elucidates the behavior of protein-based bioactive coatings in organisms and expounds on their underlying mechanisms. Furthermore, it highlights notable advancements in artificial synthesis methodologies and their functional applications in vitro. A focal point is the delineation of assembly strategies employed in crafting protein-based bioactive coatings, which provides a guide for their expansion and sustained implementation. Finally, the current trends, challenges, and future directions of protein-based bioactive coatings are discussed.
Collapse
Affiliation(s)
- Chengyu Fu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Zhengge Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Xingyu Zhou
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Bowen Hu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| | - Chen Li
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Eastern HuaLan Avenue, Xinxiang, Henan 453003, China
| | - Peng Yang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
- Xi'an Key Laboratory of Polymeric Soft Matter, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
- International Joint Research Center on Functional Fiber and Soft Smart Textile, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
5
|
Degirmenci A, Sanyal R, Sanyal A. Plug-and-Play Biointerfaces: Harnessing Host-Guest Interactions for Fabrication of Functional Polymeric Coatings. Biomacromolecules 2023; 24:3568-3579. [PMID: 37406159 PMCID: PMC10428160 DOI: 10.1021/acs.biomac.3c00360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 06/17/2023] [Indexed: 07/07/2023]
Abstract
Polymeric surface coatings capable of effectively integrating desired functional molecules and ligands are attractive for fabricating bio-interfaces necessary for various applications. Herein, we report the design of a polymeric platform amenable to such modifications in a modular fashion through host-guest chemistry. Copolymers containing adamantane (Ada) moieties, diethylene glycol (DEG) units, and silyloxy groups to provide functionalization handles, anti-biofouling character, and surface attachment, respectively, were synthesized. These copolymers were employed to modify silicon/glass surfaces to enable their functionalization using beta-cyclodextrin (βCD) containing functional molecules and bioactive ligands. Moreover, surface functionalization could be spatially controlled using a well-established technique like microcontact printing. Efficient and robust functionalization of polymer-coated surfaces was demonstrated by immobilizing a βCD-conjugated fluorescent rhodamine dye through the specific noncovalent binding between Ada and βCD units. Furthermore, biotin, mannose, and cell adhesive peptide-modified βCD were immobilized onto the Ada-containing polymer-coated surfaces to direct noncovalent conjugation of streptavidin, concanavalin A (ConA), and fibroblast cells, respectively. It was demonstrated that the mannose-functionalized coating could selectively bind to the target lectin ConA, and the interface could be regenerated and reused several times. Moreover, the polymeric coating was adaptable for cell attachment and proliferation upon noncovalent modification with cell-adhesive peptides. One can envision that the facile synthesis of the Ada-based copolymers, mild conditions for coating surfaces, and their effective transformation to various functional interfaces in a modular fashion offers an attractive approach to engineering functional interfaces for several biomedical applications.
Collapse
Affiliation(s)
- Aysun Degirmenci
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
| | - Rana Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Istanbul 34342, Türkiye
| | - Amitav Sanyal
- Department
of Chemistry, Bogazici University, Bebek, Istanbul 34342, Türkiye
- Center
for Life Sciences and Technologies, Bogazici
University, Istanbul 34342, Türkiye
| |
Collapse
|
6
|
Zhu X, Ma N, Wan Y, Wang L, Zhang Y, Yan C, Qian W. Evaluation of covalent coupling strategies for immobilizing ligands on silica colloidal crystal films by optical interferometry. Analyst 2023; 148:1024-1031. [PMID: 36723219 DOI: 10.1039/d2an02079c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Immobilizing ligands is a crucial part of preparing optical sensors and directly connected to the sensitivity, stability, and other characteristics of sensors. In this work, an ordered porous layer interferometry (OPLI) system that can monitor the covalent coupling process of ligands in real time was developed. Films of silica colloidal crystal (SCC), as optical interference substrates, were surface modified by three different reagents: chloroacetic acid, glutaric anhydride, and carboxymethyl dextran. Staphylococcus aureus protein A (SPA), the ligand, was immobilized on SCC films. The covalent coupling process of SPA and SCC films can be dynamically monitored by the OPLI system. In addition, the three different strategies were evaluated by comparing the efficiency of the sensors prepared by different methods for binding Immunoglobulin G (IgG). The glutaric anhydride-modified sensor offers apparent advantages in terms of bound IgG quantity and affinity. This system provides a simple and intuitive way to determine the efficiency of different covalent coupling strategies. Furthermore, the sensor covalently coupled with SPA also excels in the determination of IgG content in complex systems such as milk. At the same time, the covalent coupling gives the sensor the ability to be stored stably over time.
Collapse
Affiliation(s)
- Xueyi Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Ning Ma
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Yizhen Wan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Lu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Yu Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Chengyu Yan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| | - Weiping Qian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
7
|
Degirmenci A, Yeter Bas G, Sanyal R, Sanyal A. “Clickable” Polymer Brush Interfaces: Tailoring Monovalent to Multivalent Ligand Display for Protein Immobilization and Sensing. Bioconjug Chem 2022; 33:1672-1684. [PMID: 36128725 PMCID: PMC9501913 DOI: 10.1021/acs.bioconjchem.2c00298] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
![]()
Facile and effective functionalization of the interface
of polymer-coated
surfaces allows one to dictate the interaction of the underlying material
with the chemical and biological analytes in its environment. Herein,
we outline a modular approach that would enable installing a variety
of “clickable” handles onto the surface of polymer brushes,
enabling facile conjugation of various ligands to obtain functional
interfaces. To this end, hydrophilic anti-biofouling poly(ethylene
glycol)-based polymer brushes are fabricated on glass-like silicon
oxide surfaces using reversible addition–fragmentation chain
transfer (RAFT) polymerization. The dithioester group at the chain-end
of the polymer brushes enabled the installation of azide, maleimide,
and terminal alkene functional groups, using a post-polymerization
radical exchange reaction with appropriately functionalized azo-containing
molecules. Thus, modified polymer brushes underwent facile conjugation
of alkyne or thiol-containing dyes and ligands using alkyne–azide
cycloaddition, Michael addition, and radical thiol–ene conjugation,
respectively. Moreover, we demonstrate that the radical exchange approach
also enables the installation of multivalent motifs using dendritic
azo-containing molecules. Terminal alkene groups containing dendrons
amenable to functionalization with thiol-containing molecules using
the radical thiol–ene reaction were installed at the interface
and subsequently functionalized with mannose ligands to enable sensing
of the Concanavalin A lectin.
Collapse
Affiliation(s)
- Aysun Degirmenci
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
| | - Gizem Yeter Bas
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Istanbul 34342, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| |
Collapse
|
8
|
Cansu Tarakci E, Nihal Gevrek T. Isocyanate group containing reactive hydrogels: Facile synthesis and efficient biofunctionalization. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
9
|
Cengiz B, Ejderyan N, Sanyal A. Functional polymeric coatings: thiol-maleimide ‘click’ chemistry as a powerful surface functionalization tool. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2022. [DOI: 10.1080/10601325.2022.2071725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Busra Cengiz
- Department of Chemistry, Bogazici University, Istanbul, Turkey
| | - Nora Ejderyan
- Department of Chemistry, Bogazici University, Istanbul, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Istanbul, Turkey
- Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkey
| |
Collapse
|
10
|
Gevrek TN, Sanyal A. Furan-containing polymeric Materials: Harnessing the Diels-Alder chemistry for biomedical applications. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110514] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
11
|
Straub AJ, Scherag FD, Kim HI, Steiner MS, Brandstetter T, Rühe J. "CHicable" and "Clickable" Copolymers for Network Formation and Surface Modification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:6510-6520. [PMID: 34003660 DOI: 10.1021/acs.langmuir.1c00669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, we present the generation of novel, multifunctional polymer networks through a combination of C,H-insertion cross-linking (CHic) and click chemistry. To this, copolymers consisting of hydrophilic N,N-dimethylacrylamide as matrix component and repeat units containing azide moieties, as well as benzophenone or anthraquinone groups, are generated. The benzophenone or anthraquinone groups allow photo-cross-linking, surface attachment or covalent immobilization of adjacent (bio)molecules through CHic reactions. The azide moieties either can react with available alkynes through conventional click reactions or can be activated to form nitrenes, which can also undergo CHic reactions. By choosing appropriate reaction conditions, the same polymer can be used to follow very different reaction paths, opening up a plethora of choices for the generation of functional polymer networks. In the exemplary presented case ("CHic-Click"), irradiation of the copolymers with UV-A light (λirr = 365 nm) leads to cross-linking (network formation) and surface attachment simultaneously. The azide units remain intact during this cross-linking step, and alkyne-modified (bio)molecules can be bound through click reactions. Biofunctionalization of the polymer network with alkynylated streptavidin, followed by application of biotin-conjugated antibody and a model analyte, highlights the potential of these surface architectures as a toolbox which can be adapted for diverse bioanalytical applications.
Collapse
Affiliation(s)
- Alexander J Straub
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Frank D Scherag
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Hye In Kim
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Mark-Steven Steiner
- Microcoat Biotechnologie GmbH, Am Neuland 3, 82347 Bernried am Starnberger See, Germany
| | - Thomas Brandstetter
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| | - Jürgen Rühe
- Laboratory for Chemistry and Physics of Interfaces, Department of Microsystems Engineering (IMTEK), University of Freiburg, Georges-Köhler-Allee 103, 79110 Freiburg, Germany
| |
Collapse
|
12
|
Pan W, Han Z, Chang Y, Duan X. Three-dimensional biosensor surface based on novel thorns-like polyelectrolytes. Biosens Bioelectron 2020; 167:112504. [DOI: 10.1016/j.bios.2020.112504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 08/05/2020] [Accepted: 08/06/2020] [Indexed: 11/29/2022]
|
13
|
Chambre L, Maouati H, Oz Y, Sanyal R, Sanyal A. Thiol-Reactive Clickable Cryogels: Importance of Macroporosity and Linkers on Biomolecular Immobilization. Bioconjug Chem 2020; 31:2116-2124. [PMID: 32786374 DOI: 10.1021/acs.bioconjchem.0c00318] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Macroporous cryogels that are amenable to facile functionalization are attractive platforms for biomolecular immobilization, a vital step for fabrication of scaffolds necessary for areas like tissue engineering and diagnostic sensing. In this work, thiol-reactive porous cryogels are obtained via photopolymerization of a furan-protected maleimide-containing poly(ethylene glycol) (PEG)-based methacrylate (PEGFuMaMA) monomer. A series of cryogels are prepared using varying amounts of the masked hydrophilic PEGFuMaMA monomer, along with poly(ethylene glycol) methyl ether methacrylate and poly(ethylene glycol) dimethacrylate, a hydrophilic monomer and cross-linker, respectively, in the presence of a photoinitiator. Subsequent activation to the thiol-reactive form of the furan-protected maleimide groups is performed through the retro Diels-Alder reaction. As a demonstration of direct protein immobilization, bovine serum albumin is immobilized onto the cryogels. Furthermore, ligand-directed immobilization of proteins is achieved by first attaching mannose- or biotin-thiol onto the maleimide-containing platforms, followed by ligand-directed immobilization of concanavalin A or streptavidin, respectively. Additionally, we demonstrate that the extent of immobilized proteins can be controlled by varying the amount of thiol-reactive maleimide groups present in the cryogel matrix. Compared to traditional hydrogels, cryogels demonstrate enhanced protein immobilization/detection. Additionally, it is concluded that utilization of a longer linker, distancing the thiol-reactive maleimide group from the gel scaffold, considerably increases protein immobilization. It can be envisioned that the facile fabrication, conjugation, and control over the extent of functionalization of these cryogels will make these materials desirable scaffolds for numerous biomedical applications.
Collapse
Affiliation(s)
- Laura Chambre
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Hamida Maouati
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.,Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| | - Yavuz Oz
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.,Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey.,Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey
| |
Collapse
|
14
|
Gevrek TN, Degirmenci A, Sanyal R, Sanyal A. Multifunctional and Transformable 'Clickable' Hydrogel Coatings on Titanium Surfaces: From Protein Immobilization to Cellular Attachment. Polymers (Basel) 2020; 12:E1211. [PMID: 32466521 PMCID: PMC7362003 DOI: 10.3390/polym12061211] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/23/2020] [Accepted: 05/24/2020] [Indexed: 02/03/2023] Open
Abstract
Multifunctionalizable hydrogel coatings on titanium interfaces are useful in a wide range of biomedical applications utilizing titanium-based materials. In this study, furan-protected maleimide groups containing multi-clickable biocompatible hydrogel layers are fabricated on a titanium surface. Upon thermal treatment, the masked maleimide groups within the hydrogel are converted to thiol-reactive maleimide groups. The thiol-reactive maleimide group allows facile functionalization of these hydrogels through the thiol-maleimide nucleophilic addition and Diels-Alder cycloaddition reactions, under mild conditions. Additionally, the strained alkene unit in the furan-protected maleimide moiety undergoes radical thiol-ene reaction, as well as the inverse-electron-demand Diels-Alder reaction with tetrazine containing molecules. Taking advantage of photo-initiated thiol-ene 'click' reactions, we demonstrate spatially controlled immobilization of the fluorescent dye thiol-containing boron dipyrromethene (BODIPY-SH). Lastly, we establish that the extent of functionalization on hydrogels can be controlled by attachment of biotin-benzyl-tetrazine, followed by immobilization of TRITC-labelled ExtrAvidin. Being versatile and practical, we believe that the described multifunctional and transformable 'clickable' hydrogels on titanium-based substrates described here can find applications in areas involving modification of the interface with bioactive entities.
Collapse
Affiliation(s)
- Tugce Nihal Gevrek
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey; (T.N.G.); (R.S.)
| | - Aysun Degirmenci
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey;
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey; (T.N.G.); (R.S.)
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey;
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek, Istanbul 34342, Turkey; (T.N.G.); (R.S.)
- Center for Life Sciences and Technologies, Bogazici University, Istanbul 34342, Turkey;
| |
Collapse
|
15
|
Cengiz N, Gevrek TN, Sanyal R, Sanyal A. Fabrication of Patterned Hydrogel Interfaces: Exploiting the Maleimide Group as a Dual Purpose Handle for Cross-Linking and Bioconjugation. Bioconjug Chem 2020; 31:1382-1391. [PMID: 32259431 DOI: 10.1021/acs.bioconjchem.0c00108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Functional hydrogels that can be obtained through facile fabrication procedures and subsequently modified using straightforward reagent-free methods are indispensable materials for biomedical applications such as sensing and diagnostics. Herein a novel hydrogel platform is obtained using polymeric precursors containing the maleimide functional group as a side chain. The maleimide groups play a dual role in fabrication of functional hydrogels. They enable photochemical cross-linking of the polymers to yield bulk and patterned hydrogels. Moreover, the maleimide group can be used as a handle for efficient functionalization using the thiol-maleimide conjugation and Diels-Alder cycloaddition click reactions. Obtained hydrogels are characterized in terms of their morphology, water uptake capacity, and functionalization. Micropatterned hydrogels are obtained under UV-irradiation using a photomask to obtain reactive micropatterns, which undergo facile functionalization upon treatment with thiol-containing functional molecules such as fluorescent dyes and bioactive ligands. The maleimide group also undergoes conjugation through the Diels-Alder reaction, where the attached molecule can be released through thermal treatment via the retro Diels-Alder reaction. The antibiofouling nature of these hydrogel micropatterns enables efficient ligand-directed biomolecular immobilization, as demonstrated by attachment of streptavidin-coated quantum dots.
Collapse
Affiliation(s)
- Nergiz Cengiz
- Department of Chemistry, Bogazici University, Bebek 34342, Istanbul, Turkey
| | - Tugce Nihal Gevrek
- Department of Chemistry, Bogazici University, Bebek 34342, Istanbul, Turkey
| | - Rana Sanyal
- Department of Chemistry, Bogazici University, Bebek 34342, Istanbul, Turkey.,Center for Life Sciences and Technologies, Bogazici University, 34342, Istanbul, Turkey
| | - Amitav Sanyal
- Department of Chemistry, Bogazici University, Bebek 34342, Istanbul, Turkey.,Center for Life Sciences and Technologies, Bogazici University, 34342, Istanbul, Turkey
| |
Collapse
|
16
|
Zhang Y, Shen J, Hu R, Shi X, Hu X, He B, Qin A, Tang BZ. Fast surface immobilization of native proteins through catalyst-free amino-yne click bioconjugation. Chem Sci 2020; 11:3931-3935. [PMID: 34122863 PMCID: PMC8152777 DOI: 10.1039/d0sc00062k] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 03/18/2020] [Indexed: 12/30/2022] Open
Abstract
Surface immobilization provides a useful platform for biosensing, drug screening, tissue engineering and other chemical and biological applications. However, some of the used reactions are inefficient and/or complicated, limiting their applications in immobilization. Herein, we use a spontaneous and catalyst-free amino-yne click bioconjugation to generate activated ethynyl group functionalized surfaces for fast immobilization of native proteins and cells. Biomolecules, such as bovine serum albumin (BSA), human IgG and a peptide of C(RGDfK), could be covalently immobilized on the surfaces in as short as 30 min. Notably, the bioactivity of the anchored biomolecules remains intact, which is verified by efficiently capturing target antibodies and cells from the bulk solutions. This strategy represents an alternative for highly efficient surface biofunctionalization.
Collapse
Affiliation(s)
- Yiru Zhang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology Guangzhou 510640 China
| | - Jianlei Shen
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology Guangzhou 510640 China
| | - Rong Hu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology Guangzhou 510640 China
| | - Xiujuan Shi
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology Clear Water Bay Kowloon Hong Kong China
| | - Xianglong Hu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology Clear Water Bay Kowloon Hong Kong China
| | - Benzhao He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology Clear Water Bay Kowloon Hong Kong China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, Center for Aggregation-Induced Emission, South China University of Technology Guangzhou 510640 China
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, Institute for Advanced Study, and Department of Chemical and Biological Engineering, The Hong Kong University of Science & Technology Clear Water Bay Kowloon Hong Kong China
| |
Collapse
|
17
|
Li P, Dou X, Schönherr H. Micropatterning and nanopatterning with polymeric materials for advanced biointerface‐controlled systems. POLYM INT 2019. [DOI: 10.1002/pi.5770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Ping Li
- Department of Chemistry and Biology, Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ)University of Siegen Siegen Germany
| | - Xiaoqiu Dou
- Department of Chemistry and Biology, Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ)University of Siegen Siegen Germany
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and EngineeringShanghai Jiaotong University Shanghai China
| | - Holger Schönherr
- Department of Chemistry and Biology, Physical Chemistry I and Research Center of Micro and Nanochemistry and Engineering (Cµ)University of Siegen Siegen Germany
| |
Collapse
|
18
|
Delgado JD, Surmaitis RL, Abou Shaheen S, Schlenoff JB. Engineering Thiolated Surfaces with Polyelectrolyte Multilayers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3524-3535. [PMID: 30620554 DOI: 10.1021/acsami.8b15514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Interfaces bearing firmly attached thiol groups are useful for many applications requiring the versatile and facile chemistry of the -SH functionality. In this work, rugged ultrathin films were prepared on substrates using layer-by-layer assembly. The surface of these smooth films was capped with a co-polymer containing benzyl mercaptan units. The utility of this coating was illustrated by three applications. First, thiol-ene "click" chemistry was used to introduce the Arg-Gly-Asp (RGD) adhesive peptide sequence on a surface that otherwise resisted good adhesion of fibroblasts. This treatment promoted cell adhesion and spreading. Similar Michael addition chemistry was employed to attach poly(ethylene glycol) to the surface, which reduced fouling by (adhesion of) serum albumin. Finally, the affinity of gold for -SH was exploited by depositing a layer of gold nanoparticles on the thiolated surface or by evaporating a tenacious film of gold without using the classical chromium "primer" layer.
Collapse
Affiliation(s)
- Jose D Delgado
- Department of Chemistry and Biochemistry , The Florida State University , Tallahassee , Florida 32306 , United States
| | - Richard L Surmaitis
- Department of Chemistry and Biochemistry , The Florida State University , Tallahassee , Florida 32306 , United States
| | - Samir Abou Shaheen
- Department of Chemistry and Biochemistry , The Florida State University , Tallahassee , Florida 32306 , United States
| | - Joseph B Schlenoff
- Department of Chemistry and Biochemistry , The Florida State University , Tallahassee , Florida 32306 , United States
| |
Collapse
|
19
|
Xia J, Zhao P, Zheng K, Lu C, Yin S, Xu H. Surface Modification Based on Diselenide Dynamic Chemistry: Towards Liquid Motion and Surface Bioconjugation. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201810588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Jiahao Xia
- Key Laboratory of Organic Optoelectronics and Molecular EngineeringDepartment of ChemistryTsinghua University Beijing 100084 China
| | - Peng Zhao
- Key Laboratory of Organic Optoelectronics and Molecular EngineeringDepartment of ChemistryTsinghua University Beijing 100084 China
| | - Ke Zheng
- Key Laboratory of Organic Optoelectronics and Molecular EngineeringDepartment of ChemistryTsinghua University Beijing 100084 China
| | - Chenjie Lu
- College of MaterialChemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 China
| | - Shouchun Yin
- College of MaterialChemistry and Chemical EngineeringHangzhou Normal University Hangzhou 310036 China
| | - Huaping Xu
- Key Laboratory of Organic Optoelectronics and Molecular EngineeringDepartment of ChemistryTsinghua University Beijing 100084 China
| |
Collapse
|
20
|
Xia J, Zhao P, Zheng K, Lu C, Yin S, Xu H. Surface Modification Based on Diselenide Dynamic Chemistry: Towards Liquid Motion and Surface Bioconjugation. Angew Chem Int Ed Engl 2018; 58:542-546. [PMID: 30457188 DOI: 10.1002/anie.201810588] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Indexed: 12/26/2022]
Abstract
Surface modification is an important technique in fields, such as, self-cleaning, surface patterning, sensing, and detection. The diselenide bond was shown to be a dynamic covalent bond that can undergo a diselenide metathesis reaction simply under visible light irradiation. Herein we develop this diselenide dynamic chemistry into a versatile surface modification method with a fast response and reversibility. The diselenide bond could be modified onto various substrates, such as, PDMS, quartz, and ITO conductive film glass. Different functional diselenide molecules could then be immobilized onto the surface via diselenide metathesis reaction. We demonstrated that by using this modification method we could achieve liquid motion in a capillary tube under light illumination. We also show that this approach has the potential to serve as an efficient modification method for surface bioconjugation, which has practical applications in clinical usage.
Collapse
Affiliation(s)
- Jiahao Xia
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Peng Zhao
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Ke Zheng
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chenjie Lu
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, China
| | - Shouchun Yin
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou, 310036, China
| | - Huaping Xu
- Key Laboratory of Organic Optoelectronics and Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
21
|
Ganganboina AB, Dutta Chowdhury A, Doong RA. N-Doped Graphene Quantum Dots-Decorated V 2O 5 Nanosheet for Fluorescence Turn Off-On Detection of Cysteine. ACS APPLIED MATERIALS & INTERFACES 2018; 10:614-624. [PMID: 29227622 DOI: 10.1021/acsami.7b15120] [Citation(s) in RCA: 88] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The development of a fast-response sensing technique for detection of cysteine can provide an analytical platform for prescreening of disease. Herein, we have developed a fluorescence turn off-on fluorescence sensing platform by combining nitrogen-doped graphene quantum dots (N-GQDs) with V2O5 nanosheets for the sensitive and selective detection of cysteine in human serum samples. V2O5 nanosheets with 2-4 layers are successfully synthesized via a simple and scalable liquid exfoliation method and then deposited with 2-8 nm of N-GQDs as the fluorescence turn off-on nanoprobe for effective detection of cysteine in human serum samples. The V2O5 nanosheets serve as both fluorescence quencher and cysteine recognizer in the sensing platform. The fluorescence intensity of N-GQDs with quantum yield of 0.34 can be quenched after attachment onto V2O5 nanosheets. The addition of cysteine triggers the reduction of V2O5 to V4+ as well as the release of N-GQDs within 4 min, resulting in the recovery of fluorescence intensity for the turn off-on detection of cysteine. The sensing platform exhibits a two-stage linear response to cysteine in the concentration range of 0.1-15 and 15-125 μM at pH 6.5, and the limit of detection is 50 nM. The fluorescence response of N-GQD@V2O5 exhibits high selectivity toward cysteine over other 22 electrolytes and biomolecules. Moreover, this promising platform is successfully applied in detection of cysteine in human serum samples with excellent recovery of (95 ± 3.8) - (108 ± 2.4)%. These results clearly demonstrate a newly developed redox reaction-based nanosensing platform using N-GQD@V2O5 nanocomposites as the sensing probe for cysteine-associated disease monitoring and diagnosis in biomedical applications, which can open an avenue for the development of high performance and robust sensing probes to detect organic metabolites.
Collapse
Affiliation(s)
- Akhilesh Babu Ganganboina
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University , 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
| | - Ankan Dutta Chowdhury
- Institute of Environmental Engineering, National Chiao Tung University , 1001 University Road, Hsinchu 30010, Taiwan
| | - Ruey-An Doong
- Department of Biomedical Engineering and Environmental Sciences, National Tsing Hua University , 101 Section 2, Kuang-Fu Road, Hsinchu 30013, Taiwan
- Institute of Environmental Engineering, National Chiao Tung University , 1001 University Road, Hsinchu 30010, Taiwan
| |
Collapse
|