1
|
Yuan X, Yu H, Wang L, Uddin MA, Ouyang C. Nitroxide radical contrast agents for safe magnetic resonance imaging: progress, challenges, and perspectives. MATERIALS HORIZONS 2025; 12:1726-1756. [PMID: 39757847 DOI: 10.1039/d4mh00995a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Magnetic resonance imaging (MRI) is considered one of the most valuable diagnostic technologies in the 21st century. To enhance the image contrast of anatomical features, MRI contrast agents have been widely used in clinical MRI diagnosis, especially those based on gadolinium, manganese, and iron oxide. However, these metal-based MRI contrast agents show potential toxicity to patients, which urges researchers to develop novel MRI contrast agents that can replace metal-based MRI contrast agents. Metal-free nitroxide radical contrast agents (NRCAs) effectively overcome the shortcomings of metal-based contrast agents and also have many advantages, including good biocompatibility, prolonged systemic circulation time, and easily functionalized structures. Importantly, since NRCAs acquire MRI signals with standard tissue water 1H relaxation mechanisms, they have great potential to realize clinical translation among many metal-free MRI contrast agents. At present, NRCAs have been proposed as an effective substitute for metal-based MRI contrast agents. Herein, this review first briefly introduces NRCAs, including their composition, classification, mechanism of action, application performances and advantages. Then, this review highlights the progress of NRCAs, including small molecule-based NRCAs and polymer-based NRCAs. Finally, this review also discusses the challenges and future perspectives of NRCAs.
Collapse
Affiliation(s)
- Xunchun Yuan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
| | - Md Alim Uddin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
| | - Chenguang Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
| |
Collapse
|
2
|
Wang Y, Ma X, Zhang Y, Yang Y, Wang P, Chen T, Gao C, Dong C, Zheng J, Wu A. Insights into Non-Metallic Magnetic Resonance Imaging Contrast Agents: Advances and Perspectives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411875. [PMID: 39901535 DOI: 10.1002/smll.202411875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 01/15/2025] [Indexed: 02/05/2025]
Abstract
Traditional metal-based magnetic resonance imaging contrast agents (MRI CAs), such as gadolinium, iron, and manganese, have made significant advancements in diagnosing major diseases. However, their potential toxicity due to long-term accumulation in the brain and bones raises safety concerns. In contrast, non-metallic MRI CAs, which can produce a nuclear magnetic resonance effect, show great promise in MRI applications due to their adaptable structure and function, good biocompatibility, and excellent biodegradability. Nevertheless, the development of non-metallic MRI CAs is slow due to the inherent low magnetic sensitivity of organic compounds, their rapid metabolism, and susceptibility to reduction. Designing effective multifunctional organic compounds for high-sensitivity MRI remains a challenge. In this discussion, the mechanisms of various non-metallic MRI CAs are explored and an overview of their current status, highlighting both their advantages and potential drawbacks, is provided. The key strategies for creating high-performance MRI CAs are summarized and how different synthetic approaches affect the performance of non-metallic MRI Cas is evaluated. Last, the challenges and future prospects for these promising non-metallic MRI CAs are addressed.
Collapse
Affiliation(s)
- Yanan Wang
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Xuehua Ma
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunhao Zhang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Yanqiang Yang
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Pengyu Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Tianxiang Chen
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Changyong Gao
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Chen Dong
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| | - Jianjun Zheng
- Department of Radiology, Ningbo No.2 Hospital, Ningbo, 3l5010, China
| | - Aiguo Wu
- Cixi Biomedical Research Institute, Wenzhou Medical University, Cixi, 315300, China
- Laboratory of Advanced Theranostic Materials and Technology, Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, Chinese Academy of Sciences (CAS) Key Laboratory of Magnetic Materials and Devices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo, 315201, China
| |
Collapse
|
3
|
Luo T, Wang B, Chen R, Qi Q, Wu R, Xie S, Chen H, Han J, Wu D, Cao S. Research progress of nitroxide radical-based MRI contrast agents: from structure design to application. J Mater Chem B 2025; 13:372-398. [PMID: 39565110 DOI: 10.1039/d4tb02272f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2024]
Abstract
Magnetic resonance imaging (MRI) remains a cornerstone of diagnostic imaging, offering unparalleled insights into anatomical structures and pathological conditions. Gadolinium-based contrast agents have long been the standard in MRI enhancement, yet concerns over nephrogenic systemic fibrosis have spurred interest in metal-free alternatives. Nitroxide radical-based MRI contrast agents (NO-CAs) have emerged as promising candidates, leveraging their biocompatibility and imaging capabilities. This review summaries the latest advancements in NO-CAs, focusing on synthesis methodologies, influencing effects of structures of NO-CAs on relaxation efficiency and their applications across various clinical contexts. Comprehensive discussions encompass small molecular, polymeric, and nano-sized NO-CAs, detailing their unique properties and potential clinical utilities. Despite challenges, NO-CAs represent a dynamic area of research poised to revolutionize MRI diagnostics. This review serves as a critical resource for researchers and practitioners seeking to navigate the evolving landscape of MRI contrast agents.
Collapse
Affiliation(s)
- Tao Luo
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Bo Wang
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Runxin Chen
- Shenzhen University General Hospital, Shenzhen, China
| | - Qi Qi
- Shenzhen University General Hospital, Shenzhen, China
| | - Ruodai Wu
- Shenzhen University General Hospital, Shenzhen, China
| | - Shunzi Xie
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Hanbing Chen
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Jialei Han
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
| | - Dalin Wu
- School of Biomedical Engineering, Sun Yat-Sen University of Shenzhen Campus, Shenzhen, China.
- Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Sun Yat-Sen University, Shenzhen, China
| | | |
Collapse
|
4
|
Duan Z, Han J, Liu Y, Zhao X, Wang B, Cao S, Wu D. A polymeric 1H/ 19F dual-modal MRI contrast agent with a snowman-like Janus nanostructure. J Mater Chem B 2024; 12:7090-7102. [PMID: 38984662 DOI: 10.1039/d4tb00923a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
Magnetic resonance imaging (MRI) has emerged as a pivotal tool in contemporary medical diagnostics, offering non-invasive and high-resolution visualization of internal structures. Contrast agents are essential for enhancing MRI resolution, accurate lesion detection, and early pathology identification. While gadolinium-based contrast agents are widely used in clinics, safety concerns have prompted exploration of metal-free alternatives, including fluorine and nitroxide radical-based MRI contrast agents. Fluorine-containing compounds exhibit excellent MRI capabilities, with 19F MRI providing enhanced resolution and quantitative assessment. Nitroxide radicals, such as PROXYL and TEMPO, offer paramagnetic properties for MRI contrast. Despite their versatility, nitroxide radicals suffer from lower relaxivity values (r1) compared to gadolinium. Dual-modal imaging, combining 1H and 19F MRI, has gained prominence for its comprehensive insights into biological processes and disease states. However, existing dual-modal agents predominantly utilize gadolinium-organic ligands without incorporating nitroxide radicals. Here, we introduce a novel dual-modal MRI contrast agent (J-CA) featuring a Janus asymmetric nanostructure synthesized via seeded emulsion polymerization and post-modification. J-CA demonstrates excellent in vitro and in vivo performance in both 19F and 1H MRI, with a T2 relaxation time of 5 ms and an r1 value of 0.31 mM-1 s-1, ensuring dual-modal imaging capability. Moreover, J-CA exhibits superior biocompatibility and organ targeting, making it a promising candidate for precise lesion imaging and disease diagnosis. This work introduces a new avenue for metal-free dual-modal MRI, addressing safety concerns associated with traditional contrast agents.
Collapse
Affiliation(s)
- Ziwei Duan
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, China.
| | - Jialei Han
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, China.
| | - Yadong Liu
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, China.
| | - Xinyu Zhao
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, China.
| | - Bo Wang
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, China.
| | | | - Dalin Wu
- Sun Yat-Sen University of Shenzhen Campus, School of Biomedical Engineering, Shenzhen, China.
- Sun Yat-sen University, Key Laboratory of Sensing Technology and Biomedical Instrument of Guangdong Province, Shenzhen, China
| |
Collapse
|
5
|
Liu M, Salinas G, Yu J, Cornet A, Li H, Kuhn A, Sojic N. Endogenous and exogenous wireless multimodal light-emitting chemical devices. Chem Sci 2023; 14:10664-10670. [PMID: 37829015 PMCID: PMC10566513 DOI: 10.1039/d3sc03678b] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023] Open
Abstract
Multimodal imaging is a powerful and versatile approach that integrates and correlates multiple optical modalities within a single device. This concept has gained considerable attention due to its potential applications ranging from sensing to medicine. Herein, we develop several wireless multimodal light-emitting chemical systems by coupling two light sources based on different physical principles: electrochemiluminescence (ECL) occurring at the electrode interface and a light-emitting diode (LED) switched on by an electrochemically triggered electron flow. Endogenous (thermodynamically spontaneous redox process) and exogenous (requiring an external power source) bipolar electrochemistry acts as a driving force to trigger both light emissions at different wavelengths. The results presented here interconnect optical imaging and electrochemical reactions, providing a novel and so far unexplored alternative to design autonomous hybrid systems with multimodal and multicolor optical readouts for complex bio-chemical systems.
Collapse
Affiliation(s)
- Miaoxia Liu
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Gerardo Salinas
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Jing Yu
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Antoine Cornet
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Haidong Li
- College of Chemistry and Chemical Engineering, Yangzhou University 225002 Yangzhou China
| | - Alexander Kuhn
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| | - Neso Sojic
- Univ. Bordeaux, Bordeaux INP, ISM, UMR 5255 CNRS, Site ENSMAC 33607 Pessac France
| |
Collapse
|
6
|
Zhang S, Lloveras V, Wu Y, Tolosa J, García-Martínez JC, Vidal-Gancedo J. Fluorescent and Magnetic Radical Dendrimers as Potential Bimodal Imaging Probes. Pharmaceutics 2023; 15:1776. [PMID: 37376224 DOI: 10.3390/pharmaceutics15061776] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/29/2023] Open
Abstract
Dual or multimodal imaging probes have emerged as powerful tools that improve detection sensitivity and accuracy in disease diagnosis by imaging techniques. Two imaging techniques that are complementary and do not use ionizing radiation are magnetic resonance imaging (MRI) and optical fluorescence imaging (OFI). Herein, we prepared metal-free organic species based on dendrimers with magnetic and fluorescent properties as proof-of-concept of bimodal probes for potential MRI and OFI applications. We used oligo(styryl)benzene (OSB) dendrimers core that are fluorescent on their own, and TEMPO organic radicals anchored on their surfaces, as the magnetic component. In this way, we synthesized six radical dendrimers and characterized them by FT-IR, 1H NMR, UV-Vis, MALDI-TOF, SEC, EPR, fluorimetry, and in vitro MRI. Importantly, it was demonstrated that the new dendrimers present two properties: on one hand, they are paramagnetic and show the ability to generate contrast by MRI in vitro, and, on the other hand, they also show fluoresce emission. This is a remarkable result since it is one of the very few cases of macromolecules with bimodal magnetic and fluorescent properties using organic radicals as the magnetic probe.
Collapse
Affiliation(s)
- Songbai Zhang
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Vega Lloveras
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Campus UAB, 08193 Bellaterra, Spain
| | - Yufei Wu
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
| | - Juan Tolosa
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia, Universidad de Castilla-La Mancha, C/José María Sánchez Ibáñez s/n, 02008 Albacete, Spain
- Regional Center for Biomedical Research (CRIB), Universidad de Castilla-La Mancha, C/Almansa 13, 02008 Albacete, Spain
| | - Joaquín C García-Martínez
- Departamento de Química Inorgánica, Orgánica y Bioquímica, Facultad de Farmacia, Universidad de Castilla-La Mancha, C/José María Sánchez Ibáñez s/n, 02008 Albacete, Spain
- Regional Center for Biomedical Research (CRIB), Universidad de Castilla-La Mancha, C/Almansa 13, 02008 Albacete, Spain
| | - José Vidal-Gancedo
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Campus UAB, 08193 Bellaterra, Spain
| |
Collapse
|
7
|
Li Q, Xue X, Wang J, Ye Y, Li J, Ren Y, Wang D, Liu B, Li Y, Zhao L, Xu Q. Tumor-Targeting NIRF/MR Dual-Modal Molecular Imaging Probe for Surgery Navigation. Anal Chem 2022; 94:11255-11263. [PMID: 35921653 DOI: 10.1021/acs.analchem.2c01790] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Multimodality imaging recognized as a promising monitoring strategy can serve the needs of accurate diagnosis and treatment of cancer by providing molecular and anatomic information about tumor sites. However, the probes based on multiple imaging modalities for surgery navigation remain limited due to poor biocompatibility and tumor targeting specificity. Herein, we present a small-molecule near-infrared fluorescence/magnetic resonance (NIRF/MR) imaging probe, Gd-NMC-3, covalently coupled with DCDSTCY and Gd-DOTA via butane diamine, for precise detection and intraoperative visualization. The in vitro and in vivo studies demonstrated that Gd-NMC-3 could be effectively accumulated in tumor sites as a bimodal imaging molecule exhibiting significant fluorescence accumulation and reasonable relaxation property in tumors with low cytotoxicity and good biocompatibility. Furthermore, Gd-NMC-3 was successfully applied to provide real-time visual navigation in LM3 orthotopic and subcutaneous tumor models to guide the resection of tumors. Importantly, no more fluorescence was observed in mice after operation, implying the total removal of tumor tissues. In conclusion, Gd-NMC-3 has great potential to be applied in the clinic based on its high resolution and sensitivity in tumor imaging.
Collapse
Affiliation(s)
- Qiyi Li
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Xin Xue
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Jintao Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Yuting Ye
- Pathology and PDX Efficacy Center, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Jia Li
- Pathology and PDX Efficacy Center, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Yanwei Ren
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Dandan Wang
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Bing Liu
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Yuyan Li
- Jiangsu Key Laboratory of Drug Design & Optimization, Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Li Zhao
- School of Basic Medicine and Clinical Pharmacology, China Pharmaceutical University, Nanjing, Jiangsu 211100, China
| | - Qingxiang Xu
- Department of Hepatobiliary Surgery, Nanjing Drum Tower Hospital, Affiliated to Medical College of Nanjing University, Nanjing, Jiangsu 210008, China
| |
Collapse
|
8
|
Wang X, Li L, Jiang H, Zhangsun H, Wang Q, Sun X, Wang L. Highly selective and sensitive fluorescence detection of tetracyclines based on novel tungsten oxide quantum dots. Food Chem 2021; 374:131774. [PMID: 34896945 DOI: 10.1016/j.foodchem.2021.131774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 11/10/2021] [Accepted: 12/01/2021] [Indexed: 12/11/2022]
Abstract
Tetracyclines (TCs) residues in animal products have attracted extensive concern due to their potential toxic to human health. Accordingly, it is urgent to develop an efficient method to determine TCs for providing consumers with risk pre-warning. Herein, a novel tungsten oxide quantum dots (WxOy QDs) fluorescence probe for tetracycline (TET) detection was constructed through ethanol-thermal method, which exhibited intense blue fluorescence under 365 nm UV light. Interestingly, blue-emitting WxOy QDs could be quenched obviously after the addition of TET, which may be attributed to the synergism of inner filter effect (IFE), fluorescence resonance energy transfer (FRET) and photo-induced electron transfer (PET). Thereby, the fluorescence method was established for TET detection based on WxOy QDs. Additionally, the presented method was demonstrated by monitoring TET in milk and milk powder with satisfactory recoveries. More importantly, this work offered good demonstration for the detection of food hazard factors.
Collapse
Affiliation(s)
- Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Longwen Li
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Hong Jiang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Hui Zhangsun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Qinzhi Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Xinyu Sun
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Li Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, Shaanxi, PR China.
| |
Collapse
|
9
|
Fan X, Ke L, Cheng H, Chen H, Li Z, Ye E, Loh XJ, Wu YL, Liu G, Li Z. Enhanced drug retention by anthracene crosslinked nanocomposites for bimodal imaging-guided phototherapy. NANOSCALE 2021; 13:14713-14722. [PMID: 34473183 DOI: 10.1039/d1nr04171a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Efficient drug delivery, multifunctional combined therapy and real-time diagnosis are the main hallmarks in the exploitation of precision nanomedicine. Herein, an anthracene-functionalized micelle containing a magnetic resonance imaging (MRI) contrast agent, upconversion nanoparticles (UCNPs) and the photosensitizer IR780 is designed to achieve sustained drug release and enhanced photothermal and photodynamic therapy. The polymer-coated hybrid micelle was achieved by crosslinking anthracene-dimer with UV light (λ > 300 nm), which is converted from near-infrared (NIR) irradiation upon UCNPs. Besides, the water-insoluble photosensitizer IR780 is introduced into the system to achieve efficient drug delivery and photothermal and photodynamic synergistic therapy. As a consequence of NIR-induced anthracene-dimer formation, the cross-linked nanocomposite shows sustained drug release, and the enhanced retention effect of IR780 could increase the photothermal conversion efficiency. Importantly, the incorporation of 2,2,6,6-tetramethyl-piperidineoxyl (TEMPO) as a nitroxide MRI contrast agent presents the potential for real-time diagnosis via nanotheranostics, and the fluorescence imaging of IR780 is applied to monitor drug distribution and metabolism. This strategy of sustained drug delivery by anthracene-dimer formation through the better penetration depth of NIR-II fluorescence provides an executable platform to achieve enhanced phototherapy in biomedical applications.
Collapse
Affiliation(s)
- Xiaoshan Fan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Lingjie Ke
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Hongwei Cheng
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Hu Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Zhiguo Li
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| | - Xian-Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen 361102, China.
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
- Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore
| |
Collapse
|
10
|
Guo S, Wang X, Li Z, Pan D, Dai Y, Ye Y, Tian X, Gu Z, Gong Q, Zhang H, Luo K. A nitroxides-based macromolecular MRI contrast agent with an extraordinary longitudinal relaxivity for tumor imaging via clinical T1WI SE sequence. J Nanobiotechnology 2021; 19:244. [PMID: 34391417 PMCID: PMC8364710 DOI: 10.1186/s12951-021-00990-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/05/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Macromoleculization of nitroxides has been an effective strategy to improve low relaxivities and poor in vivo stability, however, nitroxides-based metal-free magnetic resonance imaging (MRI) macromolecular contrast agents (mCAs) are still under-performed. These mCAs do not possess a high nitroxides content sufficient for a cumulative effect. Amphiphilic nanostructures in these mCAs are not stable enough for highly efficient protection of nitroxides and do not have adequate molecular flexibility for full contact of the paramagnetic center with the peripheral water molecules. In addition, these mCAs still raise the concerns over biocompatibility and biodegradability due to the presence of macromolecules in these mCAs. RESULTS Herein, a water-soluble biodegradable nitroxides-based mCA (Linear pDHPMA-mPEG-Ppa-PROXYL) was prepared via covalent conjugation of a nitroxides (2,2,5,5-tetramethyl-1-pyrrolidinyl-N-oxyl, PROXYL) onto an enzyme-sensitive linear di-block poly[N-(1, 3-dihydroxypropyl) methacrylamide] (pDHPMA). A high content of PROXYL up to 0.111 mmol/g in Linear pDHPMA-mPEG-Ppa-PROXYL was achieved and a stable nano-sized self-assembled aggregate in an aqueous environment (ca. 23 nm) was formed. Its longitudinal relaxivity (r1 = 0.93 mM- 1 s- 1) was the highest compared to reported nitroxides-based mCAs. The blood retention time of PROXYL from the prepared mCA in vivo was up to ca. 8 h and great accumulation of the mCA was realized in the tumor site due to its passive targeting ability to tumors. Thus, Linear pDHPMA-mPEG-Ppa-PROXYL could provide a clearly detectable MRI enhancement at the tumor site of mice via the T1WI SE sequence conventionally used in clinical Gd3+-based contrast agents, although it cannot be compared with DTPA-Gd in the longitudinal relaxivity and the continuous enhancement time at the tumor site of mice. Additionally, it was demonstrated to have great biosafety, hemocompatibility and biocompatibility. CONCLUSIONS Therefore, Linear pDHPMA-mPEG-Ppa-PROXYL could be a potential candidate as a substitute of metal-based MRI CAs for clinical application.
Collapse
Affiliation(s)
- Shiwei Guo
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, 610041, Chengdu, China
- Department of Pharmacy of the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, 646000, People's Republic of China
| | - Xiaoming Wang
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, 610041, Chengdu, China
- Department of Radiology, Chongqing General Hospital, University of Chinese Academy of Sciences (UCAS), No.104 Pipashan Main Street, Yuzhong District, Chongqing, 400014, China
| | - Zhiqian Li
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, 610041, Chengdu, China
| | - Dayi Pan
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, 610041, Chengdu, China
| | - Yan Dai
- Department of Pharmacy of the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Yun Ye
- Department of Pharmacy of the Affiliated Hospital of Southwest Medical University, Southwest Medical University, Luzhou, 646000, Sichuan, People's Republic of China
| | - Xiaohe Tian
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, 610041, Chengdu, China
| | - Zhongwei Gu
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, 610041, Chengdu, China
| | - Qiyong Gong
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, 610041, Chengdu, China
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Kui Luo
- Laboratory of Stem Cell Biology, and Huaxi MR Research Center (HMRRC), Department of Radiology, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, 610041, Chengdu, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province, Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China.
| |
Collapse
|
11
|
Hu X, Chen Z, Jin AJ, Yang Z, Gan D, Wu A, Ao H, Huang W, Fan Q. Rational Design of All-Organic Nanoplatform for Highly Efficient MR/NIR-II Imaging-Guided Cancer Phototheranostics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2007566. [PMID: 33666345 PMCID: PMC10439760 DOI: 10.1002/smll.202007566] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/19/2021] [Indexed: 06/12/2023]
Abstract
Organic theranostic nanomedicine has precision multimodel imaging capability and concurrent therapeutics under noninvasive imaging guidance. However, the rational design of desirable multifunctional organic theranostics for cancer remains challenging. Rational engineering of organic semiconducting nanomaterials has revealed great potential for cancer theranostics largely owing to their intrinsic diversified biophotonics, easy fabrication of multimodel imaging platform, and desirable biocompatibility. Herein, a novel all-organic nanotheranostic platform (TPATQ-PNP NPs) is developed by exploiting the self-assembly of a semiconducting small molecule (TPATQ) and a new synthetic high-density nitroxide radical-based amphiphilic polymer (PNP). The nitroxide radicals act as metal-free magnetic resonance imaging agent through shortened longitudinal relaxation times, and the semiconducting molecules enable ultralow background second near-infrared (NIR-II, 1000-1700 nm) fluorescence imaging. The as-prepared TPATQ-PNP NPs can light up whole blood vessels of mice and show precision tumor-locating ability with synergistic (MR/NIR-II) imaging modalities. The semiconducting molecules also undergo highly effective photothermal conversion in the NIR region for cancer photothermal therapy guided by complementary tumor diagnosis. The designed multifunctional organic semiconducting self-assembly provides new insights into the development of a new platform for cancer theranostics.
Collapse
Affiliation(s)
- Xiaoming Hu
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Zejing Chen
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Albert J Jin
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Zhen Yang
- Laboratory of Cellular Imaging and Macromolecular Biophysics, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Deqiang Gan
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
| | - Aifang Wu
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
| | - Haiyong Ao
- Jiangxi Key Laboratory of Nanobiomaterials, Institute of Advanced Materials, East China Jiaotong University, Nanchang, 330013, China
| | - Wei Huang
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | - Quli Fan
- Key Laboratory for Organic Electronics and Information Displays (KLOEID) and Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| |
Collapse
|
12
|
Wang XQ, Wang W, Peng M, Zhang XZ. Free radicals for cancer theranostics. Biomaterials 2020; 266:120474. [PMID: 33125969 DOI: 10.1016/j.biomaterials.2020.120474] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 09/20/2020] [Accepted: 10/18/2020] [Indexed: 01/06/2023]
Abstract
Free radicals were generally regarded as highly reactive, transient and harmful species. In fact, some of the free radicals can also be inactive, long-lived and beneficial for our health. These properties of free radicals provide future possibilities for their application in various fields. Owning to their open-shell electronic structure, free radicals exhibit unique advantages in biomedical applications, such as high reactivity, photoacoustic and photothermal conversion ability, molecular magnetic. In this review, recent progress on free radicals and their applications in cancer theranostics are presented. Typical materials that exhibit controlled generation of free radicals and their applications for photodynamic therapy (PDT), chemodynamic therapy (CDT), sonodynamic therapy (SDT), gas therapy, hypoxic cancer treatment, photothermal therapy (PTT), photoacoustic imaging (PAI) and magnetic resonance imaging (MRI) are summarized and discussed.
Collapse
Affiliation(s)
- Xiao-Qiang Wang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China; The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Wenjing Wang
- The State Key Laboratory of Refractories and Metallurgy, School of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan, 430081, PR China
| | - Mengyun Peng
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China; School of Pharmacy, Zhejiang Chinese Medical University, Hangzhou, 310000, PR China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan, 430072, PR China.
| |
Collapse
|
13
|
de Sousa JA, Bejarano F, Gutiérrez D, Leroux YR, Nowik-Boltyk EM, Junghoefer T, Giangrisostomi E, Ovsyannikov R, Casu MB, Veciana J, Mas-Torrent M, Fabre B, Rovira C, Crivillers N. Exploiting the versatile alkyne-based chemistry for expanding the applications of a stable triphenylmethyl organic radical on surfaces. Chem Sci 2019; 11:516-524. [PMID: 32190271 PMCID: PMC7067255 DOI: 10.1039/c9sc04499j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 11/19/2019] [Indexed: 12/11/2022] Open
Abstract
The incorporation of terminal alkynes into the chemical structure of persistent organic perchlorotriphenylmethyl (PTM) radicals provides new chemical tools to expand their potential applications. In this work, this is demonstrated by the chemical functionalization of two types of substrates, hydrogenated SiO2-free silicon (Si-H) and gold, and, by exploiting the click chemistry, scarcely used with organic radicals, to synthesise multifunctional systems. On one hand, the one-step functionalization of Si-H allows a light-triggered capacitance switch to be successfully achieved under electrochemical conditions. On the other hand, the click reaction between the alkyne-terminated PTM radical and a ferrocene azide derivative, used here as a model azide system, leads to a multistate electrochemical switch. The successful post-surface modification makes the self-assembled monolayers reported here an appealing platform to synthesise multifunctional systems grafted on surfaces.
Collapse
Affiliation(s)
- J Alejandro de Sousa
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) , Campus de la UAB , 08193 Bellaterra , Spain . .,Laboratorio de Electroquímica , Departamento de Química , Facultad de Ciencias , Universidad de los Andes , 5101 Mérida , Venezuela
| | - Francesc Bejarano
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) , Campus de la UAB , 08193 Bellaterra , Spain .
| | - Diego Gutiérrez
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) , Campus de la UAB , 08193 Bellaterra , Spain .
| | - Yann R Leroux
- Univ Rennes , CNRS , ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226 , F-35000 Rennes , France
| | | | - Tobias Junghoefer
- Institute of Physical and Theoretical Chemistry , University of Tübingen , 72076 Tübingen , Germany
| | - Erika Giangrisostomi
- Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) , Albert-Einstein-Str 15 , 12489 Berlin , Germany
| | - Ruslan Ovsyannikov
- Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) , Albert-Einstein-Str 15 , 12489 Berlin , Germany
| | - Maria Benedetta Casu
- Institute of Physical and Theoretical Chemistry , University of Tübingen , 72076 Tübingen , Germany
| | - Jaume Veciana
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) , Campus de la UAB , 08193 Bellaterra , Spain .
| | - Marta Mas-Torrent
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) , Campus de la UAB , 08193 Bellaterra , Spain .
| | - Bruno Fabre
- Univ Rennes , CNRS , ISCR (Institut des Sciences Chimiques de Rennes)-UMR 6226 , F-35000 Rennes , France
| | - Concepció Rovira
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) , Campus de la UAB , 08193 Bellaterra , Spain .
| | - Núria Crivillers
- Institut de Ciència de Materials de Barcelona (ICMAB-CSIC) , Networking Research Center on Bioengineering Biomaterials and Nanomedicine (CIBER-BBN) , Campus de la UAB , 08193 Bellaterra , Spain .
| |
Collapse
|
14
|
Rubio-Camacho M, Alacid Y, Mallavia R, Martínez-Tomé MJ, Mateo CR. Polyfluorene-Based Multicolor Fluorescent Nanoparticles Activated by Temperature for Bioimaging and Drug Delivery. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1485. [PMID: 31635330 PMCID: PMC6835524 DOI: 10.3390/nano9101485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 12/17/2022]
Abstract
Multifunctional nanoparticles have been attracting growing attention in recent years because of their capability to integrate materials with different features in one entity, which leads them to be considered as the next generation of nanomedicine. In this work, we have taken advantage of the interesting properties of conjugated polyelectrolytes to develop multicolor fluorescent nanoparticles with integrating imaging and therapeutic functionalities. With this end, thermosensitive liposomes were coated with three recently synthesized polyfluorenes: copoly-((9,9-bis(6'-N,N,N-trimethylammonium)hexyl)-2,7-(fluorene)-alt-1,4-(phenylene)) bromide (HTMA-PFP), copoly-((9,9-bis(6'-N,N,N-trimethylammonium)hexyl)-2,7-(fluorene)-alt-4,7-(2- (phenyl)benzo(d) (1,2,3) triazole)) bromide (HTMA-PFBT) and copoly-((9,9-bis(6'-N,N,N- trimethylammonium)hexyl)-2,7-(fluorene)-alt-1,4-(naphtho(2,3c)-1,2,5-thiadiazole)) bromide (HTMA-PFNT), in order to obtain blue, green and red fluorescent drug carriers, respectively. The stability, size and morphology of the nanoparticles, as well as their thermotropic behavior and photophysical properties, have been characterized by Dynamic Light Scattering (DLS), Zeta Potential, transmission electron microscope (TEM) analysis and fluorescence spectroscopy. In addition, the suitability of the nanostructures to carry and release their contents when triggered by hyperthermia has been explored by using carboxyfluorescein as a hydrophilic drug model. Finally, preliminary experiments with mammalian cells demonstrate the capability of the nanoparticles to mark and visualize cells with different colors, evidencing their potential use for imaging and therapeutic applications.
Collapse
Affiliation(s)
- Marta Rubio-Camacho
- Instituto de Investigación Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), 03202 Elche, Alicante, Spain.
| | - Yolanda Alacid
- Instituto de Investigación Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), 03202 Elche, Alicante, Spain.
| | - Ricardo Mallavia
- Instituto de Investigación Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), 03202 Elche, Alicante, Spain.
| | - María José Martínez-Tomé
- Instituto de Investigación Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), 03202 Elche, Alicante, Spain.
| | - C Reyes Mateo
- Instituto de Investigación Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE), Universidad Miguel Hernández de Elche (UMH), 03202 Elche, Alicante, Spain.
| |
Collapse
|
15
|
Feng Y, Chen H, Shao B, Zhao S, Wang Z, You H. Renal-Clearable Peptide-Functionalized Ba 2GdF 7 Nanoparticles for Positive Tumor-Targeting Dual-Mode Bioimaging. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25511-25518. [PMID: 29989405 DOI: 10.1021/acsami.8b07129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Considering the dilemma between the effective tumor targeting and the avoidance of potential toxicity, it is desired to design nanoprobes with positive tumor-targeting and good renal clearance ability. In the present work, we developed epidermal growth factor receptor (EGFR)-targeted peptide-functionalized Ba2GdF7 nanoparticles (termed as pEGFR-targeted Ba2GdF7 NPs) for positive tumor-targeting magnetic resonance imaging and X-ray computed tomography (MRI/CT) dual-mode bioimaging. The positive tumor-targeting ability of pEGFR-targeted Ba2GdF7 NPs is achieved by conjugation of EGFR-targeted peptides on the 6.5 nm Ba2GdF7 NP surface through the formation of Gd-phosphonate coordinate bonds. The pEGFR-targeted Ba2GdF7 NPs display desirable cytocompatibility in the test concentration range and high binding affinity with lung cancer cells. In vivo MR and CT imaging results demonstrate that the pEGFR-targeted Ba2GdF7 NPs are able to be accumulated and detained within an engrafted A549 lung carcinoma, which enhances both MR and CT contrast in the tumor tissue. Systematic in vivo experimental results further demonstrate that the pEGFR-targeted Ba2GdF7 NPs have favorable in vivo renal clearance kinetics as well as reasonable in vivo biocompatibility.
Collapse
Affiliation(s)
- Yang Feng
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | - Hongda Chen
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | | | - Shuang Zhao
- University of Science and Technology of China , Hefei 230026 , P. R. China
| | | | | |
Collapse
|