1
|
Oskin P, Demkina I, Dmitrieva E, Alferov S. Functionalization of Carbon Nanotubes Surface by Aryl Groups: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1630. [PMID: 37242046 PMCID: PMC10220858 DOI: 10.3390/nano13101630] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
The review is devoted to the methods of introducing aryl functional groups to the CNT surface. Arylated nanotubes are characterized by extended solubility, and are widely used in photoelectronics, semiconductor technology, and bioelectrocatalysis. The main emphasis is on arylation methods according to the radical mechanism, such as the Gomberg-Bachmann and Billups reactions, and the decomposition of peroxides. At the same time, less common approaches are also considered. For each of the described reactions, a mechanism is presented in the context of the effect on the properties of functionalized nanotubes and their application. As a result, this will allow us to choose the optimal modification method for specific practical tasks.
Collapse
Affiliation(s)
- Pavel Oskin
- Laboratory of Ecological and Medical Biotechnology, Tula State University, Friedrich Engels Street 157, 300012 Tula, Russia;
| | - Iraida Demkina
- Chemistry Department, Tula State University, Pr. Lenina 92, 300012 Tula, Russia
| | - Elena Dmitrieva
- Chemistry Department, Tula State University, Pr. Lenina 92, 300012 Tula, Russia
| | - Sergey Alferov
- Laboratory of Ecological and Medical Biotechnology, Tula State University, Friedrich Engels Street 157, 300012 Tula, Russia;
- Biotechnology Department, Tula State University, Pr. Lenina 92, 300012 Tula, Russia
| |
Collapse
|
2
|
Gao J, Song M, Li T, Zhao Y, Wang A. Water-soluble carboxymethyl chitosan (WSCC)-modified single-walled carbon nanotubes (SWCNTs) provide efficient adsorption of Pb(ii) from water. RSC Adv 2022; 12:6821-6830. [PMID: 35424645 PMCID: PMC8981766 DOI: 10.1039/d2ra00066k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 02/23/2022] [Indexed: 12/25/2022] Open
Abstract
Nanocomposites play a key role in the removal of toxic metal(loid)s from environmental water. In this study, we investigated the adsorption capability of water-soluble carboxymethyl chitosan (WSCC)-modified functionally oxidized single walled carbon nanotubes (oSWCNTs) for rapid and efficient removal of toxic Pb(ii) from water. The WSCC–oSWCNTs nanocomposite was prepared by an acid treatment of SWCNTs followed by an ultrasonic dispersion process using WSCC as dispersant. The morphology and chemical characteristics of the WSCC–oSWCNTs nanocomposite were further identified using various characterization techniques (i.e., transmission electron microscopy, TEM; scanning electron microscopy, SEM; Raman spectra; Fourier transform infrared spectroscopy, FTIR; X-ray photoelectron spectroscopy, XPS; nitrogen adsorption–desorption isotherm test). The efficiency of the adsorption process in batch experiments was investigated via determining various factor effects (i.e. WSCC–oSWCNTs nanocomposite concentration, solution pH, initial Pb(ii) concentration, contact time, and reaction temperature). Kinetic results showed that the adsorption process followed a pseudo-second-order, while an isotherm results study showed that the adsorption process followed the Langmuir and Freundlich isotherm models at the same time. In addition, the van't Hoff equation was used to calculate thermodynamic parameters for assessing the endothermic properties and spontaneity of the adsorption process. The WSCC–oSWCNTs nanocomposite manifested a high adsorption capacity for Pb(ii) (113.63 mg g−1) via electrostatic interactions and ion-exchange, as its adsorption rate could reach up to 98.72%. This study, therefore, provides a novel adsorbent for the removal and detection of harmful residues (i.e. toxic metal(loid)s) from environmental water, such as industry wastewater treatment and chemical waste management. A water-dispersible WSCC–oSWCNTs nanocomposite prepared for efficient Pb(ii) uptake from water. The removal efficiency is still higher than 80% after 4 adsorption–desorption cycles, and the Pb(ii) can be adsorbed with high selectivity and stability.![]()
Collapse
Affiliation(s)
- Jinling Gao
- College of Science, Heilongjiang Bayi Agricultural University Daqing 163319 China
| | - Mingzhe Song
- College of Science, Heilongjiang Bayi Agricultural University Daqing 163319 China
| | - Tongtong Li
- College of Science, Heilongjiang Bayi Agricultural University Daqing 163319 China
| | - Yuyao Zhao
- College of Science, Heilongjiang Bayi Agricultural University Daqing 163319 China
| | - Anxu Wang
- College of Science, Heilongjiang Bayi Agricultural University Daqing 163319 China
| |
Collapse
|
3
|
Abstract
Carbon nanotubes (CNTs) have long been at the forefront of materials research, with applications ranging from composites for increased tensile strength in construction and sports equipment to transistor switches and solar cell electrodes in energy applications. There remains untapped potential still when it comes to energy and data transmission, with our group having previously demonstrated a working ethernet cable composed of CNT fibers. Material composition, electrical resistance, and electrical capacitance all play a strong role in the making of high-quality microphone and headphone cables, and the work herein describes the formation of a proof-of-concept CNT audio cable. Testing was done compared to commercial cables, with frequency response measurements performed for further objective testing. The results show performance is on par with commercial cables, and the CNTs being grown from waste plastics as a carbon source further adds to the value proposition, while also being environmentally friendly.
Collapse
|
4
|
Gangoli VS, Mahy T, Yick T, Niu Y, Palmer RE, Orbaek White A. Upcycling of face masks to application-rich multi- and single-walled carbon nanotubes. CARBON LETTERS 2022; 32:1681-1688. [PMCID: PMC9523627 DOI: 10.1007/s42823-022-00398-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 07/22/2022] [Accepted: 08/08/2022] [Indexed: 06/19/2023]
Abstract
We report the use of face mask materials as a carbon precursor for the synthesis of multi- and single-walled carbon nanotubes (CNTs) in an open-loop chemical recycling process. Novel surgical mask precursors were suspended in toluene and injected into a chemical vapor deposition reactor previously optimized for CNT production using liquid injection. The CNTs were collected and characterized using resonant Raman spectroscopy, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) before being turned into fibrils that were tested for electrical conductance. Once confirmed and repeated for statistical accuracy, a CNT-based Ethernet cable was manufactured and tested using iPerf3 for uplink and downlink speeds exceeding broadband standards worldwide. Radial breathing modes from Raman spectroscopy indicate single walled CNTs (SWCNTs) with diameters ranging from 0.8 to 1.55 nm and this matches well with TEM observations of SWCNTs with 1.5 nm diameter. This work pushes the horizon of feedstocks useful for CNT and SWCNT production in particular; this work demonstrates upcycling of materials fated for disposal into materials with positive net value and plenty of real-world applications.
Collapse
Affiliation(s)
- Varun Shenoy Gangoli
- Energy Safety Research Institute, Swansea University Bay Campus, Swansea, SA1 8EN UK
- Department of Chemical Engineering, Swansea University Bay Campus, Swansea, SA1 8EN UK
| | - Thomas Mahy
- Energy Safety Research Institute, Swansea University Bay Campus, Swansea, SA1 8EN UK
| | - Tim Yick
- Energy Safety Research Institute, Swansea University Bay Campus, Swansea, SA1 8EN UK
| | - Yubiao Niu
- Nanomaterials Lab, Mechanical Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN UK
| | - Richard E. Palmer
- Nanomaterials Lab, Mechanical Engineering, Faculty of Science and Engineering, Swansea University, Bay Campus, Swansea, SA1 8EN UK
| | - Alvin Orbaek White
- Energy Safety Research Institute, Swansea University Bay Campus, Swansea, SA1 8EN UK
- Department of Chemical Engineering, Swansea University Bay Campus, Swansea, SA1 8EN UK
| |
Collapse
|
5
|
Effect of Applied Pressure on the Electrical Resistance of Carbon Nanotube Fibers. MATERIALS 2021; 14:ma14092106. [PMID: 33919441 PMCID: PMC8122425 DOI: 10.3390/ma14092106] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/14/2021] [Accepted: 04/20/2021] [Indexed: 11/17/2022]
Abstract
Carbon nanotubes (CNTs) can be spun into fibers as potential lightweight replacements for copper in electrical current transmission since lightweight CNT fibers weigh <1/6th that of an equivalently dimensioned copper wire. Experimentally, it has been shown that the electrical resistance of CNT fibers increases with longitudinal strain; however, although fibers may be under radial strain when they are compressed during crimping at contacts for use in electrical current transport, there has been no study of this relationship. Herein, we apply radial stress at the contact to a CNT fiber on both the nano- and macro-scale and measure the changes in fiber and contact resistance. We observed an increase in resistance with increasing pressure on the nanoscale as well as initially on the macro scale, which we attribute to the decreasing of axial CNT…CNT contacts. On the macro scale, the resistance then decreases with increased pressure, which we attribute to improved radial contact due to the closing of voids within the fiber bundle. X-ray photoelectron spectroscopy (XPS) and UV photoelectron spectroscopy (UPS) show that applied pressure on the fiber can damage the π-π bonding, which could also contribute to the increased resistance. As such, care must be taken when applying radial strain on CNT fibers in applications, including crimping for electrical contacts, lest they operate in an unfavorable regime with worse electrical performance.
Collapse
|
6
|
Gangoli VS, Raja PMV, Esquenazi GL, Barron AR. The safe handling of bulk low-density nanomaterials. SN APPLIED SCIENCES 2019. [DOI: 10.1007/s42452-019-0647-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
7
|
Clancy AJ, Sirisinudomkit P, Anthony DB, Thong AZ, Greenfield JL, Salaken Singh MK, Shaffer MSP. Real-time mechanistic study of carbon nanotube anion functionalisation through open circuit voltammetry. Chem Sci 2019; 10:3300-3306. [PMID: 30996916 PMCID: PMC6428032 DOI: 10.1039/c8sc04970j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 01/28/2019] [Indexed: 11/24/2022] Open
Abstract
The mechanism of the functionalisation of reduced single walled carbon nanotubes with organobromides was monitored by open circuit voltammetry throughout the reaction and further elucidated through a series of comparative reactions. The degree of functionalisation was mapped against the reagent reduction potential, degree of electron donation of substituents (Hammett parameter), and energies calculated, ab initio, for dissociation and heterolytic cleavage of the C-Br bond. In contrast to the previously assumed reduction/homolytic cleavage mechanism, the reaction was shown to consist of a rapid association of carbon-halide bond to the reduced nanotube as a complex, displacing surface-condensed countercations, leading to an initial increase in the net nanotube surface negative charge. The complex subsequently slowly degrades through charge transfer from the reduced single-walled carbon nanotube to the organobromide, utilizing charge, and the carbon-halide bond breaks heterolytically. Electron density on the C-Br bond in the initial reagent is the best predictor for degree of functionalisation, with more electron donating substituents increasing the degree of functionalisation. Both the mechanism and the new application of OCV to study such reactions are potentially relevant to a wide range of related systems.
Collapse
Affiliation(s)
- Adam J Clancy
- Department of Chemistry , University College London , WC1E 7JE , UK .
- Department of Chemistry , Imperial College London , SW7 2AZ , UK .
| | - Pichamon Sirisinudomkit
- Department of Chemistry , Imperial College London , SW7 2AZ , UK .
- Department of Materials , Imperial College London , SW7 2AZ , UK
| | - David B Anthony
- Department of Chemistry , Imperial College London , SW7 2AZ , UK .
| | - Aaron Z Thong
- Department of Materials , Imperial College London , SW7 2AZ , UK
| | - Jake L Greenfield
- Department of Chemistry , Imperial College London , SW7 2AZ , UK .
- Department of Chemistry , University of Cambridge , CB2 1EW , UK
| | | | - Milo S P Shaffer
- Department of Chemistry , Imperial College London , SW7 2AZ , UK .
- Department of Materials , Imperial College London , SW7 2AZ , UK
| |
Collapse
|
8
|
Raja PMV, Esquenazi GL, Wright KD, Gowenlock CE, Brinson BE, Alexander S, Jones DR, Gangoli VS, Barron AR. Aqueous electromigration of single-walled carbon nanotubes and co-electromigration with copper ions. NANOSCALE 2018; 10:19628-19637. [PMID: 30325388 DOI: 10.1039/c8nr06485g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The electromigration behaviour of raw and acid purified single walled carbon nanotubes (SWCNTs) in dilute aqueous systems (0.0034 mg mL-1), in the absence of surfactant, with the addition of either 0.85 M acetic acid or 0.1 M CuSO4, was evaluated using a 2-inch copper cathode and either a 2-inch copper or 0.5-inch platinum anode. The results showed that the electromigration of raw SWCNTs (with a high catalyst residue) in the presence of CuSO4 resulted in the formation of a Cu-SWCNT composite material at the cathode. In contrast, acid purified SWCNTs were observed to diffuse to a copper anode, creating fibrillated agglomerates with "rice-grain"-like morphologies. Upon acidification with acetic acid (or addition of CuSO4) the direction of electromigration reversed towards the cathode as a result of coordination of Cu2+ to the functional groups on the SWCNT overcoming the inherent negative charge of the acid purified SWCNTs. The result was the co-deposition of SWCNTs and Cu metal on the cathode. Addition of 0.005 M EDTA sequesters some of the Cu2+ and resulted in the separation of metal decorated SWCNTs to the cathode and un-decorated SWCNTs to the anode. The resulting SWCNT and Cu/SWCNT deposits were characterized by Raman spectroscopy, XPS, SEM, EDS, and TEM.
Collapse
Affiliation(s)
- Pavan M V Raja
- Department of Chemistry, Rice University, Houston, TX 77005, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Schirowski M, Abellán G, Nuin E, Pampel J, Dolle C, Wedler V, Fellinger TP, Spiecker E, Hauke F, Hirsch A. Fundamental Insights into the Reductive Covalent Cross-Linking of Single-Walled Carbon Nanotubes. J Am Chem Soc 2018; 140:3352-3360. [DOI: 10.1021/jacs.7b12910] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Milan Schirowski
- Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestrasse 42, 91054 Erlangen, Germany
- Joint Institute of Advanced Materials and Processes, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Strasse 81, 90762 Fürth, Germany
| | - Gonzalo Abellán
- Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestrasse 42, 91054 Erlangen, Germany
- Joint Institute of Advanced Materials and Processes, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Strasse 81, 90762 Fürth, Germany
| | - Edurne Nuin
- Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestrasse 42, 91054 Erlangen, Germany
| | - Jonas Pampel
- Fraunhofer Institute IWS, Winterbergstr. 28, 01277 Dresden, Germany
| | - Christian Dolle
- Institute of Micro- and Nanostructure Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 6, 91058 Erlangen, Germany
| | - Vincent Wedler
- Joint Institute of Advanced Materials and Processes, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Strasse 81, 90762 Fürth, Germany
| | - Tim-Patrick Fellinger
- University of Applied Science Zittau/Görlitz, Theodor-Körner Allee 16, 02763 Zittau, Germany
- Department of Technical Electrochemistry, Technical University Munich, Lichtenbergstraße 4, 85748 Garching, Germany
| | - Erdmann Spiecker
- Institute of Micro- and Nanostructure Research, Friedrich-Alexander-Universität Erlangen-Nürnberg, Cauerstrasse 6, 91058 Erlangen, Germany
| | - Frank Hauke
- Joint Institute of Advanced Materials and Processes, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Strasse 81, 90762 Fürth, Germany
| | - Andreas Hirsch
- Chair of Organic Chemistry II, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Henkestrasse 42, 91054 Erlangen, Germany
- Joint Institute of Advanced Materials and Processes, Friedrich-Alexander-Universität Erlangen-Nürnberg, Dr.-Mack-Strasse 81, 90762 Fürth, Germany
| |
Collapse
|