1
|
Cao X, Sun K, Luo J, Chen A, Wan Q, Zhou H, Zhou H, Liu Y, Chen X. Enhancing Osteogenesis and Mechanical Properties through Scaffold Design in 3D Printed Bone Substitutes. ACS Biomater Sci Eng 2025; 11:710-729. [PMID: 39818724 DOI: 10.1021/acsbiomaterials.4c01661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
In the context of regenerative medicine, the design of scaffolds to possess excellent osteogenesis and appropriate mechanical properties has gained significant attention in bone tissue engineering. In this review, we categorized materials into metallic, inorganic, nonmetallic, organic polymer, and composite materials. This review provides a more integrated and multidimensional analysis of scaffold design for bone tissue engineering. Unlike previous works that often focus on single aspects, such as material type or fabrication technique, our review takes a broader approach. It analyzes the interaction between scaffold materials, 3D printing techniques, scaffold structural designs, modification methods, porosities, and pore sizes, and the composition of materials (particularly composite materials). Meanwhile, it focuses on their impacts on scaffolds' osteogenic potential and mechanical performance. This review also provides suggested ranges for porosity and pore size for different materials and outlines recommended surface modification methods. This approach not only consolidates current knowledge but also highlights the interdependencies among various factors affecting scaffold efficacy, offering deeper insights into optimization strategies tailored for specific clinical conditions. Furthermore, we introduce recent advancements in innovative 3D printing techniques and novel composite materials, which are rarely addressed in previous reviews, thereby providing a forward-looking perspective that informs future research directions and clinical applications.
Collapse
Affiliation(s)
- Xinyi Cao
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 201199, China
| | - Kexin Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Clinical Research Center for Oral Diseases, Department of Orthodontics, School of Stomatology, The Fourth Military Medical University, Xi'an, Shaanxi 710032, China
| | - Junyue Luo
- Xiangya School of Medicine, Central South University, Changsha 410013, China
| | - Andi Chen
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Qi Wan
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
| | - Hongyi Zhou
- Research School of Management, ANU College of Business and Economics, The Australian National University, Canberra, ACT 2601, Australia
| | - Hongbo Zhou
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| | - Yuehua Liu
- Department of Orthodontics, Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai 200001, China
- Shanghai Key Laboratory of Craniomaxillofacial Development and Diseases, Fudan University, Shanghai 201199, China
| | - Xiaojing Chen
- Xiangya School of Stomatology, Central South University, Changsha 410008, Hunan, China
- Hunan Key Laboratory of Oral Health Research, Central South University, Changsha 410008, China
| |
Collapse
|
2
|
Yan J, Ye Z, Wang X, Zhong D, Wang Z, Yan T, Li T, Yuan Y, Liu Y, Wang Y, Cai X. Recent research progresses of bioengineered biliary stents. Mater Today Bio 2024; 29:101290. [PMID: 39444940 PMCID: PMC11497374 DOI: 10.1016/j.mtbio.2024.101290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 10/25/2024] Open
Abstract
Bile duct lesion, including benign (eg. occlusion, cholelithiasis, dilatation, malformation) and malignant (cholangiocarcinoma) diseases, is a frequently encountered challenge in hepatobiliary diseases, which can be repaired by interventional or surgical procedures. A viable cure for bile duct lesions is implantation with biliary stents. Despite the placement achieved by current clinical biliary stents, the creation of functional and readily transplantable biliary stents remains a formidable obstacle. Excellent biocompatibility, stable mechanics, and absorbability are just a few benefits of using bioengineered biliary stents, which can also support and repair damaged bile ducts that drain bile. Additionally, cell sources & organoids derived from the biliary system that are loaded onto scaffolds can encourage bile duct regeneration. Therefore, the implantation of bioengineered biliary stent is considered as an ideal treatment for bile duct lesion, holding a broad potential for clinical applications in future. In this review, we look back on the development of conventional biliary stents, biodegradable biliary stents, and bioengineered biliary stents, highlighting the crucial elements of bioengineered biliary stents in promoting bile duct regeneration. After providing an overview of the various types of cell sources & organoids and fabrication methods utilized for the bioengineering process, we present the in vitro and in vivo applications of bioengineered biliary ducts, along with the latest advances in this exciting field. Finally, we also emphasize the ongoing challenges and future development of bioengineered biliary stents.
Collapse
Affiliation(s)
- Jianing Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Zhichao Ye
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Xiaofeng Wang
- Department of Plastic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, Zhejiang Province, China
| | - Danyang Zhong
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Ziyuan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Tingting Yan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Tianyu Li
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yuyang Yuan
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yu Liu
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Yifan Wang
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
- Department of Translational Medicine & Clinical Research, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| | - Xiujun Cai
- Department of General Surgery, Sir Run Run Shaw Hospital Affiliated to School of Medicine, Zhejiang University, Hangzhou, 310016, China
- National Engineering Research Center of Innovation and Application of Minimally Invasive Instruments, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310028, China
| |
Collapse
|
3
|
Madhusudhan A, Suhagia TA, Sharma C, Jaganathan SK, Purohit SD. Carbon Based Polymeric Nanocomposite Hydrogel Bioink: A Review. Polymers (Basel) 2024; 16:3318. [PMID: 39684062 DOI: 10.3390/polym16233318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 11/12/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Carbon-based polymeric nanocomposite hydrogels (NCHs) represent a groundbreaking advancement in biomedical materials by integrating nanoparticles such as graphene, carbon nanotubes (CNTs), carbon dots (CDs), and activated charcoal (AC) into polymeric matrices. These nanocomposites significantly enhance the mechanical strength, electrical conductivity, and bioactivity of hydrogels, making them highly effective for drug delivery, tissue engineering (TE), bioinks for 3D Bioprinting, and wound healing applications. Graphene improves the mechanical and electrical properties of hydrogels, facilitating advanced tissue scaffolding and drug delivery systems. CNTs, with their exceptional mechanical strength and conductivity, enhance rheological properties, facilitating their use as bioinks in supporting complex 3D bioprinting tasks for neural, bone, and cardiac tissues by mimicking the natural structure of tissues. CDs offer fluorescence capabilities for theranostic applications, integrating imaging and therapeutic functions. AC enhances mechanical strength, biocompatibility, and antibacterial effectiveness, making it suitable for wound healing and electroactive scaffolds. Despite these promising features, challenges remain, such as optimizing nanoparticle concentrations, ensuring biocompatibility, achieving uniform dispersion, scaling up production, and integrating multiple functionalities. Addressing these challenges through continued research and development is crucial for advancing the clinical and industrial applications of these innovative hydrogels.
Collapse
Affiliation(s)
- Alle Madhusudhan
- Department of Chemistry, The University of Memphis, Memphis, TN 38152, USA
| | | | - Chhavi Sharma
- Department of Biotechnology, University Centre for Research and Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Saravana Kumar Jaganathan
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang 550000, Vietnam
- School of Engineering, College of Health and Science, Brayford Pool, Lincoln LN67TS, UK
| | - Shiv Dutt Purohit
- Department of Biomedical Engineering & Biotechnology, Khalifa University of Science and Technology, Abu Dhabi 127788, United Arab Emirates
| |
Collapse
|
4
|
Zhou Y, Meng Y, Cheng Y, Guan M, Liu X. High performances of cellulose nanocrystal based bicomponent supramolecular hydrogel lubricant. Carbohydr Polym 2024; 344:122542. [PMID: 39218559 DOI: 10.1016/j.carbpol.2024.122542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/20/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
To improve the limitations of water-based lubricants, a novel cellulose nanocrystal based supramolecular hydrogel (CNC/x-DG/y) was prepared by mixing cellulose nanocrystal (CNC) and diglycerol (DG) into deionized water (DW). The hydrogel was characterized to determine its material ratio and gelation mechanism. When DW was fixed at 1 mL, CNC content should be no <2.4 wt% and DG content 0.1-1.3 mL. The gelification was driven by the multiple H-bond network between CNC and DG, which immobilized water molecules. The rheological performances, the anti-rust property and the volatilization behaviour of the hydrogel were further studied. The results showed that the hydrogel had satisfactory viscoelasticity, excellent thermal stability, strong creep recovery, high anti-rust performance and low volatilization rate, which were exactly its advantages for use as lubricant. A typical representative of the hydrogel, namely CNC/2.4-DG/0.1, was selected to evaluate the tribological performances, and the resulting worn surfaces were analyzed. CNC/2.4-DG/0.1 exhibited a lower friction coefficient of 0.059 and a smaller wear volume of 0.81 × 10-3 mm3, compared to DW(1 mL) + CNC(2.4 wt%) and DW(1 mL) + DG(0.1 mL). The outstanding tribological performances of CNC/2.4-DG/0.1 were reasonably attributed to the synergistic mending effect of CNC and DG and the dissipative effect of H-bonds between the two.
Collapse
Affiliation(s)
- Yulong Zhou
- School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410000, China
| | - Yuan Meng
- School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410000, China; Hunan Province Key Laboratory of Materials Surface, Interface Science and Technology, Changsha 410000, China.
| | - Yu Cheng
- School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410000, China
| | - Minghang Guan
- School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410000, China
| | - Xiubo Liu
- School of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410000, China; Hunan Province Key Laboratory of Materials Surface, Interface Science and Technology, Changsha 410000, China
| |
Collapse
|
5
|
Lee YJ, Ajiteru O, Lee JS, Lee OJ, Choi KY, Kim SH, Park CH. Highly conductive, stretchable, and biocompatible graphene oxide biocomposite hydrogel for advanced tissue engineering. Biofabrication 2024; 16:045032. [PMID: 39116889 DOI: 10.1088/1758-5090/ad6cf7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 08/08/2024] [Indexed: 08/10/2024]
Abstract
The importance of hydrogels in tissue engineering cannot be overemphasized due to their resemblance to the native extracellular matrix. However, natural hydrogels with satisfactory biocompatibility exhibit poor mechanical behavior, which hampers their application in stress-bearing soft tissue engineering. Here, we describe the fabrication of a double methacrylated gelatin bioink covalently linked to graphene oxide (GO) via a zero-length crosslinker, digitally light-processed (DLP) printable into 3D complex structures with high fidelity. The resultant natural hydrogel (GelGOMA) exhibits a conductivity of 15.0 S m-1as a result of the delocalization of theπ-orbital from the covalently linked GO. Furthermore, the hydrogel shows a compressive strength of 1.6 MPa, and a 2.0 mm thick GelGOMA can withstand a 1.0 kg ms-1momentum. The printability and mechanical strengths of GelGOMAs were demonstrated by printing a fish heart with a functional fluid pumping mechanism and tricuspid valves. Its biocompatibility, electroconductivity, and physiological relevance enhanced the proliferation and differentiation of myoblasts and neuroblasts and the contraction of human-induced pluripotent stem cell-derived cardiomyocytes. GelGOMA demonstrates the potential for the tissue engineering of functional hearts and wearable electronic devices.
Collapse
Affiliation(s)
- Young Jin Lee
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University College of Medicine, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Olatunji Ajiteru
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University College of Medicine, Chuncheon, Gangwon-do 24252, Republic of Korea
- CURE 3D, Department of Cardiac Surgery, University Hospital Düsseldorf, Düsseldorf, Nordrhein-Westfalen 40225, Germany
| | - Ji Seung Lee
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University College of Medicine, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Ok Joo Lee
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University College of Medicine, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Kyu Young Choi
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University College of Medicine, Chuncheon, Gangwon-do 24252, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Hallym University College of Medicine, Kangnam, Seoul 07441, Republic of Korea
| | - Soon Hee Kim
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University College of Medicine, Chuncheon, Gangwon-do 24252, Republic of Korea
| | - Chan Hum Park
- Nano-Bio Regenerative Medical Institute (NBRM), Hallym University College of Medicine, Chuncheon, Gangwon-do 24252, Republic of Korea
- Department of Otorhinolaryngology-Head and Neck Surgery, Chuncheon Sacred Heart Hospital, Chuncheon 24253, Republic of Korea
| |
Collapse
|
6
|
Chandra DK, Reis RL, Kundu SC, Kumar A, Mahapatra C. Nanomaterials-Based Hybrid Bioink Platforms in Advancing 3D Bioprinting Technologies for Regenerative Medicine. ACS Biomater Sci Eng 2024; 10:4145-4174. [PMID: 38822783 DOI: 10.1021/acsbiomaterials.4c00166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2024]
Abstract
3D bioprinting is recognized as the ultimate additive biomanufacturing technology in tissue engineering and regeneration, augmented with intelligent bioinks and bioprinters to construct tissues or organs, thereby eliminating the stipulation for artificial organs. For 3D bioprinting of soft tissues, such as kidneys, hearts, and other human body parts, formulations of bioink with enhanced bioinspired rheological and mechanical properties were essential. Nanomaterials-based hybrid bioinks have the potential to overcome the above-mentioned problem and require much attention among researchers. Natural and synthetic nanomaterials such as carbon nanotubes, graphene oxides, titanium oxides, nanosilicates, nanoclay, nanocellulose, etc. and their blended have been used in various 3D bioprinters as bioinks and benefitted enhanced bioprintability, biocompatibility, and biodegradability. A limited number of articles were published, and the above-mentioned requirement pushed us to write this review. We reviewed, explored, and discussed the nanomaterials and nanocomposite-based hybrid bioinks for the 3D bioprinting technology, 3D bioprinters properties, natural, synthetic, and nanomaterial-based hybrid bioinks, including applications with challenges, limitations, ethical considerations, potential solution for future perspective, and technological advancement of efficient and cost-effective 3D bioprinting methods in tissue regeneration and healthcare.
Collapse
Affiliation(s)
- Dilip Kumar Chandra
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| | - Rui L Reis
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães 4800-058, Braga,Portugal
| | - Subhas C Kundu
- 3Bs Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Barco, Guimarães 4805-017, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães 4800-058, Braga,Portugal
| | - Awanish Kumar
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| | - Chinmaya Mahapatra
- Department of Biotechnology, National Institute of Technology Raipur, G.E. Road, Raipur, Chhattisgarh 492010, India
| |
Collapse
|
7
|
Guo S, Cui H, Agarwal T, Zhang LG. Nanomaterials in 4D Printing: Expanding the Frontiers of Advanced Manufacturing. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2307750. [PMID: 38431939 DOI: 10.1002/smll.202307750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/15/2024] [Indexed: 03/05/2024]
Abstract
As an innovative technology, four-dimentional (4D) printing is built upon the principles of three-dimentional (3D) printing with an additional dimension: time. While traditional 3D printing creates static objects, 4D printing generates "responsive 3D printed structures", enabling them to transform or self-assemble in response to external stimuli. Due to the dynamic nature, 4D printing has demonstrated tremendous potential in a range of industries, encompassing aerospace, healthcare, and intelligent devices. Nanotechnology has gained considerable attention owing to the exceptional properties and functions of nanomaterials. Incorporating nanomaterials into an intelligent matrix enhances the physiochemical properties of 4D printed constructs, introducing novel functions. This review provides a comprehensive overview of current applications of nanomaterials in 4D printing, exploring their synergistic potential to create dynamic and responsive structures. Nanomaterials play diverse roles as rheology modifiers, mechanical enhancers, function introducers, and more. The overarching goal of this review is to inspire researchers to delve into the vast potential of nanomaterial-enabled 4D printing, propelling advancements in this rapidly evolving field.
Collapse
Affiliation(s)
- Shengbo Guo
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Haitao Cui
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Tarun Agarwal
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Electrical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Medicine, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
8
|
Wu Y, Yang X, Gupta D, Alioglu MA, Qin M, Ozbolat V, Li Y, Ozbolat IT. Dissecting the Interplay Mechanism among Process Parameters toward the Biofabrication of High-Quality Shapes in Embedded Bioprinting. ADVANCED FUNCTIONAL MATERIALS 2024; 34:2313088. [PMID: 38952568 PMCID: PMC11216718 DOI: 10.1002/adfm.202313088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Indexed: 07/03/2024]
Abstract
Embedded bioprinting overcomes the barriers associated with the conventional extrusion-based bioprinting process as it enables the direct deposition of bioinks in 3D inside a support bath by providing in situ self-support for deposited bioinks during bioprinting to prevent their collapse and deformation. Embedded bioprinting improves the shape quality of bioprinted constructs made up of soft materials and low-viscosity bioinks, leading to a promising strategy for better anatomical mimicry of tissues or organs. Herein, the interplay mechanism among the printing process parameters toward improved shape quality is critically reviewed. The impact of material properties of the support bath and bioink, printing conditions, cross-linking mechanisms, and post-printing treatment methods, on the printing fidelity, stability, and resolution of the structures is meticulously dissected and thoroughly discussed. Further, the potential scope and applications of this technology in the fields of bioprinting and regenerative medicine are presented. Finally, outstanding challenges and opportunities of embedded bioprinting as well as its promise for fabricating functional solid organs in the future are discussed.
Collapse
Affiliation(s)
- Yang Wu
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xue Yang
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Deepak Gupta
- The Huck Institutes of the Life Sciences, Penn State University University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Mecit Altan Alioglu
- The Huck Institutes of the Life Sciences, Penn State University University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
| | - Minghao Qin
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Veli Ozbolat
- Biotechnology Research and Application Center, Cukurova University, Adana 01130, Turkey
- Ceyhan Engineering Faculty, Mechanical Engineering Department, Cukurova University, Adana 01330, Turkey
- Institute of Natural and Applied Sciences, Tissue Engineering Department, Cukurova University, Adana 01130, Turkey
| | - Yao Li
- School of Mechanical Engineering and Automation, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ibrahim T Ozbolat
- The Huck Institutes of the Life Sciences, Penn State University University Park, PA 16802, USA
- Engineering Science and Mechanics Department, Penn State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Penn State University, University Park, PA 16802, USA
- Materials Research Institute, Penn State University, University Park, PA 16802, USA
- Department of Neurosurgery, Penn State College of Medicine, Hershey, PA 17033, USA
- Penn State Cancer Institute, Penn State University, Hershey, PA 17033, USA
| |
Collapse
|
9
|
Cai B, Kilian D, Ramos Mejia D, Rios RJ, Ali A, Heilshorn SC. Diffusion-Based 3D Bioprinting Strategies. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306470. [PMID: 38145962 PMCID: PMC10885663 DOI: 10.1002/advs.202306470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 12/11/2023] [Indexed: 12/27/2023]
Abstract
3D bioprinting has enabled the fabrication of tissue-mimetic constructs with freeform designs that include living cells. In the development of new bioprinting techniques, the controlled use of diffusion has become an emerging strategy to tailor the properties and geometry of printed constructs. Specifically, the diffusion of molecules with specialized functions, including crosslinkers, catalysts, growth factors, or viscosity-modulating agents, across the interface of printed constructs will directly affect material properties such as microstructure, stiffness, and biochemistry, all of which can impact cell phenotype. For example, diffusion-induced gelation is employed to generate constructs with multiple materials, dynamic mechanical properties, and perfusable geometries. In general, these diffusion-based bioprinting strategies can be categorized into those based on inward diffusion (i.e., into the printed ink from the surrounding air, solution, or support bath), outward diffusion (i.e., from the printed ink into the surroundings), or diffusion within the printed construct (i.e., from one zone to another). This review provides an overview of recent advances in diffusion-based bioprinting strategies, discusses emerging methods to characterize and predict diffusion in bioprinting, and highlights promising next steps in applying diffusion-based strategies to overcome current limitations in biofabrication.
Collapse
Affiliation(s)
- Betty Cai
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - David Kilian
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Daniel Ramos Mejia
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Ricardo J. Rios
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Ashal Ali
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| | - Sarah C. Heilshorn
- Department of Materials Science and EngineeringStanford University476 Lomita MallStanfordCA94305USA
| |
Collapse
|
10
|
McDougall L, Herman J, Huntley E, Leguizamon S, Cook A, White T, Kaehr B, Roach DJ. Free-Form Liquid Crystal Elastomers via Embedded 4D Printing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58897-58904. [PMID: 38084015 PMCID: PMC10739595 DOI: 10.1021/acsami.3c14783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/01/2023] [Accepted: 12/01/2023] [Indexed: 12/22/2023]
Abstract
Liquid crystal elastomers (LCEs) are a class of active materials that can generate rapid, reversible mechanical actuation in response to external stimuli. Fabrication methods for LCEs have remained a topic of intense research interest in recent years. One promising approach, termed 4D printing, combines the advantages of 3D printing with responsive materials, such as LCEs, to generate smart structures that not only possess user-defined static shapes but also can change their shape over time. To date, 4D-printed LCE structures have been limited to flat objects, restricting shape complexity and associated actuation for smart structure applications. In this work, we report the development of embedded 4D printing to extrude hydrophobic LCE ink into an aqueous, thixotropic gel matrix to produce free-standing, free-form 3D architectures without sacrificing the mechanical actuation properties. The ability to 4D print complex, free-standing 3D LCE architectures opens new avenues for the design and development of functional and responsive systems, such as reconfigurable metamaterials, soft robotics, or biomedical devices.
Collapse
Affiliation(s)
- Luke McDougall
- Advanced
Materials Laboratory, Sandia National Laboratories, Albuquerque, New Mexico 87106, United States
| | - Jeremy Herman
- Advanced
Materials Laboratory, Sandia National Laboratories, Albuquerque, New Mexico 87106, United States
- Department
of Chemical and Biological Engineering, The University of Colorado, Boulder, Colorado 80309, United States
| | - Emily Huntley
- Advanced
Materials Laboratory, Sandia National Laboratories, Albuquerque, New Mexico 87106, United States
| | - Samuel Leguizamon
- Advanced
Materials Laboratory, Sandia National Laboratories, Albuquerque, New Mexico 87106, United States
| | - Adam Cook
- Advanced
Materials Laboratory, Sandia National Laboratories, Albuquerque, New Mexico 87106, United States
| | - Timothy White
- Department
of Chemical and Biological Engineering, The University of Colorado, Boulder, Colorado 80309, United States
| | - Bryan Kaehr
- Advanced
Materials Laboratory, Sandia National Laboratories, Albuquerque, New Mexico 87106, United States
| | - Devin J. Roach
- Advanced
Materials Laboratory, Sandia National Laboratories, Albuquerque, New Mexico 87106, United States
- School
of Mechanical, Industrial, and Manufacturing Engineering, Oregon State University, Corvallis, Oregon 97331, United States
| |
Collapse
|
11
|
Sun Z, Wen H, Di Z, Zhang Y, Zhang S, Zhang Z, Zhang J, Yu Z. Photosynthetic Living Fiber Fabrication from Algal-Bacterial Consortia with Controlled Spatial Distribution. ACS Biomater Sci Eng 2023; 9:6481-6489. [PMID: 37779379 DOI: 10.1021/acsbiomaterials.3c00884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Living materials that combine living cells and synthetic matrix materials have become promising research fields in recent years. While multicellular systems present exclusive benefits in developing living materials over single-cell systems, creating artificial multicellular systems can be challenging due to the difficulty in controlling the multicellular assemblies and the complexity of cell-to-cell interactions. Here, we propose a coculture platform capable of isolating and controlling the spatial distribution of algal-bacterial consortia, which can be utilized to construct photosynthetic living fibers. Through coaxial extrusion-based 3D printing, hydrogel fibers containing bacteria or algae can be deposited into designated structures and further processed into materials with precise geometries. In addition, the photosynthetic living fibers demonstrate a significant synergistic catalytic effect resulting from the immobilization of both bacteria and algae, which effectively optimizes sewage treatment for bioremediation purposes. The integration of microbial consortia and 3D printing yields functional living materials with promising applications in biocatalysis, biosensing, and biomedicine. Our approach provides an optimized solution for constructing efficient multicellular systems and opens a new avenue for the development of advanced materials.
Collapse
Affiliation(s)
- Zitong Sun
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
- Cambridge University-Nanjing Centre of Technology and Innovation No. 23, Rongyue Road, Nanjing 210046, P. R. China
| | - Huilin Wen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Zhengao Di
- Department of Plant Sciences, University of Cambridge, Downing Street, Cambridge CB2 3EA, United Kingdom
| | - Yang Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Shaobin Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Zhiqian Zhang
- Tidetron Bioworks Technology (Guangzhou) Co., Ltd., No. 40 Shangchong South Road, Haizhu District, Guangzhou 510000, P. R. China
| | - Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing 211816, P. R. China
| |
Collapse
|
12
|
Hull SM, Lou J, Lindsay CD, Navarro RS, Cai B, Brunel LG, Westerfield AD, Xia Y, Heilshorn SC. 3D bioprinting of dynamic hydrogel bioinks enabled by small molecule modulators. SCIENCE ADVANCES 2023; 9:eade7880. [PMID: 37000873 PMCID: PMC10065439 DOI: 10.1126/sciadv.ade7880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 02/24/2023] [Indexed: 06/19/2023]
Abstract
Three-dimensional bioprinting has emerged as a promising tool for spatially patterning cells to fabricate models of human tissue. Here, we present an engineered bioink material designed to have viscoelastic mechanical behavior, similar to that of living tissue. This viscoelastic bioink is cross-linked through dynamic covalent bonds, a reversible bond type that allows for cellular remodeling over time. Viscoelastic materials are challenging to use as inks, as one must tune the kinetics of the dynamic cross-links to allow for both extrudability and long-term stability. We overcome this challenge through the use of small molecule catalysts and competitors that temporarily modulate the cross-linking kinetics and degree of network formation. These inks were then used to print a model of breast cancer cell invasion, where the inclusion of dynamic cross-links was found to be required for the formation of invasive protrusions. Together, we demonstrate the power of engineered, dynamic bioinks to recapitulate the native cellular microenvironment for disease modeling.
Collapse
Affiliation(s)
- Sarah M. Hull
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | - Junzhe Lou
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | | | - Renato S. Navarro
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Betty Cai
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| | - Lucia G. Brunel
- Department of Chemical Engineering, Stanford University, Stanford, CA, USA
| | | | - Yan Xia
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Sarah C. Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, USA
| |
Collapse
|
13
|
Yuan W, Wang F, Qu X, Wang S, Lei B, Shao J, Wang Q, Lin J, Wang W, Dong X. In situ rapid synthesis of hydrogels based on a redox initiator and persistent free radicals. NANOSCALE ADVANCES 2023; 5:1999-2009. [PMID: 36998656 PMCID: PMC10044294 DOI: 10.1039/d3na00038a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/14/2023] [Indexed: 06/19/2023]
Abstract
The development of fast and economical hydrogel manufacturing methods is crucial for expanding the application of hydrogels. However, the commonly used rapid initiation system is not conducive to the performance of hydrogels. Therefore, the research focuses on how to improve the preparation speed of hydrogels and avoid affecting the properties of hydrogels. Herein, a redox initiation system with nanoparticle-stabilized persistent free radicals was introduced to rapidly synthesize high-performance hydrogels at room temperature. A redox initiator composed of vitamin C and ammonium persulfate rapidly provides hydroxyl radicals at room temperature. Simultaneously, three-dimensional nanoparticles can stabilize free radicals and prolong their lifetime, thereby increasing the free radical concentration and accelerating the polymerization rate. And casein enabled the hydrogel to achieve impressive mechanical properties, adhesion, and electrical conductivity. This method greatly facilitates the rapid and economical synthesis of high-performance hydrogels and presents broad application prospects in the field of flexible electronics.
Collapse
Affiliation(s)
- Wei Yuan
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Fangfang Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Xinyu Qu
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Siying Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Bing Lei
- School of Physical Science and Information Technology, Liaocheng University Liaocheng 252059 China
| | - Jinjun Shao
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Qian Wang
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Jianjian Lin
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology Qingdao 266042 China
| | - Wenjun Wang
- School of Physical Science and Information Technology, Liaocheng University Liaocheng 252059 China
| | - Xiaochen Dong
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
- School of Chemistry & Materials Science, Jiangsu Normal University Xuzhou 221116 China
| |
Collapse
|
14
|
Emerging 4D printing strategies for on-demand local actuation & micro printing of soft materials. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
15
|
Brunel LG, Hull SM, Heilshorn SC. Engineered assistive materials for 3D bioprinting: support baths and sacrificial inks. Biofabrication 2022; 14:032001. [PMID: 35487196 PMCID: PMC10788121 DOI: 10.1088/1758-5090/ac6bbe] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 04/29/2022] [Indexed: 11/11/2022]
Abstract
Three-dimensional (3D) bioprinting is a promising technique for spatially patterning cells and materials into constructs that mimic native tissues and organs. However, a trade-off exists between printability and biological function, where weak materials are typically more suited for 3D cell culture but exhibit poor shape fidelity when printed in air. Recently, a new class of assistive materials has emerged to overcome this limitation and enable fabrication of more complex, biologically relevant geometries, even when using soft materials as bioinks. These materials include support baths, which bioinks are printed into, and sacrificial inks, which are printed themselves and then later removed. Support baths are commonly yield-stress materials that provide physical confinement during the printing process to improve resolution and shape fidelity. Sacrificial inks have primarily been used to create void spaces and pattern perfusable networks, but they can also be combined directly with the bioink to change its mechanical properties for improved printability or increased porosity. Here, we outline the advantages of using such assistive materials in 3D bioprinting, define their material property requirements, and offer case study examples of how these materials are used in practice. Finally, we discuss the remaining challenges and future opportunities in the development of assistive materials that will propel the bioprinting field forward toward creating full-scale, biomimetic tissues and organs.
Collapse
Affiliation(s)
- Lucia G Brunel
- Department of Chemical Engineering, Stanford University, Stanford, CA, United States of America
| | - Sarah M Hull
- Department of Chemical Engineering, Stanford University, Stanford, CA, United States of America
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, United States of America
| |
Collapse
|
16
|
Fellin CR, Nelson A. Direct-Ink Write 3D Printing Multistimuli-Responsive Hydrogels and Post-Functionalization Via Disulfide Exchange. ACS APPLIED POLYMER MATERIALS 2022; 4:3054-3061. [PMID: 38239328 PMCID: PMC10795753 DOI: 10.1021/acsapm.1c01538] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2024]
Abstract
Herein, we describe a multi-stimuli-responsive hydrogel that can be 3D printed via a direct-ink write process to afford cross-linked hydrogel networks that can be post-functionalized with thiol-bearing molecules. Poly(alkyl glycidyl ether)s with methacrylate groups at their termini were synthesized and self-assembled into hydrogels with three key stimuli-responsive behaviors necessary for extrusion based 3D printing: a sol-gel temperature response, shear-thinning behavior, and the ability to be photochemically crosslinked. In addition, the chemically crosslinked hydrogels demonstrated a temperature dependent swelling consistent with an LCST behavior. Pyridyl disulfide urethane methacrylate (PDS-UM) monomers were introduced into the network as a thiol-reactive handle for post-functionalization of the hydrogel. The reactivities of these hydrogels were investigated at different temperatures (5, 25, 37 °C) and swelling statuses (as-cured versus preswollen) using glutathione as a reactive probe. To illustrate the versatility of the platform, a number of additional thiol-containing probes such as proteins, polymers, and small molecules were conjugated to the hydrogel network at different temperatures, pH's, and concentrations. In a final demonstration of the multi-stimuli-responsive hydrogel platform, a customized DIW 3D printer was used to fabricate a printed object that was subsequently conjugated with a fluorescent tag and displayed the ability to change in size with environmental temperature.
Collapse
Affiliation(s)
| | - Alshakim Nelson
- Department of Chemistry, University of Washington, Seattle, Washington 98105, USA
| |
Collapse
|
17
|
Wang Y, Cui H, Esworthy T, Mei D, Wang Y, Zhang LG. Emerging 4D Printing Strategies for Next-Generation Tissue Regeneration and Medical Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109198. [PMID: 34951494 DOI: 10.1002/adma.202109198] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 12/17/2021] [Indexed: 06/14/2023]
Abstract
The rapid development of 3D printing has led to considerable progress in the field of biomedical engineering. Notably, 4D printing provides a potential strategy to achieve a time-dependent physical change within tissue scaffolds or replicate the dynamic biological behaviors of native tissues for smart tissue regeneration and the fabrication of medical devices. The fabricated stimulus-responsive structures can offer dynamic, reprogrammable deformation or actuation to mimic complex physical, biochemical, and mechanical processes of native tissues. Although there is notable progress made in the development of the 4D printing approach for various biomedical applications, its more broad-scale adoption for clinical use and tissue engineering purposes is complicated by a notable limitation of printable smart materials and the simplistic nature of achievable responses possible with current sources of stimulation. In this review, the recent progress made in the field of 4D printing by discussing the various printing mechanisms that are achieved with great emphasis on smart ink mechanisms of 4D actuation, construct structural design, and printing technologies, is highlighted. Recent 4D printing studies which focus on the applications of tissue/organ regeneration and medical devices are then summarized. Finally, the current challenges and future perspectives of 4D printing are also discussed.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Haitao Cui
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Timothy Esworthy
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
| | - Deqing Mei
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yancheng Wang
- State Key Laboratory of Fluid Power and Mechatronics Systems, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Advanced Manufacturing Technology of Zhejiang Province, School of Mechanical Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lijie Grace Zhang
- Department of Mechanical and Aerospace Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Electrical and Computer Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Biomedical Engineering, The George Washington University, Washington, DC, 20052, USA
- Department of Medicine, The George Washington University, Washington, DC, 20052, USA
| |
Collapse
|
18
|
Hull SM, Brunel LG, Heilshorn SC. 3D Bioprinting of Cell-Laden Hydrogels for Improved Biological Functionality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2103691. [PMID: 34672027 PMCID: PMC8988886 DOI: 10.1002/adma.202103691] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 09/15/2021] [Indexed: 05/03/2023]
Abstract
The encapsulation of cells within gel-phase materials to form bioinks offers distinct advantages for next-generation 3D bioprinting. 3D bioprinting has emerged as a promising tool for patterning cells, but the technology remains limited in its ability to produce biofunctional, tissue-like constructs due to a dearth of materials suitable for bioinks. While early demonstrations commonly used viscous polymers optimized for printability, these materials often lacked cell compatibility and biological functionality. In response, advanced materials that exist in the gel phase during the entire printing process are being developed, since hydrogels are uniquely positioned to both protect cells during extrusion and provide biological signals to embedded cells as the construct matures during culture. Here, an overview of the design considerations for gel-phase materials as bioinks is presented, with a focus on their mechanical, biochemical, and dynamic gel properties. Current challenges and opportunities that arise due to the fact that bioprinted constructs are active, living hydrogels composed of both acellular and cellular components are also evaluated. Engineering hydrogels with consideration of cells as an intrinsic component of the printed bioink will enable control over the evolution of the living construct after printing to achieve greater biofunctionality.
Collapse
Affiliation(s)
- Sarah M Hull
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Lucia G Brunel
- Department of Chemical Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305, USA
| |
Collapse
|
19
|
Hua W, Mitchell K, Raymond L, Godina B, Zhao D, Zhou W, Jin Y. Fluid Bath-Assisted 3D Printing for Biomedical Applications: From Pre- to Postprinting Stages. ACS Biomater Sci Eng 2021; 7:4736-4756. [PMID: 34582176 DOI: 10.1021/acsbiomaterials.1c00910] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Fluid bath-assisted three-dimensional (3D) printing is an innovative 3D printing strategy that extrudes liquid ink materials into a fluid bath to form various 3D configurations. Since the support bath can provide in situ support, extruded filaments are able to freely construct complex 3D structures. Meanwhile, the supporting function of the fluid bath decreases the dependence of the ink material's cross-linkability, thus broadening the material selections for biomedical applications. Fluid bath-assisted 3D printing can be divided into two subcategories: embedded 3D printing and support bath-enabled 3D printing. This review will introduce and discuss three main manufacturing processes, or stages, for these two strategies. The stages that will be discussed include preprinting, printing, and postprinting. In the preprinting stage, representative fluid bath materials are introduced and the bath material preparation methods are also discussed. In addition, the design criteria of fluid bath materials including biocompatibility, rheological properties, physical/chemical stability, hydrophilicity/hydrophobicity, and other properties are proposed in order to guide the selection and design of future fluid bath materials. For the printing stage, some key technical issues discussed in this review include filament formation mechanisms in a fluid bath, effects of nozzle movement on printed structures, and design strategies for printing paths. In the postprinting stage, some commonly used postprinting processes are introduced. Finally, representative biomedical applications of fluid bath-assisted 3D printing, such as standalone organoids/tissues, biomedical microfluidic devices, and wearable and bionic devices, are summarized and presented.
Collapse
Affiliation(s)
- Weijian Hua
- Mechanical Engineering Department, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Kellen Mitchell
- Mechanical Engineering Department, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Lily Raymond
- Mechanical Engineering Department, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Beatriz Godina
- Mechanical Engineering Department, University of Nevada, Reno, Reno, Nevada 89557, United States
| | - Danyang Zhao
- School of Mechanical Engineering, Dalian University of Technology, Dalian, Liaoning 116024, China
| | - Wuyi Zhou
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, Guangzhou, Guangdong 510642, China.,Research Center of Biomass 3D Printing Materials, College of Materials and Energy, South China Agricultural University, Guangzhou, Guangdong 510642, China
| | - Yifei Jin
- Mechanical Engineering Department, University of Nevada, Reno, Reno, Nevada 89557, United States
| |
Collapse
|
20
|
Shiwarski DJ, Hudson AR, Tashman JW, Feinberg AW. Emergence of FRESH 3D printing as a platform for advanced tissue biofabrication. APL Bioeng 2021; 5:010904. [PMID: 33644626 PMCID: PMC7889293 DOI: 10.1063/5.0032777] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 01/06/2021] [Indexed: 12/15/2022] Open
Abstract
In tissue engineering, an unresolved challenge is how to build complex 3D scaffolds in order to recreate the structure and function of human tissues and organs. Additive manufacturing techniques, such as 3D bioprinting, have the potential to build biological material with unprecedented spatial control; however, printing soft biological materials in air often results in poor fidelity. Freeform Reversible Embedding of Suspended Hydrogels (FRESH) is an embedded printing approach that solves this problem by extruding bioinks within a yield-stress support bath that holds the bioinks in place until cured. In this Perspective, we discuss the challenges of 3D printing soft and liquid-like bioinks and the emergence for FRESH and related embedded printing techniques as a solution. This includes the development of FRESH and embedded 3D printing within the bioprinting field and the rapid growth in adoption, as well as the advantages of FRESH printing for biofabrication and the new research results this has enabled. Specific focus is on the customizability of the FRESH printing technique where the chemical composition of the yield-stress support bath and aqueous phase crosslinker can all be tailored for printing a wide range of bioinks in complex 3D structures. Finally, we look ahead at the future of FRESH printing, discussing both the challenges and the opportunities that we see as the biofabrication field develops.
Collapse
Affiliation(s)
- Daniel J. Shiwarski
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Andrew R. Hudson
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Joshua W. Tashman
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | | |
Collapse
|
21
|
Greenwood TE, Hatch SE, Colton MB, Thomson SL. 3D Printing Low-Stiffness Silicone Within a Curable Support Matrix. ADDITIVE MANUFACTURING 2021; 37:101681. [PMID: 33718006 PMCID: PMC7946128 DOI: 10.1016/j.addma.2020.101681] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Embedded 3D printing processes involve extruding ink within a support matrix that supports the ink throughout printing and curing. In once class of embedded 3D printing, which we refer to as "removable embedded 3D printing," curable inks are printed, cured, then removed from the uncured support matrix. Removable embedded 3D printing is advantageous because low-viscosity inks can be patterned in freeform geometries which may not be feasible to create via casting and other printing processes. When printing solid-infill geometries, however, uncured support matrix becomes trapped within the prints, which may be undesirable. This study builds on previous work by formulating a support matrix for removable embedded 3D printing that cures when mixed with the printed silicone ink to solve the problem of trapped, uncured support matrix within solid-infill prints. Printed specimens are shown to have a nearly isotropic elastic modulus in directions perpendicular and parallel to the printed layers, and a decreased modulus and increased elongation at break compared to specimens cast from the ink. The rheological properties of the support matrix are reported. The capabilities of the printer and support matrix are demonstrated by printing a variety of geometries from four UV and addition-cure silicone inks. Shapes printed with these inks range by nearly two orders of magnitude in stiffness and have failure strains between approximately 50 and 250%, suggesting a wide range of potential applications for this printing process.
Collapse
Affiliation(s)
- Taylor E Greenwood
- Department of Mechanical Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Serah E Hatch
- Department of Mechanical Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Mark B Colton
- Department of Mechanical Engineering, Brigham Young University, Provo, UT, 84602, USA
| | - Scott L Thomson
- Department of Mechanical Engineering, Brigham Young University, Provo, UT, 84602, USA
| |
Collapse
|
22
|
Bhattacharyya A, Janarthanan G, Noh I. Nano-biomaterials for designing functional bioinks towards complex tissue and organ regeneration in 3D bioprinting. ADDITIVE MANUFACTURING 2021; 37:101639. [DOI: 10.1016/j.addma.2020.101639] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
23
|
Chen S, Tan WS, Bin Juhari MA, Shi Q, Cheng XS, Chan WL, Song J. Freeform 3D printing of soft matters: recent advances in technology for biomedical engineering. Biomed Eng Lett 2020; 10:453-479. [PMID: 33194241 PMCID: PMC7655899 DOI: 10.1007/s13534-020-00171-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/04/2020] [Accepted: 09/16/2020] [Indexed: 12/20/2022] Open
Abstract
In the last decade, an emerging three-dimensional (3D) printing technique named freeform 3D printing has revolutionized the biomedical engineering field by allowing soft matters with or without cells to be printed and solidified with high precision regardless of their poor self-supportability. The key to this freeform 3D printing technology is the supporting matrices that hold the printed soft ink materials during omnidirectional writing and solidification. This approach not only overcomes structural design restrictions of conventional layer-by-layer printing but also helps to realize 3D printing of low-viscosity or slow-curing materials. This article focuses on the recent developments in freeform 3D printing of soft matters such as hydrogels, cells, and silicone elastomers, for biomedical engineering. Herein, we classify the reported freeform 3D printing systems into positive, negative, and functional based on the fabrication process, and discuss the rheological requirements of the supporting matrix in accordance with the rheological behavior of counterpart inks, aiming to guide development and evaluation of new freeform printing systems. We also provide a brief overview of various material systems used as supporting matrices for freeform 3D printing systems and explore the potential applications of freeform 3D printing systems in different areas of biomedical engineering.
Collapse
Affiliation(s)
- Shengyang Chen
- School of Chemical and Biological Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Wen See Tan
- School of Chemical and Biological Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Muhammad Aidil Bin Juhari
- School of Chemical and Biological Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Qian Shi
- School of Chemical and Biological Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Xue Shirley Cheng
- School of Chemical and Biological Engineering, Nanyang Technological University, Singapore, 639798 Singapore
- Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY UK
| | - Wai Lee Chan
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| | - Juha Song
- School of Chemical and Biological Engineering, Nanyang Technological University, Singapore, 639798 Singapore
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore, 639798 Singapore
| |
Collapse
|
24
|
Cui Y, Jin R, Zhou Y, Yu M, Ling Y, Wang LQ. Crystallization enhanced thermal-sensitive hydrogels of PCL-PEG-PCL triblock copolymer for 3D printing. Biomed Mater 2020; 16. [PMID: 33086194 DOI: 10.1088/1748-605x/abc38e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 10/21/2020] [Indexed: 12/26/2022]
Abstract
Temperature-sensitive hydrogels with mild gel-forming process, good biocompatibility and biodegradability have been widely studied as bioinks and biomaterial inks for 3D bioprinting. However, the hydrogels synthesized via copolymerization of aliphatic polyesters and polyethylene glycols have low mechanical strength and cannot meet the needs of 3D printing. In this paper, we propose a strategy of enhancing the strength of hydrogels by introducing crystallization between blocks to meet the requirements of 3D bioprinting inks. A series of polycaprolactone-polyethylene glycol-polycaprolactone (PCL-PEG-PCL) triblock polymers were prepared by ring-opening polymerization, of which the strong crystallinity of polycaprolactone blocks improved the printability and enhanced the mechanical properties of the ink. It was found that the resulted hydrogels were temperature-responsive, and the PCL blocks could form a crystalline phase in the state of the hydrogel, thereby significantly increasing the modulus of the hydrogel. Moreover, the mechanical strength of the hydrogel could be adjusted by changing the composition ratio of each block of the copolymer. The 3D printing results showed that the PCL-PEG-PCL hydrogel with crystallinity can not only be extruded and printed via temperature adjustment, but also the three-dimensional structure can be effectively maintained after 3D printing. The gels demonstrated good cell compatibility, and the cell survival rate was maintained at a high level.
Collapse
Affiliation(s)
- Yuecheng Cui
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University Department of Polymer Science and Engineering, Hangzhou, Zhejiang, CHINA
| | - Ronghua Jin
- Department of Burns & Wound Care Center, The Second Affiliated Hospital of Zhejiang University College of Medicine, Hangzhou, CHINA
| | - Yang Zhou
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University Department of Polymer Science and Engineering, Hangzhou, Zhejiang, CHINA
| | - Meirong Yu
- Clinical Research Center, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, CHINA
| | - Yun Ling
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University Department of Polymer Science and Engineering, Hangzhou, Zhejiang, CHINA
| | - Li-Qun Wang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Zhejiang University Department of Polymer Science and Engineering, Hangzhou, Zhejiang, CHINA
| |
Collapse
|
25
|
Wan X, Luo L, Liu Y, Leng J. Direct Ink Writing Based 4D Printing of Materials and Their Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001000. [PMID: 32832355 PMCID: PMC7435246 DOI: 10.1002/advs.202001000] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/30/2020] [Indexed: 05/19/2023]
Abstract
4D printing has attracted academic interest in the recent years because it endows static printed structures with dynamic properties with the change of time. The shapes, functionalities, or properties of the 4D printed objects could alter under various stimuli such as heat, light, electric, and magnetic field. Briefly, 4D printing is the development of 3D printing with the fourth dimension of time. Among the fabrication techniques that have been employed for 4D printing, the direct ink writing technique shows superiority due to its open source for various types of materials. Herein, the state-of-the-art achievements about the topic of 4D printing through direct ink writing are summarized. The types of materials, printing strategies, actuated methods, and their potential applications are discussed in detail. To date, most efforts have been devoted to shape-shifting materials, including shape memory polymers, hydrogels, and liquid crystal elastomers, showing great prospects in areas ranging from the biomedical field to robotics. Finally, the current challenges and outlook toward 4D printing based on direct ink writing are also pointed out to leave open a significant space for future innovation.
Collapse
Affiliation(s)
- Xue Wan
- Center for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Lan Luo
- Center for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| | - Yanju Liu
- Department of Astronautical Science and MechanicsHarbin Institute of TechnologyHarbin150001P. R. China
| | - Jinsong Leng
- Center for Composite Materials and StructuresHarbin Institute of TechnologyHarbin150080P. R. China
| |
Collapse
|
26
|
Tricomponent thermoresponsive polymers based on an amine-containing monomer with tuneable hydrophobicity: Effect of composition. Eur Polym J 2020. [DOI: 10.1016/j.eurpolymj.2020.109655] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Placone JK, Mahadik B, Fisher JP. Addressing present pitfalls in 3D printing for tissue engineering to enhance future potential. APL Bioeng 2020; 4:010901. [PMID: 32072121 PMCID: PMC7010521 DOI: 10.1063/1.5127860] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 12/08/2019] [Indexed: 12/28/2022] Open
Abstract
Additive manufacturing in tissue engineering has significantly advanced in acceptance and use to address complex problems. However, there are still limitations to the technologies used and potential challenges that need to be addressed by the community. In this manuscript, we describe how the field can be advanced not only through the development of new materials and techniques but also through the standardization of characterization, which in turn may impact the translation potential of the field as it matures. Furthermore, we discuss how education and outreach could be modified to ensure end-users have a better grasp on the benefits and limitations of 3D printing to aid in their career development.
Collapse
|
28
|
Abstract
Shear-thinning hydrogels that utilize thiol-Michael chain-extension and free radical polymerization have a tunable stretchability.
Collapse
Affiliation(s)
- Dylan Karis
- Department of Chemistry
- University of Washington
- Seattle
- USA
| | | |
Collapse
|
29
|
Affiliation(s)
- Robert S. Jordan
- Department of Materials Science and EngineeringUniversity of California, Merced Merced California 95343
| | - Yue Wang
- Department of Materials Science and EngineeringUniversity of California, Merced Merced California 95343
| |
Collapse
|
30
|
Millik SC, Dostie AM, Karis DG, Smith PT, McKenna M, Chan N, Curtis CD, Nance E, Theberge AB, Nelson A. 3D printed coaxial nozzles for the extrusion of hydrogel tubes toward modeling vascular endothelium. Biofabrication 2019; 11:045009. [PMID: 31220824 PMCID: PMC7350911 DOI: 10.1088/1758-5090/ab2b4d] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Engineered tubular constructs made from soft biomaterials are employed in a myriad of applications in biomedical science. Potential uses of these constructs range from vascular grafts to conduits for enabling perfusion of engineered tissues and organs. The fabrication of standalone tubes or complex perfusable constructs from biofunctional materials, including hydrogels, via rapid and readily accessible routes is desirable. Here we report a methodology in which customized coaxial nozzles are 3D printed using commercially available stereolithography (SLA) 3D printers. These nozzles can be used for the fabrication of hydrogel tubes via coextrusion of two shear-thinning hydrogels: an unmodified Pluronic® F-127 (F127) hydrogel and an F127-bisurethane methacrylate (F127-BUM) hydrogel. We demonstrate that different nozzle geometries can be modeled via computer-aided design and 3D printed in order to generate tubes or coaxial filaments with different cross-sectional geometries. We were able to fabricate tubes with luminal diameters or wall thicknesses as small as ∼150 μm. Finally, we show that these tubes can be functionalized with collagen I to enable cell adhesion, and human umbilical vein endothelial cells can be cultured on the luminal surfaces of these tubes to yield tubular endothelial monolayers. Our approach could enable the rapid fabrication of biofunctional hydrogel conduits which can ultimately be utilized for engineering in vitro models of tubular biological structures.
Collapse
Affiliation(s)
- S Cem Millik
- Department of Chemistry, University of Washington, Seattle, WA, United States of America
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Shafranek RT, Millik SC, Smith PT, Lee CU, Boydston AJ, Nelson A. Stimuli-responsive materials in additive manufacturing. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.03.002] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
32
|
Appuhamillage GA, Berry DR, Benjamin CE, Luzuriaga MA, Reagan JC, Gassensmith JJ, Smaldone RA. A biopolymer‐based 3D printable hydrogel for toxic metal adsorption from water. POLYM INT 2019. [DOI: 10.1002/pi.5787] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Gayan A Appuhamillage
- Department of Chemistry and Biochemistry University of Texas at Dallas Richardson Texas USA
| | - Danielle R Berry
- Department of Chemistry and Biochemistry University of Texas at Dallas Richardson Texas USA
| | - Candace E Benjamin
- Department of Chemistry and Biochemistry University of Texas at Dallas Richardson Texas USA
| | - Michael A Luzuriaga
- Department of Chemistry and Biochemistry University of Texas at Dallas Richardson Texas USA
| | - John C Reagan
- Department of Chemistry and Biochemistry University of Texas at Dallas Richardson Texas USA
| | - Jeremiah J Gassensmith
- Department of Chemistry and Biochemistry University of Texas at Dallas Richardson Texas USA
| | - Ronald A Smaldone
- Department of Chemistry and Biochemistry University of Texas at Dallas Richardson Texas USA
| |
Collapse
|
33
|
Fellin CR, Adelmund SM, Karis DG, Shafranek RT, Ono RJ, Martin CG, Johnston TG, DeForest CA, Nelson A. Tunable temperature‐ and shear‐responsive hydrogels based on poly(alkyl glycidyl ether)s. POLYM INT 2018. [DOI: 10.1002/pi.5716] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
| | - Steven M Adelmund
- Department of Chemical Engineering University of Washington Seattle WA USA
| | - Dylan G Karis
- Department of Chemistry University of Washington Seattle WA USA
| | | | - Robert J Ono
- Department of Chemistry University of Washington Seattle WA USA
| | | | | | - Cole A DeForest
- Department of Chemical Engineering University of Washington Seattle WA USA
| | - Alshakim Nelson
- Department of Chemistry University of Washington Seattle WA USA
| |
Collapse
|
34
|
Saha A, Johnston TG, Shafranek RT, Goodman CJ, Zalatan JG, Storti DW, Ganter MA, Nelson A. Additive Manufacturing of Catalytically Active Living Materials. ACS APPLIED MATERIALS & INTERFACES 2018; 10:13373-13380. [PMID: 29608267 DOI: 10.1021/acsami.8b02719] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Living materials, which are composites of living cells residing in a polymeric matrix, are designed to utilize the innate functionalities of the cells to address a broad range of applications such as fermentation and biosensing. Herein, we demonstrate the additive manufacturing of catalytically active living materials (AMCALM) for continuous fermentation. A multi-stimuli-responsive yeast-laden hydrogel ink, based on F127-dimethacrylate, was developed and printed using a direct-write 3D printer. The reversible stimuli-responsive behaviors of the polymer hydrogel inks to temperature and pressure are critical, as they enabled the facile incorporation of yeast cells and subsequent fabrication of 3D lattice constructs. Subsequent photo-cross-linking of the printed polymer hydrogel afforded a robust elastic material. These yeast-laden living materials were metabolically active in the fermentation of glucose into ethanol for 2 weeks in a continuous batch process without significant reduction in efficiency (∼90% yield of ethanol). This cell immobilization platform may potentially be applicable toward other genetically modified yeast strains to produce other high-value chemicals in a continuous biofermentation process.
Collapse
Affiliation(s)
- Abhijit Saha
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| | - Trevor G Johnston
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| | - Ryan T Shafranek
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| | - Cassandra J Goodman
- Department of Mechanical Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Jesse G Zalatan
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| | - Duane W Storti
- Department of Mechanical Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Mark A Ganter
- Department of Mechanical Engineering , University of Washington , Seattle , Washington 98195 , United States
| | - Alshakim Nelson
- Department of Chemistry , University of Washington , Box 351700, Seattle , Washington 98195 , United States
| |
Collapse
|