1
|
Gao X, Zhang F, Zhang Z, Wang Z, Song Y, Cheng G, Ding J. Ultrahigh Efficient Collection of Underwater Bubbles by High Adsorption and Transport, Coalescence, and Collection Integrating a Conical Arrayed Surface. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54119-54128. [PMID: 37942537 DOI: 10.1021/acsami.3c12306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
The capture and utilization of underwater fuel bubbles such as methane can alleviate the greenhouse effect, solve the global energy crisis, and possibly improve the endurance of underwater equipment. However, previous research routinely failed to achieve the integrated process of continuous adsorption, transportation, and collection of bubbles limited by the trade-off between the bubble adhesion and transport efficiency dependent on interfacial pinning, tremendously hindering the direct capture and utilization of underwater fuel bubbles. To break through this bottleneck, a magnetic-guided conical arrayed surface (CAS) associated with a laser etching technique is fabricated conveniently to realize superhydrophobicity. The bubbles on laser-etched CAS have higher adhesiveness and low-pinning transport compared with those on the nonlaser-etched surface. Intriguingly, the gas film adsorbed within the CAS seems to be a gas channel, which accelerates the bubble coalescence and fast spreading to eventually realize the integration of transport, coalescence, and collection. The dynamic behaviors of bubble adsorption, transportation, and coalescence on CAS are probed to reveal the mechanism of the gas film-generating process within conical arrays. Furthermore, a novel underwater bubble-collecting device with multiangled CAS is proposed to achieve multidirectional capture, highly efficient transportation, and collection of rising bubbles. The results advance our understanding of dynamic behaviors of bubbles at solid-liquid interfaces and facilitate design and manufacturing of an apparatus for bubble collection.
Collapse
Affiliation(s)
- Xiang Gao
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Fujian Zhang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Zhongqiang Zhang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
- State Key Laboratory of Structural Analysis for Industrial Equipment, Department of Engineering Mechanics, Faculty of Vehicle Engineering, and Mechanics, Dalian University of Technology, Dalian 116024, P.R. China
| | - Ziyang Wang
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Yunyun Song
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Guanggui Cheng
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
| | - Jianning Ding
- School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, P.R. China
- School of Mechanical Engineering, Yangzhou University, Yangzhou 225127, P.R. China
| |
Collapse
|
2
|
Lin F, Wo K, Fan X, Wang W, Zou J. Directional Transport of Underwater Bubbles on Solid Substrates: Principles and Applications. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10325-10340. [PMID: 36802468 DOI: 10.1021/acsami.2c21466] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The manipulation of underwater bubbles on substrates has received extensive research interest from both the scientific community and industry, including the chemical industry, machinery, biology, medicine, and other fields. Recent advances in "smart" substrates have enabled the bubbles to be transported on demand. Herein, the progress in the directional transport of underwater bubbles on various types of substrates is summarized, including planes, wires, and cones. The transport mechanism can be classified as buoyancy-driven, Laplace-pressure-difference-driven, and external-force-driven according to the driven force of the bubble. Moreover, the wide applications of directional bubble transport are reported, ranging from gas collection, microbubble reaction, bubble detection and classification, bubble switch, and bubble microrobots. Lastly, the advantages and challenges of various directional bubble transportation methods are discussed, and the current challenges and future prospects in this field are also discussed. This Review outlines the fundamental mechanisms of underwater bubble transportation on solid substrates and helps to understand the methods of optimizing bubble transportation performances.
Collapse
Affiliation(s)
- Fangye Lin
- Ningbo Research Institute, Zhejiang University, Ningbo 315048, China
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
- MedicalSystem Biotechnology Co., Ltd., Ningbo 315104, China
| | - Keyu Wo
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Xujun Fan
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| | - Wei Wang
- Zhejiang University City College, Hangzhou 310015, China
| | - Jun Zou
- State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
3
|
Adjustable Underwater Gas Transportation Using Bioinspired Superhydrophobic Elastic String. COATINGS 2022. [DOI: 10.3390/coatings12050638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Dynamic and precise manipulation of the gas flow in a liquid environment through a facile and reliable approach is of great importance for directional gas transportation and multiphase chemical reactions. In this research, elastic superhydrophobic strings were prepared by a one-step, non-fluorinated dip-coating strategy. The surface-treatment string demonstrated a good superaerophilicity underwater. By simply elongating or shortening superaerophilic strings, the gas flux underwater was precisely manipulated in a gas-siphon underwater experiment. The result reveals that a large strain of the treated string induces a low gas flow, and a rope woven with more strings results in a larger range of gas flow regulation. The elastic superhydrophobic/superaerophilic string was utilized to adjust the reaction time of carbon dioxide and sodium hydroxide aqueous solution successfully. Furthermore, in a wet oxidation experiment for treating simulated flue gas composed of nitric oxide (NO), nitrogen and oxygen, superhydrophobic and stretched strings with a strain of 200% demonstrated a 7.9% higher NO removal efficiency than that of untreated strings. Interestingly, NO removal efficiency can be regulated by mechanical stretching of gas-conducting strings. We believe that this facile and low-cost approach provides a valid method of on-demand manipulation of the gas flow for underwater gas transportation.
Collapse
|
4
|
He J, Wang K, Zhang X, Wu P, Liu C, Jiang W. Efficient Antiscaling Technology Based on Superhydrophobicity Coupled Ultrasonic Technology. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jian He
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Keke Wang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Xingyang Zhang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Pan Wu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Changjun Liu
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Wei Jiang
- Low-Carbon Technology and Chemical Reaction Engineering Laboratory, School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
| |
Collapse
|
5
|
Zhang X, Dong Y, He Z, Gong H, Xu X, Zhao M, Qin H. Efficient Gas Transportation Using Bioinspired Superhydrophobic Yarn as the Gas-Siphon Underwater. ACS APPLIED MATERIALS & INTERFACES 2020; 12:18174-18181. [PMID: 32202403 DOI: 10.1021/acsami.0c03366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Inspired by the gas-trapped mechanism underwater of Argyroneta aquatica, we prepared a superhydrophobic yarn with a fiber network structure via a facile and environmentally friendly method. Attributed to the low surface energy, the superhydrophobic fiber network structure on the yarn is able to trap and transport bubbles directionally underwater. The functional yarn has good superhydrophobic and superaerophilic properties underwater to realize the directional transport of bubbles underwater without being pumped. We designed demonstration experiments on the antibuoyancy directional bubble transportation, which indicated the feasibility in the applications of gas-related fields. Significantly, on further testing, where the superhydrophobic yarn is put into a U-shaped pipe, we obtain a gas-siphon underwater with a high flux. The superhydrophobic fiber structure yarn can trap the gas underwater to enable the self-starting behavior while no manual intervention is used. The gas-siphon can convey gas over the edge of a vessel and deliver it at a higher level without energy input, which is driven by the differential pressure. The relationship between the differential pressure and the volume flux of transport bubbles is investigated. The experimental results show that the prepared superhydrophobic yarn has the advantages of good stability, easy preparation, and low cost in bubble continuous transportation underwater, which provides a novel strategy for the development and application of new technologies such as directional transportation, separation, exhaustion, and collection of gases in water.
Collapse
Affiliation(s)
- Xiaolong Zhang
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Yang Dong
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China
| | - Zhao He
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China
| | - Hanyuan Gong
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China
| | - Xiang Xu
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China
| | - Meiyun Zhao
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China
| | - Hongling Qin
- Hubei Key Laboratory of Hydroelectric Machinery Design & Maintenance, China Three Gorges University, Yichang 443002, China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
6
|
Wu J, Yin K, Li M, Wu Z, Xiao S, Wang H, Duan JA, He J. Under-oil self-driven and directional transport of water on a femtosecond laser-processed superhydrophilic geometry-gradient structure. NANOSCALE 2020; 12:4077-4084. [PMID: 32022050 DOI: 10.1039/c9nr09902f] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Self-driven and continuous directional transport of water droplets in an oil environment has great potential applications in microfluidics, oil-water separation, etc. Nevertheless, most current studies exploit water behaviors occurring in air, and the directional regulation of water in a viscous oil medium remains a challenge. In this work, a superhydrophilic geometry-gradient stainless steel platform with nanoparticle-covered nanoripple structures is proposed using femtosecond laser direct writing technology. The as-prepared platform spontaneously and directionally transported water droplets in the oil environment from the minor side to the large side of the trapezoidal platform surface, but not in the opposite direction. The transport velocity of water droplets as a function of trapezoid angle and tilt angle of the as-prepared platform was investigated in detail. In addition, a pumpless under-oil water transport platform was successfully prepared on other substrates including Ti and Ni sheets, polyimide film, and C cloth, and exhibited transport capabilities when the platform was flexed and combined into various shapes. This work offers insight into the simple fabrication of a flexible and substrate-independent pumpless under-oil directional transport device for water.
Collapse
Affiliation(s)
- Junrui Wu
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China.
| | - Kai Yin
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China. and The State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Ming Li
- State Key Laboratory of Transient Optics and Photonics, Xi'an Institute of Optics and Precision Mechanics of CAS, Xi'an, Shaanxi 710119, China
| | - Zhipeng Wu
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China.
| | - Si Xiao
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China.
| | - Hua Wang
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China.
| | - Ji-An Duan
- The State Key Laboratory of High Performance and Complex Manufacturing, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China
| | - Jun He
- Hunan Key Laboratory of Super Microstructure and Ultrafast Process, School of Physics and Electronics, Central South University, Changsha, 410083, China.
| |
Collapse
|
7
|
Huang C, Guo Z. The wettability of gas bubbles: from macro behavior to nano structures to applications. NANOSCALE 2018; 10:19659-19672. [PMID: 30335112 DOI: 10.1039/c8nr07315e] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In recent years, various interfaces related to bubble wettability have been fabricated, which have already been widely applied in various disciplines and fields. Therefore, to better research and understand the wettability of gas bubbles, recent progress with interfaces and wettability of bubbles in aqueous media, including superaerophilicity and superaerophobicity, is summarized. Many biological interfaces which exhibit marvelous characteristics are discussed for reference. Because of the similar behavior between gas bubbles in aqueous media and droplets in air, the two wetting conditions are compared together to better illustrate theories of gas bubble wettability. Based on these theories, effective and available manipulation of gas bubbles' wettability provides a novel idea and method to solve practical problems in various aspects, i.e., superaerophobic electrodes for gas evolution reactions, superaerophilic electrodes for gas compensation reactions, superaerophilic interfaces for directional collection and transportation of gas bubbles, and so on.
Collapse
Affiliation(s)
- Can Huang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
8
|
Chen MY, Jia ZH, Zhang T, Fei YY. Self-transport of underwater bubbles on a microholed hydrophobic surface with gradient wettability. SOFT MATTER 2018; 14:7462-7468. [PMID: 30175356 DOI: 10.1039/c8sm01056k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Manipulation of underwater bubbles is of great importance in both scientific research and industrial applications. In this work, the motion of underwater bubbles on a microholed polydimethylsiloxane (PDMS) surface with gradient wettability is studied using a high-speed camera. It was found that underwater bubbles self-transported directionally from the smaller area fraction (SAF) to the larger area fraction (LAF) of the surface. Besides, the bubble motion was triggered by an effective depth range from hcr,min to hcr,max. Only the depth of the bubble was within the range when the self-transport motion occurred. Otherwise the bubble would adhere onto the surface eventually. The main cause for the motion is the trapped air inside the microholes, which generates the torque Tb and the retention force Fr driving the bubble directionally. The mathematical model is established to reveal the motion mechanism, which is verified by the experimental results. The outcomes of our work shed new light on the target transportation fields such as drug delivery and submarine gas collection.
Collapse
Affiliation(s)
- Meng-Yao Chen
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| | | | | | | |
Collapse
|