1
|
Yin B, Wang C, Xie S, Gu J, Sheng H, Wang DX, Yao J, Zhang C. Regulating Spin Density using TEMPOL Molecules for Enhanced CO 2-to-Ethylene Conversion by HKUST-1 Framework Derived Electrocatalysts. Angew Chem Int Ed Engl 2024; 63:e202405873. [PMID: 38709722 DOI: 10.1002/anie.202405873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/05/2024] [Accepted: 05/05/2024] [Indexed: 05/08/2024]
Abstract
The selectivity of multicarbon products in the CO2 reduction reaction (CO2RR) depends on the spin alignment of neighboring active sites, which requires a spin catalyst that facilitates electron transfer with antiparallel spins for enhanced C-C coupling. Here, we design a radical-contained spin catalyst (TEMPOL@HKUST-1) to enhance CO2-to-ethylene conversion, in which spin-disordered (SDO) and spin-ordered (SO) phases co-exist to construct an asymmetric spin configuration of neighboring active sites. The replacement of axially coordinated H2O molecules with TEMPOL radicals introduces spin-spin interactions among the Cu(II) centers to form localized SO phases within the original H2O-mediated SDO phases. Therefore, TEMPOL@HKUST-1 derived catalyst exhibited an approximately two-fold enhancement in ethylene selectivity during the CO2RR at -1.8 V versus Ag/AgCl compared to pristine HKUST-1. In situ ATR-SEIRAS spectra indicate that the spin configuration at asymmetric SO/SDO sites significantly reduces the kinetic barrier for *CO intermediate dimerization toward the ethylene product. The performance of the spin catalyst is further improved by spin alignment under a magnetic field, resulting in a maximum ethylene selectivity of more than 50 %. The exploration of the spin-polarized kinetics of the CO2RR provides a promising path for the development of novel spin electrocatalysts with superior performance.
Collapse
Affiliation(s)
- Baipeng Yin
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Can Wang
- State Key Laboratory of Metastable Materials Science and Technology (MMST) Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, China
| | - Shijie Xie
- State Key Laboratory of Fine Chemical, Frontiers Science Center for Smart Materials Oriented Chemical Engineering School of Chemical Engineering, Dalian University of Technology, Dalian, 116024, China
| | - Jianmin Gu
- State Key Laboratory of Metastable Materials Science and Technology (MMST) Hebei Key Laboratory of Applied Chemistry, Yanshan University, Qinhuangdao, 066004, China
| | - Hua Sheng
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - De-Xian Wang
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Institute of Molecular Engineering Plus, Fuzhou University, Fuzhou, 350108, China
| | - Chuang Zhang
- Beijing National Laboratory for Molecular Sciences Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
2
|
She Y, Chen X, Wang M, Liu A, Wang X, Gao D, Hu K, Hu M. Heterogeneous solvent-metal-free aerobic oxidation of alcohol under ambient conditions catalyzed by TEMPO-functionalized porous poly(ionic liquid)s. RSC Adv 2024; 14:20199-20209. [PMID: 38919279 PMCID: PMC11196979 DOI: 10.1039/d4ra02241f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 05/11/2024] [Indexed: 06/27/2024] Open
Abstract
Heterogeneous solvent-metal-free aerobic oxidation of alcohols under ambient conditions is interesting but remains a significant challenge. Herein, a series of porous TEMPO-functionalized poly(ionic liquid)s (TEMPO-PILs) featuring a pure polycationic framework were successfully developed through the free radical polymerization of the ionic liquid 3-(2-chloroacetic acid-2,2,6,6-tetramethyl-1-oxo-4-piperidyl)-1-vinylimidazolium chloride and bis-vinylimidazolium bromide salt. Characterizations revealed that the obtained TEMPO-PILs possessed a high TEMPO density, abundant bromide ions, and a tunable porous structure, which enabled them to serve as solvent-free heterogeneous organocatalysts for the metal-free aerobic oxidation of benzyl alcohol under ambient conditions, exhibiting high catalytic activity and stable recyclability. A high yield of 99% coupled with a turnover frequency (TOF) of 13.3 h-1 was obtainable, which is higher than most of the reported TEMPO-based heterogeneous catalysts, even superior to homogeneous TEMPO-functionalized ionic liquids. Furthermore, a broad range of alcohols were effectively converted into their corresponding ketones and aldehydes. A possible reaction mechanism is proposed for understanding the catalytic oxidation behavior, indicative of the synergistic effect of TEMPO moieties and bromide ions.
Collapse
Affiliation(s)
- Yaping She
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China +86-551-62158395
| | - Xinyu Chen
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China +86-551-62158395
| | - Mengya Wang
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China +86-551-62158395
| | - Anqiu Liu
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China +86-551-62158395
| | - Xiaochen Wang
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China +86-551-62158395
| | - Daming Gao
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China +86-551-62158395
| | - Kunhong Hu
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China +86-551-62158395
| | - Miao Hu
- School of Energy Materials and Chemical Engineering, Hefei University Hefei 230601 China +86-551-62158395
| |
Collapse
|
3
|
Abstract
Nitroxides, also known as nitroxyl radicals, are long-lived or stable radicals with the general structure R1R2N-O•. The spin distribution over the nitroxide N and O atoms contributes to the thermodynamic stability of these radicals. The presence of bulky N-substituents R1 and R2 prevents nitroxide radical dimerization, ensuring their kinetic stability. Despite their reactivity toward various transient C radicals, some nitroxides can be easily stored under air at room temperature. Furthermore, nitroxides can be oxidized to oxoammonium salts (R1R2N═O+) or reduced to anions (R1R2N-O-), enabling them to act as valuable oxidants or reductants depending on their oxidation state. Therefore, they exhibit interesting reactivity across all three oxidation states. Due to these fascinating properties, nitroxides find extensive applications in diverse fields such as biochemistry, medicinal chemistry, materials science, and organic synthesis. This review focuses on the versatile applications of nitroxides in organic synthesis. For their use in other important fields, we will refer to several review articles. The introductory part provides a brief overview of the history of nitroxide chemistry. Subsequently, the key methods for preparing nitroxides are discussed, followed by an examination of their structural diversity and physical properties. The main portion of this review is dedicated to oxidation reactions, wherein parent nitroxides or their corresponding oxoammonium salts serve as active species. It will be demonstrated that various functional groups (such as alcohols, amines, enolates, and alkanes among others) can be efficiently oxidized. These oxidations can be carried out using nitroxides as catalysts in combination with various stoichiometric terminal oxidants. By reducing nitroxides to their corresponding anions, they become effective reducing reagents with intriguing applications in organic synthesis. Nitroxides possess the ability to selectively react with transient radicals, making them useful for terminating radical cascade reactions by forming alkoxyamines. Depending on their structure, alkoxyamines exhibit weak C-O bonds, allowing for the thermal generation of C radicals through reversible C-O bond cleavage. Such thermally generated C radicals can participate in various radical transformations, as discussed toward the end of this review. Furthermore, the application of this strategy in natural product synthesis will be presented.
Collapse
Affiliation(s)
- Dirk Leifert
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität, Corrensstrasse 40, 48149 Münster, Germany
| |
Collapse
|
4
|
Ahmad BIZ, Keasler KT, Stacy EE, Meng S, Hicks TJ, Milner PJ. MOFganic Chemistry: Challenges and Opportunities for Metal-Organic Frameworks in Synthetic Organic Chemistry. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2023; 35:4883-4896. [PMID: 38222037 PMCID: PMC10785605 DOI: 10.1021/acs.chemmater.3c00741] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Metal-organic frameworks (MOFs) are porous, crystalline solids constructed from organic linkers and inorganic nodes that have been widely studied for applications in gas storage, chemical separations, and drug delivery. Owing to their highly modular structures and tunable pore environments, we propose that MOFs have significant untapped potential as catalysts and reagents relevant to the synthesis of next-generation therapeutics. Herein, we outline the properties of MOFs that make them promising for applications in synthetic organic chemistry, including new reactivity and selectivity, enhanced robustness, and user-friendly preparation. In addition, we outline the challenges facing the field and propose new directions to maximize the utility of MOFs for drug synthesis. This perspective aims to bring together the organic and MOF communities to develop new heterogeneous platforms capable of achieving synthetic transformations that cannot be replicated by homogeneous systems.
Collapse
Affiliation(s)
- Bayu I. Z. Ahmad
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Kaitlyn T. Keasler
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Emily E. Stacy
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Sijing Meng
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Thomas J. Hicks
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| | - Phillip J. Milner
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, United States
| |
Collapse
|
5
|
Ye X, Chung LH, Li K, Zheng S, Wong YL, Feng Z, He Y, Chu D, Xu Z, Yu L, He J. Organic radicals stabilization above 300 °C in Eu-based coordination polymers for solar steam generation. Nat Commun 2022; 13:6116. [PMID: 36253477 PMCID: PMC9576730 DOI: 10.1038/s41467-022-33948-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 10/09/2022] [Indexed: 11/11/2022] Open
Abstract
Organic radicals feature unpaired electrons, and these compounds may have applications in biomedical technology and as materials for solar energy conversion. However, unpaired electrons tend to pair up (to form chemical bonds), making radicals unstable and hampering their applications. Here we report an organic radical system that is stable even at 350 °C, surpassing the upper temperature limit (200 °C) observed for other organic radicals. The system reported herein features a sulfur-rich organic linker that facilitates the formation of the radical centers; on the solid-state level, the molecules are crystallized with Eu(III) ions to form a 3D framework featuring stacks of linker molecules. The stacking is, however, somewhat loose and allows the molecules to wiggle and transform into sulfur-stabilized radicals at higher temperatures. In addition, the resulting solid framework remains crystalline, and it is stable to water and air. Moreover, it is black and features strong broad absorption in the visible and near IR region, thereby enhancing both photothermal conversion and solar-driven water evaporation. Organic radicals have potential applications in a variety of fields, including energy conversion. Here, the authors report Eu-based coordination polymers that enable the stabilization of organic radicals up to 350 °C; these systems can be used to enhance solar steam generation.
Collapse
Affiliation(s)
- Xinhe Ye
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Lai-Hon Chung
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Kedi Li
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Saili Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yan-Lung Wong
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zihao Feng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yonghe He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Dandan Chu
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Zhengtao Xu
- Institute of Materials Research and Engineering (IMRE), Agency of Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Singapore, 138634, Republic of Singapore.
| | - Lin Yu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China
| | - Jun He
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, China.
| |
Collapse
|
6
|
Wang P, Xue Z, Ken-Ichi O, Kitagawa S. Nitroxyl radical-containing flexible porous coordination polymer for controllable size-aelective aerobic oxidation of alcohols. Chem Commun (Camb) 2022; 58:9026-9029. [PMID: 35875985 DOI: 10.1039/d2cc02772k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability of flexible porous coordination polymers (PCPs) to change their structure in response to various stimuli has not been exploited in the design of tunable-selectivity catalysts. Herein, we make use of this ability and prepare nitroxyl radical-containing flexible PCP that can reversibly switch between large- and contracted-pore configurations in response to solvent change and thus promote the controllable size-selective aerobic oxidation of alcohols.
Collapse
Affiliation(s)
- Ping Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Ziqian Xue
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Otake Ken-Ichi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
7
|
Brown CM, Lundberg DJ, Lamb JR, Kevlishvili I, Kleinschmidt D, Alfaraj YS, Kulik HJ, Ottaviani MF, Oldenhuis NJ, Johnson JA. Endohedrally Functionalized Metal-Organic Cage-Cross-Linked Polymer Gels as Modular Heterogeneous Catalysts. J Am Chem Soc 2022; 144:13276-13284. [PMID: 35819842 DOI: 10.1021/jacs.2c04289] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The immobilization of homogeneous catalysts onto supports to improve recyclability while maintaining catalytic efficiency is often a trial-and-error process limited by poor control of the local catalyst environment and few strategies to append catalysts to support materials. Here, we introduce a modular heterogenous catalysis platform that addresses these challenges. Our approach leverages the well-defined interiors of self-assembled Pd12L24 metal-organic cages/polyhedra (MOCs): simple mixing of a catalyst-ligand of choice with a polymeric ligand, spacer ligands, and a Pd salt induces self-assembly of Pd12L24-cross-linked polymer gels featuring endohedrally catalyst-functionalized junctions. Semi-empirical calculations show that catalyst incorporation into the MOC junctions of these materials has minimal affect on the MOC geometry, giving rise to well-defined nanoconfined catalyst domains as confirmed experimentally using several techniques. Given the unique network topology of these freestanding gels, they are mechanically robust regardless of their endohedral catalyst composition, allowing them to be physically manipulated and transferred from one reaction to another to achieve multiple rounds of catalysis. Moreover, by decoupling the catalyst environment (interior of MOC junctions) from the physical properties of the support (the polymer matrix), this strategy enables catalysis in environments where homogeneous catalyst analogues are not viable, as demonstrated for the Au(I)-catalyzed cyclization of 4-pentynoic acid in aqueous media.
Collapse
Affiliation(s)
- Christopher M Brown
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - David J Lundberg
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jessica R Lamb
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Ilia Kevlishvili
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Denise Kleinschmidt
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Yasmeen S Alfaraj
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | | | - Nathan J Oldenhuis
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Jeremiah A Johnson
- Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.,David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
8
|
Park S, Lee J, Jeong H, Bae S, Kang J, Moon D, Park J. Multi-stimuli-engendered radical-anionic MOFs: Visualization of structural transformation upon radical formation. Chem 2022. [DOI: 10.1016/j.chempr.2022.03.023] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
9
|
Yan Y, Zhang NN, Tauche LM, Thangavel K, Pöppl A, Krautscheid H. Direct synthesis of a stable radical doped electrically conductive coordination polymer. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01180h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
K-ONDI, a directly synthesized coordination polymer, contains NDI˙− radicals that are stable in air and in common organic solvents. Benefiting from π–π interactions and unpaired electrons, K-ONDI exhibits an electrical conductivity of 10−6 S cm−1.
Collapse
Affiliation(s)
- Yong Yan
- Fakultät für Chemie und Mineralogie, Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| | - Ning-Ning Zhang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, P. R. China
| | - Lisa Marie Tauche
- Felix Bloch Institute for Solid State Physics, Universität Leipzig, Linnéstraβe 5, 04103 Leipzig, Germany
| | - Kavipriya Thangavel
- Felix Bloch Institute for Solid State Physics, Universität Leipzig, Linnéstraβe 5, 04103 Leipzig, Germany
| | - Andreas Pöppl
- Felix Bloch Institute for Solid State Physics, Universität Leipzig, Linnéstraβe 5, 04103 Leipzig, Germany
| | - Harald Krautscheid
- Fakultät für Chemie und Mineralogie, Institut für Anorganische Chemie, Universität Leipzig, Johannisallee 29, 04103 Leipzig, Germany
| |
Collapse
|
10
|
Lee J, Hong S, Heo Y, Kang H, Kim M. TEMPO-radical-bearing metal-organic frameworks and covalent organic frameworks for catalytic applications. Dalton Trans 2021; 50:14081-14090. [PMID: 34622893 DOI: 10.1039/d1dt03143k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
It is known that 2,2,6,6-tetramethylpiperidinyl-1-oxy (or TEMPO) is a stable, radical-containing molecule, which has been utilized in various areas of organic synthesis, catalysis, polymer chemistry, electrochemical reactions, and materials chemistry. Its unique stability, attributable to its structural features, and molecular tunability allows for the modification of various materials, including the heterogenization of solid materials. Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs) are porous and tunable because of their ligand or linker portion, and both have been extensively studied for use in catalytic applications. Therefore, synergistically combining the chemistry of TEMPO with the properties of MOFs and COFs is a natural choice and should allow for significant advancements, including improved recyclability and selectivity. This article focuses on TEMPO-bearing MOFs and COFs for use in catalytic applications. In addition, recent strategies related to the use of these functional porous materials in catalytic reactions are also discussed.
Collapse
Affiliation(s)
- Jonghyeon Lee
- Department of Chemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Seungpyo Hong
- Department of Chemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Yoonji Heo
- Department of Chemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Houng Kang
- Department of Chemistry Education, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju, 28644, Republic of Korea.
| |
Collapse
|
11
|
Chen F, Guan X, Li H, Ding J, Zhu L, Tang B, Valtchev V, Yan Y, Qiu S, Fang Q. Three-Dimensional Radical Covalent Organic Frameworks as Highly Efficient and Stable Catalysts for Selective Oxidation of Alcohols. Angew Chem Int Ed Engl 2021; 60:22230-22235. [PMID: 34387410 DOI: 10.1002/anie.202108357] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/08/2021] [Indexed: 01/18/2023]
Abstract
With excellent designability, large accessible inner surface, and high chemical stability, covalent organic frameworks (COFs) are promising candidates as metal-free heterogeneous catalysts. Here, we report two 3D radical-based COFs (JUC-565 and JUC-566) in which radical moieties (TEMPO) are uniformly decorated on the channel walls via a bottom-up approach. Based on grafted functional groups and suitable regular channels, these materials open up the application of COFs as highly efficient and selective metal-free redox catalysts in aerobic oxidation of alcohols to relevant aldehydes or ketones with outstanding turn over frequency (TOF) up to 132 h-1 , which has exceeded other TEMPO-modified catalytic materials tested under similar conditions. These stable COF-based catalysts could be easily recovered and reused for multiple runs. This study promotes potential applications of 3D functional COFs anchored with stable radicals in organic synthesis and material science.
Collapse
Affiliation(s)
- Fengqian Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Jiehua Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Liangkui Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Bin Tang
- Deakin University, Institute for Frontier Materials, Geelong, Victoria, 3216, Australia
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, 189 Song Ling Rd, Qingdao, Shandong, 266101, China.,Normandie Univ, ENSICAEN, UNICAEN, CNRS, Laboratoire Catalyse et Spectrochimie, 6 Marechal Juin, 14050, Caen, France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering, Center for Catalytic Science and Technology, University of Delaware, Newark, DE, 19716, USA
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
12
|
Chen F, Guan X, Li H, Ding J, Zhu L, Tang B, Valtchev V, Yan Y, Qiu S, Fang Q. Three‐Dimensional Radical Covalent Organic Frameworks as Highly Efficient and Stable Catalysts for Selective Oxidation of Alcohols. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108357] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Fengqian Chen
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Xinyu Guan
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Hui Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Jiehua Ding
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Liangkui Zhu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Bin Tang
- Deakin University Institute for Frontier Materials Geelong Victoria 3216 Australia
| | - Valentin Valtchev
- Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences 189 Song Ling Rd Qingdao Shandong 266101 China
- Normandie Univ, ENSICAEN UNICAEN CNRS Laboratoire Catalyse et Spectrochimie 6 Marechal Juin 14050 Caen France
| | - Yushan Yan
- Department of Chemical and Biomolecular Engineering Center for Catalytic Science and Technology University of Delaware Newark DE 19716 USA
| | - Shilun Qiu
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| | - Qianrong Fang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry Jilin University Changchun 130012 China
| |
Collapse
|
13
|
Guo J, Qin Y, Zhu Y, Zhang X, Long C, Zhao M, Tang Z. Metal-organic frameworks as catalytic selectivity regulators for organic transformations. Chem Soc Rev 2021; 50:5366-5396. [PMID: 33870965 DOI: 10.1039/d0cs01538e] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Selective organic transformations using metal-organic frameworks (MOFs) and MOF-based heterogeneous catalysts have been an intriguing but challenging research topic in both the chemistry and materials communities. Analogous to the reaction specificity achieved in enzyme pockets, MOFs are also powerful platforms for regulating the catalytic selectivity via engineering their catalytic microenvironments, such as metal node alternation, ligand functionalization, pore decoration, topology variation and others. In this review, we provide a comprehensive introduction and discussion about the role of MOFs played in regulating and even boosting the size-, shape-, chemo-, regio- and more appealing stereo-selectivity in organic transformations. We hope that it will be instructive for researchers in this field to rationally design, conveniently prepare and elaborately functionalize MOFs or MOF-based composites for the synthesis of high value-added organic chemicals with significantly improved selectivity.
Collapse
Affiliation(s)
- Jun Guo
- Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, Institute of Molecular Aggregation Science, Tianjin University, Tianjin 300072, China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Ethanol Biofuel Cells: Hybrid Catalytic Cascades as a Tool for Biosensor Devices. BIOSENSORS-BASEL 2021; 11:bios11020041. [PMID: 33557146 PMCID: PMC7913944 DOI: 10.3390/bios11020041] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 01/30/2021] [Accepted: 02/01/2021] [Indexed: 12/02/2022]
Abstract
Biofuel cells use chemical reactions and biological catalysts (enzymes or microorganisms) to produce electrical energy, providing clean and renewable energy. Enzymatic biofuel cells (EBFCs) have promising characteristics and potential applications as an alternative energy source for low-power electronic devices. Over the last decade, researchers have focused on enhancing the electrocatalytic activity of biosystems and on increasing energy generation and electronic conductivity. Self-powered biosensors can use EBFCs while eliminating the need for an external power source. This review details improvements in EBFC and catalyst arrangements that will help to achieve complete substrate oxidation and to increase the number of collected electrons. It also describes how analytical techniques can be employed to follow the intermediates between the enzymes within the enzymatic cascade. We aim to demonstrate how a high-performance self-powered sensor design based on EBFCs developed for ethanol detection can be adapted and implemented in power devices for biosensing applications.
Collapse
|
15
|
Shen YM, Xue Y, Yan M, Mao HL, Cheng H, Chen Z, Sui ZW, Zhu SB, Yu XJ, Zhuang JL. Synthesis of TEMPO radical decorated hollow porous aromatic frameworks for selective oxidation of alcohols. Chem Commun (Camb) 2021; 57:907-910. [PMID: 33393570 DOI: 10.1039/d0cc06965e] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A bottom-up approach was developed to prepare TEMPO radical decorated hollow aromatic frameworks (HPAF-TEMPO) by using TEMPO radical functionalized monomers and SiO2 nanospheres as templates. The accessible inner layer, high density of TEMPO sites, and hybrid micro-/mesopores of the HPAF-TEMPO enable the aerobic oxidation of a broad range of alcohols with high efficiency and excellent selectivity.
Collapse
Affiliation(s)
- Yan-Ming Shen
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 116 Baoshan Road North, Guiyang 550001, P. R. China
| | - Yun Xue
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 116 Baoshan Road North, Guiyang 550001, P. R. China
| | - Mi Yan
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 116 Baoshan Road North, Guiyang 550001, P. R. China
| | - Hui-Ling Mao
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 116 Baoshan Road North, Guiyang 550001, P. R. China
| | - Hu Cheng
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 116 Baoshan Road North, Guiyang 550001, P. R. China
| | - Zhuo Chen
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 116 Baoshan Road North, Guiyang 550001, P. R. China
| | - Zhi-Wei Sui
- Center for Advanced Measurement Science, National Institute of Metrology, Beijing, China
| | - Shao-Bin Zhu
- NanoFCM INC., Xiamen Pioneering Park for Overseas Chinese Scholars, Xiamen, 361005, P. R. China.
| | - Xiu-Jun Yu
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 116 Baoshan Road North, Guiyang 550001, P. R. China and Institute for Inorganic and Analytical Chemistry, University of Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M, Germany
| | - Jin-Liang Zhuang
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province, Guizhou Normal University, 116 Baoshan Road North, Guiyang 550001, P. R. China and NanoFCM INC., Xiamen Pioneering Park for Overseas Chinese Scholars, Xiamen, 361005, P. R. China.
| |
Collapse
|
16
|
Lee J, Hong S, Lee J, Kim S, Kim J, Kim M. Strategies in Metal–
Organic Framework‐based
Catalysts for the Aerobic Oxidation of Alcohols and Recent Progress. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12197] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jooyeon Lee
- Department of Chemistry Chungbuk National University Cheongju 28644 Korea
| | - Seungpyo Hong
- Department of Chemistry Chungbuk National University Cheongju 28644 Korea
| | - Jonghyeon Lee
- Department of Chemistry Chungbuk National University Cheongju 28644 Korea
| | - Seongwoo Kim
- Materials Architecturing Research Center Korea Institute of Science and Technology Seoul 02792 Korea
| | - Jinho Kim
- Department of Chemistry Incheon National University Incheon 22012 Korea
| | - Min Kim
- Department of Chemistry Chungbuk National University Cheongju 28644 Korea
| |
Collapse
|
17
|
Kim S, Lee HE, Suh JM, Lim MH, Kim M. Sequential Connection of Mutually Exclusive Catalytic Reactions by a Method Controlling the Presence of an MOF Catalyst: One-Pot Oxidation of Alcohols to Carboxylic Acids. Inorg Chem 2020; 59:17573-17582. [PMID: 33216548 DOI: 10.1021/acs.inorgchem.0c02809] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A functionalized metal-organic framework (MOF) catalyst applied to the sequential one-pot oxidation of alcohols to carboxylic acids controls the presence of a heterogeneous catalyst. The conversion of alcohols to aldehydes was acquired through aerobic oxidation using a well-known amino-oxy radical-functionalized MOF. In the same flask, a simple filtration of the radical MOF with mild heating of the solution completely altered the reaction media, providing radical scavenger-free conditions suitable for the autoxidation of the aldehydes formed in the first step to carboxylic acids. The mutually exclusive radical-catalyzed aerobic oxidation (the first step with MOF) and radical-inhibited autoxidation (the second step without MOF) are sequentially achieved in a one-pot manner. Overall, we demonstrate a powerful and efficient method for the sequential oxidation of alcohols to carboxylic acids by employing a readily functionalizable heterogeneous MOF. In addition, our MOF in-and-out method can be utilized in an environmentally friendly way for the oxidation of alcohols to carboxylic acids of industrial and economic value with broad functional group tolerance, including 2,5-furandicarboxylic acid and 1,4-benzenedicarboxylic acid, with good yield and reusability. Furthermore, MOF-TEMPO, as an antioxidative stabilizer, prevents the undesired oxidation of aldehydes, and the perfect "recoverability" of such a reactive MOF requires a re-evaluation of the advantages of MOFs from heterogeneity in catalytic and related applications.
Collapse
Affiliation(s)
- Seongwoo Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea
| | - Ha-Eun Lee
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea
| | - Jong-Min Suh
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
| | - Min Kim
- Department of Chemistry, Chungbuk National University, Cheongju 28644, Korea
| |
Collapse
|
18
|
Jellen MJ, Ayodele MJ, Cantu A, Forbes MDE, Garcia-Garibay MA. 2D Arrays of Organic Qubit Candidates Embedded into a Pillared-Paddlewheel Metal–Organic Framework. J Am Chem Soc 2020; 142:18513-18521. [DOI: 10.1021/jacs.0c07251] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Marcus J. Jellen
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Mayokun J. Ayodele
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403-0001, United States
| | - Annabelle Cantu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Malcolm D. E. Forbes
- Department of Chemistry and Center for Photochemical Sciences, Bowling Green State University, Bowling Green, Ohio 43403-0001, United States
| | - Miguel A. Garcia-Garibay
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| |
Collapse
|
19
|
Dhakshinamoorthy A, Asiri AM, Garcia H. Catalysis in Confined Spaces of Metal Organic Frameworks. ChemCatChem 2020. [DOI: 10.1002/cctc.202001188] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
| | - Abdullah M. Asiri
- Center of Excellence for Advanced Materials Research King Abdulaziz University Jeddah 21589 Saudi Arabia
| | - Hermenegildo Garcia
- Center of Excellence for Advanced Materials Research King Abdulaziz University Jeddah 21589 Saudi Arabia
- Departamento de Quimica and Instituto Universitario de Tecnologia Quimica (CSIC-UPV) Universitat Politecnica de Valencia 46022 Valencia Spain
| |
Collapse
|
20
|
Kim S, Lee J, Jeoung S, Moon HR, Kim M. Dual-fixations of europium cations and TEMPO species on metal-organic frameworks for the aerobic oxidation of alcohols. Dalton Trans 2020; 49:8060-8066. [PMID: 32459224 DOI: 10.1039/d0dt01324b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The efficient and selective aerobic oxidation of alcohols has been investigated with judicious combinations of europium-incorporated and/or TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl)-functionalized zirconium-based porous metal-organic frameworks (MOFs). Although MOFs are well-known catalytic platforms for the aerobic oxidation with radical-functionalities and metal nanoparticles, these systematic approaches involving metal cations and/or radical species introduce numerous interesting aspects for cooperation between metals and TEMPO for the aerobic oxidation of alcohols. The role of TEMPO as the oxidant in the heterogeneous catalytic aerobic oxidation of alcohols was revealed through a series of comparisons between metal-anchored, TEMPO-anchored, and metal and TEMPO-anchored MOF catalysis. The fine tunability of the MOF allowed the homogeneously and doubly functionalized catalysts to undergo organic reactions in the heterogeneous media. In addition, the well-defined and carefully designed heterogeneous molecular catalysts displayed reusability along with better catalytic performance than the homogeneous systems using identical coordinating ligands. The role of metal-cation fixation should be carefully revised to control their coordination and maximize their catalytic activity. Lastly, the metal cation-fixed MOF displayed better substrate tolerance and reaction efficiencies than the TEMPO-anchored MOF or mixture MOF systems.
Collapse
Affiliation(s)
- Seongwoo Kim
- Department of Chemistry and BK21Plus Research Team, Chungbuk National University, Cheongju 28644, Republic of Korea.
| | | | | | | | | |
Collapse
|
21
|
Souto M, Strutyński K, Melle‐Franco M, Rocha J. Electroactive Organic Building Blocks for the Chemical Design of Functional Porous Frameworks (MOFs and COFs) in Electronics. Chemistry 2020; 26:10912-10935. [DOI: 10.1002/chem.202001211] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Indexed: 01/02/2023]
Affiliation(s)
- Manuel Souto
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Karol Strutyński
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - Manuel Melle‐Franco
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| | - João Rocha
- CICECO-Aveiro Institute of Materials Department of Chemistry University of Aveiro 3810-193 Aveiro Portugal
| |
Collapse
|
22
|
Kim S, Lee J, Jeoung S, Moon HR, Kim M. Surface‐Deactivated Core–Shell Metal–Organic Framework by Simple Ligand Exchange for Enhanced Size Discrimination in Aerobic Oxidation of Alcohols. Chemistry 2020; 26:7568-7572. [DOI: 10.1002/chem.202000933] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Seongwoo Kim
- Department of Chemistry and BK21Plus Research TeamChungbuk National University Cheongju 28644 Republic of Korea
| | - Jooyeon Lee
- Department of Chemistry and BK21Plus Research TeamChungbuk National University Cheongju 28644 Republic of Korea
| | - Sungeun Jeoung
- Department of ChemistryUlsan National Institute of, Science and Technology Ulsan 44919 Republic of Korea
| | - Hoi Ri Moon
- Department of ChemistryUlsan National Institute of, Science and Technology Ulsan 44919 Republic of Korea
| | - Min Kim
- Department of Chemistry and BK21Plus Research TeamChungbuk National University Cheongju 28644 Republic of Korea
| |
Collapse
|
23
|
Poryvaev AS, Polyukhov DM, Fedin MV. Mitigation of Pressure-Induced Amorphization in Metal-Organic Framework ZIF-8 upon EPR Control. ACS APPLIED MATERIALS & INTERFACES 2020; 12:16655-16661. [PMID: 32188247 DOI: 10.1021/acsami.0c03462] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Pressure-induced amorphization is one of the processes inhibiting functional properties of metal-organic frameworks (MOFs). Such amorphization often occurs when MOFs are being shaped for practical applications, as well as during certain exploitations. Typically, the porosity of MOFs, which is crucial for sorption, separation, and catalysis, suffers under external pressure. We report a new experimental approach for efficient monitoring of pressure-induced processes in MOFs that employs trace amounts of spin probes (stable nitroxide radicals) embedded in the pores of MOF and detection by electron paramagnetic resonance (EPR). EPR spectra of spin probes in MOF ZIF-8 demonstrate significant changes upon pressure-induced amorphization, whose extent can be quantitatively determined from the spectral shapes. Moreover, stabilization of ZIF-8 against amorphization via reversible adsorption of various guests was studied using this approach. Mitigation effect depends on diffusion parameters and localization of guest molecules in the cavity, and maintaining of the structure and permeability up to 80% was achieved even at 1.15 GPa applied. Therefore, the proposed methodology allows significant mitigation of MOF amorphization under external pressure and conveys further perspectives of the controlled adjustment of stabilizing agents for various MOFs and their applications.
Collapse
Affiliation(s)
- Artem S Poryvaev
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
| | | | - Matvey V Fedin
- International Tomography Center SB RAS, Novosibirsk, 630090, Russia
- Novosibirsk State University, Novosibirsk, 630090, Russia
- N.N. Vorozhtsov Novosibirsk Institute of Organic Chemistry, Novosibirsk, 630090, Russia
| |
Collapse
|
24
|
Bavykina A, Kolobov N, Khan IS, Bau JA, Ramirez A, Gascon J. Metal–Organic Frameworks in Heterogeneous Catalysis: Recent Progress, New Trends, and Future Perspectives. Chem Rev 2020; 120:8468-8535. [DOI: 10.1021/acs.chemrev.9b00685] [Citation(s) in RCA: 578] [Impact Index Per Article: 115.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Anastasiya Bavykina
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Nikita Kolobov
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Il Son Khan
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Jeremy A. Bau
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Adrian Ramirez
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| | - Jorge Gascon
- King Abdullah University of Science and Technology, KAUST Catalysis Center (KCC), Advanced Catalytic Materials, Thuwal 23955-6900, Saudi Arabia
| |
Collapse
|
25
|
Polyukhov DM, Poryvaev AS, Gromilov SA, Fedin MV. Precise Measurement and Controlled Tuning of Effective Window Sizes in ZIF-8 Framework for Efficient Separation of Xylenes. NANO LETTERS 2019; 19:6506-6510. [PMID: 31449756 DOI: 10.1021/acs.nanolett.9b02730] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Metal-organic frameworks (MOFs) are the promising nanomaterials for separation of molecules with close dimensions and structures, such as various types of isomers. The efficiency of separation can be greatly enhanced if the apertures of the nanosized windows, controlling the diffusion of a particular molecule inside the cavities, are fine-tuned by external stimuli. We report the new approach for precise measurement of window sizes in ZIF-8 MOF and employ it in efficient separation of xylenes, which is of high practical importance. For this sake, we synthesized ZIF-8 with embedded stable nitroxides in the pores and applied electron paramagnetic resonance spectroscopy for in situ kinetic measurement of the diffusion of various guest molecules through the material. Slight variation of temperature within 298-333 K allowed tuning of the windows and reaching optimum conditions for separation of p-, m-, and o-xylenes with the efficiency up to 92-95%. The developed methodology provides deeper understanding of steric and kinetic aspects of molecular diffusion in ZIF-8 and paves the way to rational optimization of other MOF-based separation applications.
Collapse
Affiliation(s)
- Daniil M Polyukhov
- International Tomography Center SB RAS , Novosibirsk 630090 , Russia
- Novosibirsk State University , Novosibirsk 630090 , Russia
| | - Artem S Poryvaev
- International Tomography Center SB RAS , Novosibirsk 630090 , Russia
- Novosibirsk State University , Novosibirsk 630090 , Russia
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS , Novosibirsk 630090 , Russia
| | - Sergey A Gromilov
- Nikolaev Institute of Inorganic Chemistry SB RAS , Novosibirsk 630090 , Russia
| | - Matvey V Fedin
- International Tomography Center SB RAS , Novosibirsk 630090 , Russia
- Novosibirsk State University , Novosibirsk 630090 , Russia
| |
Collapse
|
26
|
Poryvaev AS, Polyukhov DM, Gjuzi E, Hoffmann F, Fröba M, Fedin MV. Radical-Doped Metal–Organic Framework: Route to Nanoscale Defects and Magnetostructural Functionalities. Inorg Chem 2019; 58:8471-8479. [DOI: 10.1021/acs.inorgchem.9b00696] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Artem S. Poryvaev
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova str. 2, Novosibirsk, 630090, Russia
| | - Daniil M. Polyukhov
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia
- N.N. Vorozhtsov Institute of Organic Chemistry SB RAS, Novosibirsk, 630090, Russia
| | - Eva Gjuzi
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Frank Hoffmann
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Michael Fröba
- Institute of Inorganic and Applied Chemistry, University of Hamburg, Martin-Luther-King-Platz 6, 20146 Hamburg, Germany
| | - Matvey V. Fedin
- International Tomography Center SB RAS, Institutskaya str. 3a, Novosibirsk, 630090, Russia
- Novosibirsk State University, Pirogova str. 2, Novosibirsk, 630090, Russia
| |
Collapse
|
27
|
Le D, Dilger M, Pertici V, Diabaté S, Gigmes D, Weiss C, Delaittre G. Ultraschnelle Synthese multivalenter radikalischer Nanopartikel durch ringöffnende Metathesepolymerisations‐induzierte Selbstorganisation. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201813434] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Dao Le
- Institut für Toxikologie und Genetik (ITG) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
- Institut für Technische Chemie und Polymerchemie (ITCP) Karlsruher Institut für Technologie (KIT) 76128 Karlsruhe Deutschland
| | - Marco Dilger
- Institut für Toxikologie und Genetik (ITG) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Vincent Pertici
- Aix-Marseille-Univ CNRS Institut de Chimie Radicalaire, UMR 7273 13397 Marseille Frankreich
| | - Silvia Diabaté
- Institut für Toxikologie und Genetik (ITG) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Didier Gigmes
- Aix-Marseille-Univ CNRS Institut de Chimie Radicalaire, UMR 7273 13397 Marseille Frankreich
| | - Carsten Weiss
- Institut für Toxikologie und Genetik (ITG) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| | - Guillaume Delaittre
- Institut für Toxikologie und Genetik (ITG) Karlsruher Institut für Technologie (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
- Institut für Technische Chemie und Polymerchemie (ITCP) Karlsruher Institut für Technologie (KIT) 76128 Karlsruhe Deutschland
| |
Collapse
|
28
|
Le D, Dilger M, Pertici V, Diabaté S, Gigmes D, Weiss C, Delaittre G. Ultra‐Fast Synthesis of Multivalent Radical Nanoparticles by Ring‐Opening Metathesis Polymerization‐Induced Self‐Assembly. Angew Chem Int Ed Engl 2019; 58:4725-4731. [DOI: 10.1002/anie.201813434] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/06/2019] [Indexed: 12/22/2022]
Affiliation(s)
- Dao Le
- Institute of Toxicology and Genetics (ITG) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) 76128 Karlsruhe Germany
| | - Marco Dilger
- Institute of Toxicology and Genetics (ITG) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Vincent Pertici
- Aix-Marseille-Univ CNRS Institut de Chimie Radicalaire, UMR 7273 13397 Marseille France
| | - Silvia Diabaté
- Institute of Toxicology and Genetics (ITG) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Didier Gigmes
- Aix-Marseille-Univ CNRS Institut de Chimie Radicalaire, UMR 7273 13397 Marseille France
| | - Carsten Weiss
- Institute of Toxicology and Genetics (ITG) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Guillaume Delaittre
- Institute of Toxicology and Genetics (ITG) Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Institute for Chemical Technology and Polymer Chemistry (ITCP) Karlsruhe Institute of Technology (KIT) 76128 Karlsruhe Germany
| |
Collapse
|
29
|
Zhuang JL, Liu XY, Zhang Y, Wang C, Mao HL, Guo J, Du X, Zhu SB, Ren B, Terfort A. Zr-Metal-Organic Frameworks Featuring TEMPO Radicals: Synergistic Effect between TEMPO and Hydrophilic Zr-Node Defects Boosting Aerobic Oxidation of Alcohols. ACS APPLIED MATERIALS & INTERFACES 2019; 11:3034-3043. [PMID: 30585485 DOI: 10.1021/acsami.8b18370] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Metal-organic frameworks (MOFs) featuring multiple catalytic units are excellent platforms for heterogeneous catalysis. However, the synergism between multiple catalytic units for catalysis is far from being well understood. Herein, we reported the synthesis of a robust 2,2,6,6-tetramethylpiperidinyloxy (TEMPO) radical-functionalized Zr-MOF (UiO-68-TEMPO) in the form of single-crystalline and microsized crystals with varied missing linker defects. Detailed catalytic studies and theoretical calculations reveal that the synergistic effect between the TEMPO radicals and hydrophilic and defective Zr-nodes endows UiO-68-TEMPO with superior catalytic activity toward aerobic oxidation of alcohols. Our work not only offers a new route to design and synthesize highly effective MOF catalysts but also provides insights into the synergism between multiple catalytic sites.
Collapse
Affiliation(s)
- Jin-Liang Zhuang
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province , Guizhou Normal University , Guiyang 550001 , P. R. China
| | - Xiang-Yue Liu
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province , Guizhou Normal University , Guiyang 550001 , P. R. China
| | - Yu Zhang
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province , Guizhou Normal University , Guiyang 550001 , P. R. China
| | - Chen Wang
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province , Guizhou Normal University , Guiyang 550001 , P. R. China
| | - Hui-Ling Mao
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province , Guizhou Normal University , Guiyang 550001 , P. R. China
| | - Jun Guo
- School of Chemistry and Materials Science, Key Lab for Functional Materials Chemistry of Guizhou Province , Guizhou Normal University , Guiyang 550001 , P. R. China
| | - Xuan Du
- National Engineering Laboratory for Hydrometallurgical Cleaner Production Technology, Institute of Process Engineering , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Shao-Bin Zhu
- NanoFCM INC. , Xiamen Pioneering Park for Overseas Chinese Scholars , Xiamen 361005 , P. R. China
| | - Bin Ren
- Department of Chemistry, College of Chemistry and Chemical Engineering , Xiamen University , Xiamen 361005 , P. R. China
| | - Andreas Terfort
- Institute for Inorganic and Analytical Chemistry , University of Frankfurt , Max-von-Laue-Strasse 7 , 60438 Frankfurt/M , Germany
| |
Collapse
|
30
|
Dhakshinamoorthy A, Santiago-Portillo A, Asiri AM, Garcia H. Engineering UiO-66 Metal Organic Framework for Heterogeneous Catalysis. ChemCatChem 2019. [DOI: 10.1002/cctc.201801452] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Andrea Santiago-Portillo
- Dep. de Quimica e Instituto Universitario de Tecnologia Quimica (CSIC-UPV); Valencia 46022 Spain
| | - Abdullah M. Asiri
- Centre of Excellence for Advanced Materials Research; King Abdulaziz University; Jeddah Saudi Arabia
| | - Hermenegildo Garcia
- Dep. de Quimica e Instituto Universitario de Tecnologia Quimica (CSIC-UPV); Valencia 46022 Spain
- Centre of Excellence for Advanced Materials Research; King Abdulaziz University; Jeddah Saudi Arabia
| |
Collapse
|
31
|
Guo RY, Sun L, Pan XY, Yang XD, Ma S, Zhang J. Application of an electron-transfer catalyst in light-induced aerobic oxidation of alcohols. Chem Commun (Camb) 2018; 54:12614-12617. [PMID: 30346455 DOI: 10.1039/c8cc07137c] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The first heterogeneous photocatalysis system including a bipyridinium-based complex as the electron-transfer catalyst was developed for aerobic oxidation of alcohols without the use of any noble-metal, external N-oxide or peroxide co-oxidant. The current work provides an efficient strategy for alcohol oxidation through a cost-effective, convenient and eco-friendly route.
Collapse
Affiliation(s)
- Rui-Yun Guo
- MOE Key Laboratory of Cluster Science, Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, 102488, P. R. China.
| | | | | | | | | | | |
Collapse
|
32
|
Li Z, Liu Y, Kang X, Cui Y. Chiral Metal–Organic Framework Decorated with TEMPO Radicals for Sequential Oxidation/Asymmetric Cyanation Catalysis. Inorg Chem 2018; 57:9786-9789. [DOI: 10.1021/acs.inorgchem.8b01630] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Zijian Li
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yan Liu
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xing Kang
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yong Cui
- School of Chemistry and Chemical Engineering and State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
| |
Collapse
|
33
|
HKUST-1/ABNO-catalyzed aerobic oxidation of secondary benzyl alcohols at room temperature. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.05.071] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|