1
|
Lee S, Kong YL, Cho G, Ault JT, Lee J. CO 2-driven diffusiophoresis in an evaporating sessile droplet. Colloids Surf A Physicochem Eng Asp 2025; 705:135660. [PMID: 40371232 PMCID: PMC12074651 DOI: 10.1016/j.colsurfa.2024.135660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
The ability to control particle transport within evaporating droplets is important for a broad range of printing applications. However, it remains challenging to modulate the complex multiphase phenomenon to create high-quality thin films. For example, evaporation-induced capillary flows in a pinned droplet can propel particles toward the contact line, forming a characteristic ring-like pattern (also known as the "coffee-ring effect"). Previous work has shown that introducing temperature or surface tension gradients can generate Marangoni flow, which at sufficiently high magnitude can redirect the particle assembly. Here, we present an alternative approach to manipulate particle transport during evaporation via CO2-driven diffusiophoresis. Specifically, we compare the internal flows and particle transport within evaporating droplets with capillary- and Marangoni-dominant flows in the distinct environments of air or CO2 through simulations and validate the diffusiophoretic effect on the droplet deposition pattern via experiments. We found that the diffusiophoretic particle motion can dominate capillary flow, leading to particles' migration towards or away from the droplet surface as determined by their surface charge. Further, we learned that in the presence of temperature gradients, Marangoni flows can overwhelm diffusiophoresis by saturating ions in a short time. The CO2-driven diffusiophoresis can modulate final deposition patterns by influencing particle motion during the evaporative-driven assembly process. This study provides a more comprehensive and clearer understanding of the fundamental physics on how diffusiophoresis interacts with internal flows in evaporating droplets. We highlight its capability to control deposition patterns with minimal solution contamination and a simpler setup compared to previous approaches.
Collapse
Affiliation(s)
- Saebom Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- Department of Mechanical Engineering, Rice University, Houston, TX 77005, USA
| | - Yong Lin Kong
- Department of Mechanical Engineering, Rice University, Houston, TX 77005, USA
| | - Gyoujin Cho
- Department of Biophysics, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- Research Engineering Center for R2R Printed Flexible Computer and Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| | - Jesse T. Ault
- Center for Fluid Dynamics, School of Engineering, Brown University, Providence, Rhode Island 02912, USA
| | - Jinkee Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon, Gyeonggi-do 16419, Republic of Korea
| |
Collapse
|
2
|
Bae J, Seo S, Wu R, Kim T. Programmable and Pixelated Solute Concentration Fields Controlled by Three-Dimensionally Networked Microfluidic Source/Sink Arrays. ACS NANO 2023; 17:20273-20283. [PMID: 37830478 DOI: 10.1021/acsnano.3c06247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Membrane-integrated microfluidic platforms have played a pivotal role in understanding natural phenomena coupled with solute concentration gradients at the micro- and nanoscale, enabling on-chip microscopy in well-defined planar concentration fields. However, the standardized two-dimensional fabrication schemes in microfluidics have impeded the realization of more complex and diverse chemical environmental conditions due to the limited possible arrangements of source/sink conditions in a fluidic domain. In this study, we present a microfluidic platform with a three-dimensional microchannel network design, where discretized membranes can be integrated and individually controlled in a two-dimensional array format at any location within the entire quasi-two-dimensional solute concentration field. We elucidate the principles of the device to implement operations of the pixel-like sources/sinks and dynamically programmable control of various long-lasting solute concentration fields. Furthermore, we demonstrate the application of the generated solute concentration fields in manipulating the transport of micrometer or submicrometer particles with a high degree of freedom, surpassing conventionally available solute concentration fields. This work provides an experimental tool for investigating complex systems under high-order chemical environmental conditions, thereby facilitating the extensive development of higher-performance micro- and nanotechnologies.
Collapse
Affiliation(s)
- Juyeol Bae
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Sangjin Seo
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Ronghui Wu
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Taesung Kim
- Department of Mechanical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
3
|
Maiti S. Simultaneous quantification of serum albumin and gamma globulin using Zn(II)-metallosurfactant via a coffee ring pattern. Chem Commun (Camb) 2023; 59:6536-6539. [PMID: 37161733 DOI: 10.1039/d3cc01221b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Herein, we report interactivity and conjugate formation ability between a Zn(II)-metallosurfactant and two clinically relevant serum proteins, albumin (ALB) and γ-globulin (GGB). We found that the surfactant-ALB conjugate promotes coffee ring formation, whereas with GGB it gets suppressed, which is due to the difference in structural anisotropy and hydrophobicity of the conjugates. Additionally, validation of this biosensing platform has been established in human serum samples, and it has potential applications for on-spot rapid diagnostics in remote areas.
Collapse
Affiliation(s)
- Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India.
| |
Collapse
|
4
|
Shin S. Directed colloidal assembly and banding via DC electrokinetics. BIOMICROFLUIDICS 2023; 17:031301. [PMID: 37179591 PMCID: PMC10171889 DOI: 10.1063/5.0133871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Accepted: 04/04/2023] [Indexed: 05/15/2023]
Abstract
Manipulating the transport and assembly of colloidal particles to form segregated bands or ordered supracolloidal structures plays an important role in many aspects of science and technology, from understanding the origin of life to synthesizing new materials for next-generation manufacturing, electronics, and therapeutics. One commonly used method to direct colloidal transport and assembly is the application of electric fields, either AC or DC, due to its feasibility. However, as colloidal segregation and assembly both require active redistribution of colloidal particles across multiple length scales, it is not apparent at first sight how a DC electric field, either externally applied or internally induced, can lead to colloidal structuring. In this Perspective, we briefly review and highlight recent advances and standing challenges in colloidal transport and assembly enabled by DC electrokinetics.
Collapse
Affiliation(s)
- Sangwoo Shin
- Department of Mechanical and Aerospace Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA
| |
Collapse
|
5
|
Shandilya E, Maiti S. Self-Regulatory Micro- and Macroscale Patterning of ATP-Mediated Nanobioconjugate. ACS NANO 2023; 17:5108-5120. [PMID: 36827433 DOI: 10.1021/acsnano.3c00431] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Directional interactions and the assembly of a nanobioconjugate in clusters at a specific location are important for patterning and microarrays in biomedical research. Herein, we report that self-assembly and spatial control in surface patterning of the surfactant-functionalized nanoparticles can be governed in micro- and macroscale environments by two factors, synergistic enzyme-substrate-nanoparticle affinity and the phoretic effect. First, we show that aggregation of cationic gold nanoparticles (GNP) can be modulated by multivalent anionic nanoparticle binding of an adenosine-based nucleotide and enzyme, alkaline phosphatase. We further demonstrate two different types of their autonomous aggregation pattern: (i) by introducing an enzyme gradient that modulates the synergistic nonequilibrium interactivity of the nanoparticle, nucleotide, and enzyme both in microfluidic conditions and at the macroscale; and (ii) the surface deposition pattern from evaporating droplets via the coffee ring effect. Here, temporal control over the width and site of the patterning area inside the microfluidic channel under catalytic and noncatalytic conditions has also been demonstrated. Finally, we show a change in capillary phoresis parameters responsible for the coffee ring due to introduction of ATP-loaded GNP in the blood serum, showing applicability in low-cost disease diagnostics. Overall, an enzyme-actuated surface nanobiopatterning method has been demonstrated that has potential application in controlled micro- and macroscale area patterning with a diverse cascade catalytic surface and spatiotemporal multisensory-based application.
Collapse
Affiliation(s)
- Ekta Shandilya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| |
Collapse
|
6
|
Cheng C, Jae Moon Y, Hwang JY, Chiu GTC, Han B. A scaling law of particle transport in inkjet-printed particle-laden polymeric drops. INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER 2022; 191:122840. [PMID: 35444343 PMCID: PMC9015692 DOI: 10.1016/j.ijheatmasstransfer.2022.122840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogels with embedded functional particulates are widely used to create soft materials with innovative functionalities. In order to advance these soft materials to functional devices and machines, critical technical challenges are the precise positioning of particulates within the hydrogels and the construction of the hydrogels into a complex geometry. Inkjet printing is a promising method for addressing these challenges and ultimately achieving hydrogels with voxelized functionalities, so-called digital hydrogels. However, the development of the inkjet printing process primarily relies on empirical optimization of its printing and curing protocol. In this study, a general scaling law is proposed to predict the transport of particulates within the hydrogel during inkjet printing. This scaling law is based on a hypothesis that water-matrix interaction during the curing of inkjet-printed particle-laden polymeric drops determines the intra-drop particle distribution. Based on the hypothesis, a dimensionless similarity parameter of the water-matrix interaction is proposed, determined by the hydrogel's water evaporation coefficient, particle size, and mechanical properties. The hypothesis was tested by correlating the intra-drop particle distribution to the similarity parameter. The results confirmed the scaling law capable of guiding ink formulation and printing and curing protocol.
Collapse
Affiliation(s)
- Cih Cheng
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Yoon Jae Moon
- Korea Institute of Industrial Technology, Ansan, Gyeonggi Do, Republic of Korea
| | - Jun Young Hwang
- Korea Institute of Industrial Technology, Ansan, Gyeonggi Do, Republic of Korea
| | - George T.-C. Chiu
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
| | - Bumsoo Han
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Birck Nanotechnology Center, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
7
|
Lee S, A. M. T, Cho G, Lee J. Control of the Drying Patterns for Complex Colloidal Solutions and Their Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2600. [PMID: 35957030 PMCID: PMC9370329 DOI: 10.3390/nano12152600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 07/24/2022] [Accepted: 07/25/2022] [Indexed: 12/02/2022]
Abstract
The uneven deposition at the edges of an evaporating droplet, termed the coffee-ring effect, has been extensively studied during the past few decades to better understand the underlying cause, namely the flow dynamics, and the subsequent patterns formed after drying. The non-uniform evaporation rate across the colloidal droplet hampers the formation of a uniform and homogeneous film in printed electronics, rechargeable batteries, etc., and often causes device failures. This review aims to highlight the diverse range of techniques used to alleviate the coffee-ring effect, from classic methods such as adding chemical additives, applying external sources, and manipulating geometrical configurations to recently developed advancements, specifically using bubbles, humidity, confined systems, etc., which do not involve modification of surface, particle or liquid properties. Each of these methodologies mitigates the edge deposition via multi-body interactions, for example, particle-liquid, particle-particle, particle-solid interfaces and particle-flow interactions. The mechanisms behind each of these approaches help to find methods to inhibit the non-uniform film formation, and the corresponding applications have been discussed together with a critical comparison in detail. This review could pave the way for developing inks and processes to apply in functional coatings and printed electronic devices with improved efficiency and device yield.
Collapse
Affiliation(s)
- Saebom Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea;
| | - Tiara A. M.
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea;
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
- Research Engineering Center for R2R Printed Flexible Computer, Sungkyunkwan University, Suwon 16419, Korea
| | - Gyoujin Cho
- Department of Biophysics, Sungkyunkwan University, Suwon 16419, Korea;
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
- Research Engineering Center for R2R Printed Flexible Computer, Sungkyunkwan University, Suwon 16419, Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon 16419, Korea
| | - Jinkee Lee
- School of Mechanical Engineering, Sungkyunkwan University, Suwon 16419, Korea;
- Institute of Quantum Biophysics, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
8
|
Shikha, Shandilya E, Priyanka, Maiti S. Directional migration propensity of calf thymus DNA in a gradient of metal ions. Chem Commun (Camb) 2022; 58:9353-9356. [DOI: 10.1039/d2cc03160d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The migration propensity and spatially modulated surface deposition of calf thymus DNA have been reported in response to gradients of different monovalent and divalent ions.
Collapse
Affiliation(s)
- Shikha
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Ekta Shandilya
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Priyanka
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| | - Subhabrata Maiti
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Manauli 140306, India
| |
Collapse
|
9
|
Xu L, Wang A, Li X, Oh KW. Passive micropumping in microfluidics for point-of-care testing. BIOMICROFLUIDICS 2020; 14:031503. [PMID: 32509049 PMCID: PMC7263483 DOI: 10.1063/5.0002169] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 05/14/2020] [Indexed: 05/11/2023]
Abstract
Suitable micropumping methods for flow control represent a major technical hurdle in the development of microfluidic systems for point-of-care testing (POCT). Passive micropumping for point-of-care microfluidic systems provides a promising solution to such challenges, in particular, passive micropumping based on capillary force and air transfer based on the air solubility and air permeability of specific materials. There have been numerous developments and applications of micropumping techniques that are relevant to the use in POCT. Compared with active pumping methods such as syringe pumps or pressure pumps, where the flow rate can be well-tuned independent of the design of the microfluidic devices or the property of the liquids, most passive micropumping methods still suffer flow-control problems. For example, the flow rate may be set once the device has been made, and the properties of liquids may affect the flow rate. However, the advantages of passive micropumping, which include simplicity, ease of use, and low cost, make it the best choice for POCT. Here, we present a systematic review of different types of passive micropumping that are suitable for POCT, alongside existing applications based on passive micropumping. Future trends in passive micropumping are also discussed.
Collapse
Affiliation(s)
- Linfeng Xu
- Department of Bioengineering and Therapeutic
Sciences, Schools of Medicine and Pharmacy, University of California San
Francisco, 1700 4th Street, Byers Hall 304, San Francisco, California
94158, USA
| | - Anyang Wang
- SMALL (Sensors and MicroActuators Learning Lab),
Department of Electrical Engineering, University at Buffalo, The State University of New
York, Buffalo, New York 14260, USA
| | - Xiangpeng Li
- Department of Bioengineering and Therapeutic
Sciences, Schools of Medicine and Pharmacy, University of California San
Francisco, 1700 4th Street, Byers Hall 304, San Francisco, California
94158, USA
| | - Kwang W. Oh
- SMALL (Sensors and MicroActuators Learning Lab),
Department of Electrical Engineering, University at Buffalo, The State University of New
York, Buffalo, New York 14260, USA
| |
Collapse
|
10
|
Banerjee A, Vogus DR, Squires TM. Design strategies for engineering soluto-inertial suspension interactions. Phys Rev E 2019; 100:052603. [PMID: 31869929 DOI: 10.1103/physreve.100.052603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Indexed: 06/10/2023]
Abstract
Soluto-inertial (SI) suspension interactions allow colloidal particles to be driven large distances over sustained periods of time. These interactions involve soluto-inertial "beacons" that establish and maintain solute fluxes over long times by slowly absorbing or emitting solutes in response to changes in the surrounding solution. Suspended particles then migrate in response to solute fluxes via diffusiophoresis (DP). Beacon materials must be chosen to maintain these solute fluxes, with range and duration in mind. Here we present a general strategy to facilitate qualitative design and quantitative prediction of SI interactions for a given beacon-solute pair. Specifically, we look at two classes of SI beacons: those that partition solute and those that associate with solute. We identify the design parameters for these systems to construct a parameter space map, calculate characteristic timescales over which SI fluxes persist, and generate approximate analytical expressions for solute concentration profiles. Further, we use these expressions to predict the DP velocity of colloids interacting with beacons, noting qualitative differences between beacon sources that release solute and beacon sinks that absorb solute. Proof-of-principle experiments of beacon sources and sinks, of partitioning, and associating types highlight the basic findings. More broadly, the conceptual approach outlined here can be adapted to treat SI interactions mediated by other materials such as dissolving solids, gases, evaporating liquids, ion-exchange resins, and others.
Collapse
Affiliation(s)
- Anirudha Banerjee
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106-5080, USA
| | - Douglas R Vogus
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106-5080, USA
| | - Todd M Squires
- Department of Chemical Engineering, University of California, Santa Barbara, Santa Barbara, California 93106-5080, USA
| |
Collapse
|
11
|
Battat S, Ault JT, Shin S, Khodaparast S, Stone HA. Particle entrainment in dead-end pores by diffusiophoresis. SOFT MATTER 2019; 15:3879-3885. [PMID: 31021341 DOI: 10.1039/c9sm00427k] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The transport of particulate matter to and from dead-end pores is difficult to achieve due to confinement effects. Diffusiophoresis is a phenomenon that results in the controlled motion of colloids along solute concentration gradients. Thus, by establishing an electrolyte concentration gradient within dead-end pores, it is possible to induce the flow of particles into and out of the pores via diffusiophoresis, as has been demonstrated recently. In this paper, we explain the pore-scale mechanism by which individual colloids are entrained in dead-end pores by diffusiophoresis. We flow particles past a series of dead-end pores in the presence of a solute concentration gradient. Our results reveal that particles execute pore-to-pore hops before ultimately being captured. We categorize an event as particle capture when the particle's trajectory terminates within the dead-end pore. Experiments and numerical simulations demonstrate that particle capture only occurs when flowing particles are positioned sufficiently close to the pore entry. Outside this capture region, the particles have insufficient diffusiophoretic velocities to induce capture and their dynamics are largely dominated by their free-stream advective velocities. We observe that the particles move closer to the device wall as they hop, thereby reducing the effect of flow advection and increasing that of diffusiophoresis. These results enhance our understanding of suspension dynamics in a driven system and have implications for the development, design, and optimization of diffusiophoretic platforms for drug delivery, cosmetics, and material recovery.
Collapse
Affiliation(s)
- Sarah Battat
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | | | | | | | | |
Collapse
|
12
|
Maiti S, Shklyaev OE, Balazs AC, Sen A. Self-Organization of Fluids in a Multienzymatic Pump System. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3724-3732. [PMID: 30721619 DOI: 10.1021/acs.langmuir.8b03607] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The nascent field of microscale flow chemistry focuses on harnessing flowing fluids to optimize chemical reactions in microchambers and establish new routes for chemical synthesis. With enzymes and other catalysts anchored to the surface of microchambers, the catalytic reactions can act as pumps and propel the fluids through the containers. Hence, the flows not only affect the catalytic reactions, but these reactions also affect the flows. Understanding this dynamic interplay is vital to enhancing the accuracy and utility of flow technology. Through experiments and simulation, we design a system of three different enzymes, immobilized in separate gels, on the surface of a microchamber; with the appropriate reactants in the solution, each enzyme-filled gel acts as a pump. The system also exploits a reaction cascade that controls the temporal interactions between two pumps. With three pumps in a triangular arrangement, the spatio-temporal interactions among the chemical reactions become highly coordinated and produce well-defined fluid streams, which transport chemicals and form a fluidic "circuit". The circuit layout and flow direction of each constituent stream can be controlled through the number and placement of the gels and the types of catalysts localized in the gels. These studies provide a new route for forming self-organizing and bifurcating fluids that can yield fundamental insight into nonequilibrium, dynamical systems. Because the flows and fluidic circuits are generated by internal chemical reactions, the fluids can autonomously transport cargo to specific locations in the device. Hence, the findings also provide guidelines to facilitate further automation of microfluidic devices.
Collapse
Affiliation(s)
- Subhabrata Maiti
- Department of Chemistry , The Pennsylvania State University , 104 Chemistry Building , University Park , Pennsylvania 16802 , United States
| | - Oleg E Shklyaev
- Department of Chemical Engineering , University of Pittsburgh , 4420 Bayard Street , Pittsburgh , Pennsylvania 15213 , United States
| | - Anna C Balazs
- Department of Chemical Engineering , University of Pittsburgh , 4420 Bayard Street , Pittsburgh , Pennsylvania 15213 , United States
| | - Ayusman Sen
- Department of Chemistry , The Pennsylvania State University , 104 Chemistry Building , University Park , Pennsylvania 16802 , United States
| |
Collapse
|
13
|
Lee D, Lee JA, Lee H, Kim SJ. Spontaneous Selective Preconcentration Leveraged by Ion Exchange and Imbibition through Nanoporous Medium. Sci Rep 2019; 9:2336. [PMID: 30787314 PMCID: PMC6382859 DOI: 10.1038/s41598-018-38162-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Accepted: 12/15/2018] [Indexed: 11/23/2022] Open
Abstract
Manipulating mechanism of particle’s motion has been extensively studied for the sample preparation in microfluidic applications including diagnostics, food industries, biological analyses and environmental monitoring. However, most of conventional methods need additional external forces such as electric field or pressure and complicated channel designs, which demand highly complex fabrication processes and operation strategies. In addition, these methods have inherent limitations of dilution or mixing during separation or preconcentration step, respectively, so that a number of studies have reported an efficient selective preconcentration process, i.e. conducting the separation and preconcentration simultaneously. In this work, a power-free spontaneous selective preconcentration method was suggested based on leveraging convective flow over diffusiophoresis near the water-absorbing nanoporous ion exchange medium, which was verified both by simulation and experiment. Especially, the velocity of the convective flow by an imbibition deviated from the original tendency of t−1/2 due to non-uniformly patterned nanoporous medium that has multiple cross-sectional areas. As a result, the direction of particle’s motion was controlled at one’s discretion, which led to the spontaneous selective preconcentration of particles having different diffusiophoretic constant. Also, design rule for maximizing the efficiency was recommended. Thus, this selective preconcentration method would play as a key mechanism for power-free lab on a chip applications.
Collapse
Affiliation(s)
- Dokeun Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jung A Lee
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea
| | - Hyomin Lee
- Department of Chemical & Biological Engineering, Jeju National University, Jeju, 63243, Republic of Korea.
| | - Sung Jae Kim
- Department of Electrical and Computer Engineering, Seoul National University, Seoul, 08826, Republic of Korea. .,Inter-university Semiconductor Research Center, Seoul National University, Seoul, 08826, Republic of Korea. .,Nano Systems Institute, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
14
|
Ault JT, Shin S, Stone HA. Characterization of surface-solute interactions by diffusioosmosis. SOFT MATTER 2019; 15:1582-1596. [PMID: 30664142 DOI: 10.1039/c8sm01360h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The accurate measurement of wall zeta potentials and solute-surface interaction length scales for electrolyte and non-electrolyte solutes, respectively, is critical to the design of many biomedical and microfluidic applications. We present a novel microfluidic approach using diffusioosmosis for measuring either the zeta potentials or the characteristic interaction length scales for surfaces exposed to, respectively, electrolyte or non-electrolyte solutes. When flows containing different solute concentrations merge in a junction, local solute concentration gradients can drive diffusioosmotic flow due to electrokinetic, steric, and other interactions between the solute molecules and solid surfaces. We demonstrate a microfluidic system consisting of a long, narrow pore connecting two large side channels in which solute concentration gradients drive diffusioosmosis within the pore, resulting in predictable fluid velocity/pressure and solute profiles. Furthermore, we present analytical results and a methodology to determine the zeta potential or interaction length scale for the pore surfaces based on the solute concentrations in the main side channels, the flow rate in the pore, and the pressure drop across the pore. We apply this method to the experimental data of Lee et al. to predict the zeta potentials of their system, and we use 3D numerical simulations to validate the theory and show that end effects caused by the junctions are negligible for a wide range of parameters. Because the dynamics in the proposed system are driven by diffusioosmosis, this technique does not suffer from certain disadvantages associated with the use of sensitive electronics in traditional zeta potential measurement approaches such as streaming potential, streaming current, or electroosmosis. To the best of our knowledge this is the first flow-based approach to characterize surface/solute interactions with non-electrolyte solutes.
Collapse
Affiliation(s)
- Jesse T Ault
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| | | | | |
Collapse
|
15
|
Warren PB, Shin S, Stone HA. Diffusiophoresis in ionic surfactants: effect of micelle formation. SOFT MATTER 2019; 15:278-288. [PMID: 30534797 DOI: 10.1039/c8sm01472h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We explore the consequences of micelle formation for diffusiophoresis of charged colloidal particles in ionic surfactant concentration gradients, using a quasi-chemical association model for surfactant self assembly. The electrophoretic contribution to diffusiophoresis is determined by re-arranging the Nernst-Planck equations, and the chemiphoretic contribution is estimated by making plausible approximations for the density profiles in the electrical double layer surrounding the particle. For sub-micellar solutions we find that a particle will typically be propelled down the concentration gradient, although electrophoresis and chemiphoresis are finely balanced and the effect is sensitive to the detailed parameter choices and simplifying assumptions in the model. Above the critical micelle concentration (CMC), diffusiophoresis becomes much weaker and may even reverse sign, due to the fact that added surfactant goes into building micelles and not augmenting the monomer or counterion concentrations. We present detailed calculations for sodium dodecyl sulfate (SDS), finding that the typical drift speed for a colloidal particle in a ∼100 μm length scale SDS gradient is ∼1 μm s-1 below the CMC, falling to ⪅0.2 μm s-1 above the CMC. These predictions are broadly in agreement with recent experimental work.
Collapse
Affiliation(s)
- Patrick B Warren
- Unilever R&D Port Sunlight, Quarry Road East, Bebington, Wirral, CH63 3JW, UK.
| | | | | |
Collapse
|
16
|
Mohajerani F, Zhao X, Somasundar A, Velegol D, Sen A. A Theory of Enzyme Chemotaxis: From Experiments to Modeling. Biochemistry 2018; 57:6256-6263. [PMID: 30251529 DOI: 10.1021/acs.biochem.8b00801] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Enzymes show two distinct transport behaviors in the presence of their substrates in solution. First, their diffusivity enhances with an increasing substrate concentration. In addition, enzymes perform directional motion toward regions with a high substrate concentration, termed as chemotaxis. While a variety of enzymes has been shown to undergo chemotaxis, there remains a lack of quantitative understanding of the phenomenon. Here, we derive a general expression for the active movement of an enzyme in a concentration gradient of its substrate. The proposed model takes into account both the substrate-binding and catalytic turnover step, as well as the enhanced diffusion of the enzyme. We have experimentally measured the chemotaxis of a fast and a slow enzyme: urease under catalytic conditions and hexokinase for both full catalysis and for simple noncatalytic substrate binding. There is good agreement between the proposed model and the experiments. The model is general, has no adjustable parameters, and only requires three experimentally defined constants to quantify chemotaxis: enzyme-substrate binding affinity ( Kd), Michaelis-Menten constant ( KM), and level of diffusion enhancement in the associated substrate (α).
Collapse
Affiliation(s)
- Farzad Mohajerani
- Department of Chemical Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Xi Zhao
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Ambika Somasundar
- Department of Chemical Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Darrell Velegol
- Department of Chemical Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Ayusman Sen
- Department of Chemistry , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| |
Collapse
|