1
|
Garg N, Deep A, Sharma AL. Recent Trends and Advances in Porous Metal-Organic Framework Nanostructures for the Electrochemical and Optical Sensing of Heavy Metals in Water. Crit Rev Anal Chem 2024; 54:1121-1145. [PMID: 35968634 DOI: 10.1080/10408347.2022.2106543] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
With the expansion and advancement in agricultural and chemical industries, various toxic heavy metals such as lead, cadmium, mercury, zinc, copper, arsenic etc. are continuously released into the environment. Intake of sources contaminated with such toxic metals leads to various health issues. Keeping the serious effects of these toxic metal ions in view, various organic-inorganic nanomaterials based sensors have been exploited for their detection via optical, electrochemical and colorimetric approaches. Since a chemical sensor works on the principle of interaction between the sensing layer and the analytes, a sensor material with large surface area is required to enable the largest possible interaction with the target molecules and hence the sensitivity of the chemical sensor. However, commonly employed materials such as metal oxides and conducting polymers tend to feature relatively low surface areas, and hence resulting in low sensitivity of the sensor. Metal-Organic Frameworks (MOFs) nanostructures are another category of organic-inorganic materials endowed with large surface area, ultra-high and tunable porosity, post-synthesis modification features, readily available active sites, catalytic activity, and chemical/thermal stability. These properties provide high sensitivity to the MOF based sensors due to the adsorption of large number of target analytes. The current review article focuses on MOFs based optical and electrochemical sensors for the detection of heavy metals.
Collapse
Affiliation(s)
- Naini Garg
- CSIO Analytical Facility (CAF) Division, CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Akash Deep
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Materials Science & Sensor Applications (MSSA) Division, CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
| | - Amit L Sharma
- CSIO Analytical Facility (CAF) Division, CSIR-Central Scientific Instruments Organisation, Chandigarh 160030, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Sun Y, Lu X, Huang Y, Wang G. Microwave-Solvothermal Synthesis of Mesoporous CeO 2/CNCs Nanocomposite for Enhanced Room Temperature NO 2 Detection. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:812. [PMID: 38786769 PMCID: PMC11124451 DOI: 10.3390/nano14100812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/25/2024] [Accepted: 04/30/2024] [Indexed: 05/25/2024]
Abstract
Nitrogen dioxide (NO2) gas sensors are pivotal in upholding environmental integrity and human health, necessitating heightened sensitivity and exceptional selectivity. Despite the prevalent use of metal oxide semiconductors (MOSs) for NO2 detection, extant solutions exhibit shortcomings in meeting practical application criteria, specifically in response, selectivity, and operational temperatures. Here, we successfully employed a facile microwave-solvothermal method to synthesize a mesoporous CeO2/CNCs nanocomposite. This methodology entails the rapid and comprehensive dispersion of CeO2 nanoparticles onto helical carbon nanocoils (CNCs), resulting in augmented electronic conductivity and an abundance of active sites within the composite. Consequently, the gas-sensing sensitivity of the nanocomposite at room temperature experienced a notable enhancement. Moreover, the presence of cerium oxide and the conversion of Ce3+ and Ce4+ ions facilitated the generation of oxygen vacancies in the composites, thereby further amplifying the sensing performance. Experimental outcomes demonstrate that the nanocomposite exhibited an approximate 9-fold increase in response to 50 ppm NO2 in comparison to pure CNCs at room temperature. Additionally, the CeO2/CNCs sensor displayed remarkable selectivity towards NO2 when exposed to gases such as NH3, CO, SO2, CO2, and C2H5OH. This straightforward microwave-solvothermal method presents an appealing strategy for the research and development of intelligent sensors based on CNCs nanomaterials.
Collapse
Affiliation(s)
- Yanming Sun
- College of Electronics and Information Engineering, Shenzhen University, 3688 Nanhai Boulevard, Shenzhen 518060, China;
| | - Xiaoying Lu
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China; (X.L.); (Y.H.)
| | - Yanchen Huang
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China; (X.L.); (Y.H.)
| | - Guoping Wang
- College of Electronics and Information Engineering, Shenzhen University, 3688 Nanhai Boulevard, Shenzhen 518060, China;
| |
Collapse
|
3
|
Meskher H, Belhaouari SB, Sharifianjazi F. Mini review about metal organic framework (MOF)-based wearable sensors: Challenges and prospects. Heliyon 2023; 9:e21621. [PMID: 37954292 PMCID: PMC10632523 DOI: 10.1016/j.heliyon.2023.e21621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 10/05/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Among many types of wearable sensors, MOFs-based wearable sensors have recently been explored in both commercialization and research. There has been much effort in various aspects of the development of MOF-based wearable sensors including but not limited to miniaturization, size control, safety, improvements in conformal and flexible features, improvements in the analytical performance and long-term storage of these devices. Recent progress in the design and deployment of MOFs-based wearable sensors are covered in this paper, as are the remaining obstacles and prospects. This work also highlights the enormous potential for synergistic effects of MOFs used in combination with other nanomaterials for healthcare applications and raise attention toward the economic aspect and market diffusion of MOFs-based wearable sensors.
Collapse
Affiliation(s)
- Hicham Meskher
- Division of Process Engineering, College of Science and Technology, Chadli Bendjedid University, 36000, Algeria
| | - Samir Brahim Belhaouari
- Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa,Doha, Qatar
| | | |
Collapse
|
4
|
Sun Y, Ding Z, Zhang Y, Dong Z, Sun L, Wang N, Yin M, Zhang J, Wang GP. Carbon nanocoils decorated with scale-like mesoporous NiO nanosheets for ultrasensitive room temperature ppb-level NO 2 sensing. Phys Chem Chem Phys 2023; 25:3485-3493. [PMID: 36637146 DOI: 10.1039/d2cp04860d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Although NO2 detection based on metal oxide semiconductors (MOSs) has received continuous attention, the sensing properties of MOSs still need to be further improved for practical application. Carbon nanocoils (CNCs) exhibit excellent physicochemical properties due to their unique polycrystalline amorphous structure and helical morphology. Herein, CNCs composited with NiO nanosheets were developed for room temperature NO2 sensing, in which highly dispersed mesoporous NiO nanosheets on CNCs was achieved with extremely higher sensitivity. Due to a large number of exposed active sites and the efficient conductive network of CNCs, this particular scale-like nanocomposite exhibits a nearly 8 times higher response to 60 ppm NO2 than bare NiO nanosheets at room temperature, outperforming the majority of previously reported NO2 sensors at room temperature. Moreover, the nanocomposite-based gas sensor has a detection concentration limit of 60.3 ppb, which is advantageous for the sensing of NO2 at low concentrations. We believe that this work will provide the direction for the research and development of highly sensitive smart sensors, as well as encourage further investigation of multifunctional sensing applications utilizing CNCs as the primary frame support material.
Collapse
Affiliation(s)
- Yanming Sun
- College of Electronics and Information Engineering, Shenzhen University, 3688 Nanhai Boulevard, Shenzhen, 518060, China.
| | - Zhezhe Ding
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Yupeng Zhang
- College of Electronics and Information Engineering, Shenzhen University, 3688 Nanhai Boulevard, Shenzhen, 518060, China.
| | - Zhe Dong
- Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Lei Sun
- College of Electronics and Information Engineering, Shenzhen University, 3688 Nanhai Boulevard, Shenzhen, 518060, China.
| | - Neng Wang
- College of Electronics and Information Engineering, Shenzhen University, 3688 Nanhai Boulevard, Shenzhen, 518060, China.
| | - Meijie Yin
- Electron Microscope Center, Shenzhen University, 3688 Nanhai Boulevard, Shenzhen, 518060, China
| | - Jian Zhang
- College of Electronics and Information Engineering, Shenzhen University, 3688 Nanhai Boulevard, Shenzhen, 518060, China. .,Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China
| | - Guo Ping Wang
- College of Electronics and Information Engineering, Shenzhen University, 3688 Nanhai Boulevard, Shenzhen, 518060, China.
| |
Collapse
|
5
|
Ou LX, Liu MY, Zhu LY, Zhang DW, Lu HL. Recent Progress on Flexible Room-Temperature Gas Sensors Based on Metal Oxide Semiconductor. NANO-MICRO LETTERS 2022; 14:206. [PMID: 36271065 PMCID: PMC9587164 DOI: 10.1007/s40820-022-00956-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/12/2022] [Indexed: 05/05/2023]
Abstract
With the rapid development of the Internet of Things, there is a great demand for portable gas sensors. Metal oxide semiconductors (MOS) are one of the most traditional and well-studied gas sensing materials and have been widely used to prepare various commercial gas sensors. However, it is limited by high operating temperature. The current research works are directed towards fabricating high-performance flexible room-temperature (FRT) gas sensors, which are effective in simplifying the structure of MOS-based sensors, reducing power consumption, and expanding the application of portable devices. This article presents the recent research progress of MOS-based FRT gas sensors in terms of sensing mechanism, performance, flexibility characteristics, and applications. This review comprehensively summarizes and discusses five types of MOS-based FRT gas sensors, including pristine MOS, noble metal nanoparticles modified MOS, organic polymers modified MOS, carbon-based materials (carbon nanotubes and graphene derivatives) modified MOS, and two-dimensional transition metal dichalcogenides materials modified MOS. The effect of light-illuminated to improve gas sensing performance is further discussed. Furthermore, the applications and future perspectives of FRT gas sensors are also discussed.
Collapse
Affiliation(s)
- Lang-Xi Ou
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics &Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Meng-Yang Liu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics &Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Li-Yuan Zhu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics &Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - David Wei Zhang
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics &Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Hong-Liang Lu
- State Key Laboratory of ASIC and System, Shanghai Institute of Intelligent Electronics &Systems, School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China.
- Yiwu Research Institute of Fudan University, Chengbei Road, Yiwu City, 322000, Zhejiang, People's Republic of China.
| |
Collapse
|
6
|
Shi T, Hussain S, Ge C, Liu G, Wang M, Qiao G. ZIF-X (8, 67) based nanostructures for gas-sensing applications. REV CHEM ENG 2022. [DOI: 10.1515/revce-2021-0100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
ZIF-8 and ZIF-67 are the most investigated zeolitic imidazolate frameworks (ZIFs) materials that have aroused enormous scientific interests in numerous areas of application including electrochemistry, gas storage, separation, and sensors by reason of their fascinating structural properties. Recently, there is a rapidly growing demand for chemical gas sensors for the detection of various analytes in widespread applications including environmental pollution monitoring, clinical analysis, wastewater analysis, industrial applications, food quality, consumer products, and automobiles. In general, the key to the development of superior gas sensors is exploring innovative sensing materials. ZIF-X (8, 67) based nanostructures have demonstrated great potential as ideal sensing materials for high-performance sensing applications. In this review, the general properties and applications of ZIF-X (8, 67) including gas storage and gas adsorption are first summarized, and then the recent progress of ZIF-X (8, 67) based nanostructures for gas-sensing applications and the structure-property correlations are summarized and analyzed.
Collapse
Affiliation(s)
- Tengfei Shi
- School of Materials Science and Engineering , Jiangsu University , Zhenjiang , 212013 , China
| | - Shahid Hussain
- School of Materials Science and Engineering , Jiangsu University , Zhenjiang , 212013 , China
| | - Chuanxin Ge
- School of Materials Science and Engineering , Jiangsu University , Zhenjiang , 212013 , China
| | - Guiwu Liu
- School of Materials Science and Engineering , Jiangsu University , Zhenjiang , 212013 , China
| | - Mingsong Wang
- School of Materials Science and Engineering , Jiangsu University , Zhenjiang , 212013 , China
| | - Guanjun Qiao
- School of Materials Science and Engineering , Jiangsu University , Zhenjiang , 212013 , China
- State Key Laboratory for Mechanical Behavior of Materials , Xi’an Jiaotong University , Xi’an 710049 , China
| |
Collapse
|
7
|
Li Q, Liu Y, Zhang Y, Jiang W. Immunogenicity-boosted cancer immunotherapy based on nanoscale metal-organic frameworks. J Control Release 2022; 347:183-198. [PMID: 35526612 DOI: 10.1016/j.jconrel.2022.05.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/29/2022] [Accepted: 05/02/2022] [Indexed: 12/22/2022]
Abstract
Immunotherapy, including checkpoint blockade immunotherapy (CBI), has witnessed remarkable progress in cancer therapy. Nonetheless, significant obstacles to successful immunotherapy remain. Notably, tumour non-responsiveness to immunotherapy due to immunosuppressive tumour microenvironments (TMEs). To revitalize immunosuppressive TMEs various therapeutic strategies have been reported by researchers. Immunostimulatory adjuvant treatments (IAT) are the most widely investigated ones. Due to their biodegradability, compositional tenability, and inherent immune effectiveness, nanoscale metal-organic frameworks (nMOFs) with metal nodes and organic linkers can be used as versatile nanomaterials for IAT. This review summarizes the progress in nMOF-based tumour immunotherapy in promoting immunostimulatory TMEs. And in combination with other cancer immunotherapies to increase tumour immunogenicity and antitumor efficacy. Finally, the challenges of nMOFs in tumour immunotherapy are also discussed.
Collapse
Affiliation(s)
- Qing Li
- Department of Molecular Pathology, Application Center for Precision Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Ying Liu
- Department of Molecular Pathology, Application Center for Precision Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yanru Zhang
- Department of Molecular Pathology, Application Center for Precision Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Wei Jiang
- Department of Molecular Pathology, Application Center for Precision Medicine, the Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China.
| |
Collapse
|
8
|
Huang X, Gong Z, Lv Y. Advances in Metal-Organic Frameworks-based Gas Sensors for Hazardous Substances. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
9
|
Zhan M, Ge C, Hussain S, Alkorbi AS, Alsaiari R, Alhemiary NA, Qiao G, Liu G. Enhanced NO 2 gas-sensing performance by core-shell SnO 2/ZIF-8 nanospheres. CHEMOSPHERE 2022; 291:132842. [PMID: 34767849 DOI: 10.1016/j.chemosphere.2021.132842] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/02/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Timely detection of harmful, poisonous and air pollutant gases is of vital importance to the protection of human beings from exposure to rigorous gases. The development of gas-sensing devices based on sphere-like porous SnO2/ZIF-8 nanocomposites is required to overcome this challenge. Nanostructures with high surface area, more porosity and hollow interior provide plenty of active cites for high responses in metal oxide gas sensors. The engineered gas sensors have excellent sensing sensitivity (164), rapid response and recovery times (60, 45 s), and favorable selectivity for NO2 gases under 300 °C. Consequently, NO2 gas sensors based on core-shell SnO2/ZIF-8 nanospheres are regarded viable capacity industrial applicants.
Collapse
Affiliation(s)
- Mengmeng Zhan
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Chuanxin Ge
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Shahid Hussain
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - Ali S Alkorbi
- Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia
| | - Raiedhah Alsaiari
- Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia
| | - Nabil A Alhemiary
- Empty Quarter Research Unit, Department of Chemistry, College of Science and Art in Sharurah, Najran University, Sharurah, Saudi Arabia
| | - Guanjun Qiao
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Guiwu Liu
- School of Materials Science and Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
10
|
Qin D, Li T, Li X, Feng J, Tang T, Cheng H. A facile fabrication of a hierarchical ZIF-8/MWCNT nanocomposite for the sensitive determination of rutin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:5450-5457. [PMID: 34755722 DOI: 10.1039/d1ay01421h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In this paper, a novel type of zeolitic imidazolate framework-8 (ZIF-8) polyhedron/multi-walled carbon nanotube (MWCNT) modified electrode was successfully prepared for effective on-site detection of rutin. The morphology and microstructure of the ZIF-8/MWCNT nanocomposite were characterized using scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD). The electrochemical performance of the ZIF-8/MWCNT based electrode for the determination of rutin was studied by cyclic voltammetry (CV) and differential pulse stripping voltammetry (DPV). The as-prepared sensor illustrates better electrocatalytic activity and lower background current than the MWCNT modified electrode for the oxidation of rutin. Besides, the ZIF-8/MWCNTs sensor offers a remarkable linear response for rutin concentrations from 0.1 to 15 μM. The detection limit (LOD) was calculated to be 0.26 nM (S/N = 3). Also, the ZIF-8/MWCNT electrode showed high anti-interference ability towards common interfering species. More importantly, the fabricated electrode was quickly evaluated for determination of rutin in medicine tablets with satisfactory recoveries and the obtained results successfully achieved good consistency with the data from high performance liquid chromatography (HPLC). Finally, the method shows an enhanced electrocatalytic property and sensitivity for the analysis of rutin, which may provide an economical and promising electrochemical sensor for practical on-site detection of rutin.
Collapse
Affiliation(s)
- Danfeng Qin
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China.
- School of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi province, P. R. China
| | - Tianhao Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China.
| | - Xuenuan Li
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China.
| | - Jun Feng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China.
- School of Medicine, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi province, P. R. China
| | - Tingfan Tang
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China.
| | - Hao Cheng
- Guangxi Key Laboratory of Green Processing of Sugar Resources, College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou 545006, Guangxi Province, P. R. China.
| |
Collapse
|
11
|
Garg N, Deep A, Sharma AL. Metal-organic frameworks based nanostructure platforms for chemo-resistive sensing of gases. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214073] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
12
|
Large-area synthesis of nanoscopic catalyst-decorated conductive MOF film using microfluidic-based solution shearing. Nat Commun 2021; 12:4294. [PMID: 34257304 PMCID: PMC8277906 DOI: 10.1038/s41467-021-24571-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/24/2021] [Indexed: 02/07/2023] Open
Abstract
Conductive metal-organic framework (C-MOF) thin-films have a wide variety of potential applications in the field of electronics, sensors, and energy devices. The immobilization of various functional species within the pores of C-MOFs can further improve the performance and extend the potential applications of C-MOFs thin films. However, developing facile and scalable synthesis of high quality ultra-thin C-MOFs while simultaneously immobilizing functional species within the MOF pores remains challenging. Here, we develop microfluidic channel-embedded solution-shearing (MiCS) for ultra-fast (≤5 mm/s) and large-area synthesis of high quality nanocatalyst-embedded C-MOF thin films with thickness controllability down to tens of nanometers. The MiCS method synthesizes nanoscopic catalyst-embedded C-MOF particles within the microfluidic channels, and simultaneously grows catalyst-embedded C-MOF thin-film uniformly over a large area using solution shearing. The thin film displays high nitrogen dioxide (NO2) sensing properties at room temperature in air amongst two-dimensional materials, owing to the high surface area and porosity of the ultra-thin C-MOFs, and the catalytic activity of the nanoscopic catalysts embedded in the C-MOFs. Therefore, our method, i.e. MiCS, can provide an efficient way to fabricate highly active and conductive porous materials for various applications. The immobilization of catalysts within the pores of conductive metal-organic frameworks (C-MOFs) via facile and scalable methodologies remains challenging. Here the authors report a microfluidic channel-embedded solution shearing process that enables the high throughput, large-area, single-step preparation of Pt nanocatalyst-embedded C-MOF thin films.
Collapse
|
13
|
Recent Advances in Fiber-Shaped Electronic Devices for Wearable Applications. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11136131] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fiber electronics is a key research area for realizing wearable microelectronic devices. Significant progress has been made in recent years in developing the geometry and composition of electronic fibers. In this review, we present that recent progress in the architecture and electrical properties of electronic fibers, including their fabrication methods. We intensively investigate the structural designs of fiber-shaped devices: coaxial, twisted, three-dimensional layer-by-layer, and woven structures. In addition, we introduce remarkable applications of fiber-shaped devices for energy harvesting/storage, sensing, and light-emitting devices. Electronic fibers offer high potential for use in next-generation electronics, such as electronic textiles and smart integrated textile systems, which require excellent deformability and high operational reliability.
Collapse
|
14
|
Pei Y, Zhang X, Hui Z, Zhou J, Huang X, Sun G, Huang W. Ti 3C 2T X MXene for Sensing Applications: Recent Progress, Design Principles, and Future Perspectives. ACS NANO 2021; 15:3996-4017. [PMID: 33705113 DOI: 10.1021/acsnano.1c00248] [Citation(s) in RCA: 206] [Impact Index Per Article: 51.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Sensors are becoming increasingly significant in our daily life because of the rapid development in electronic and information technologies, including Internet of Things, wearable electronics, home automation, intelligent industry, etc. There is no doubt that their performances are primarily determined by the sensing materials. Among all potential candidates, layered nanomaterials with two-dimensional (2D) planar structure have numerous superior properties to their bulk counterparts which are suitable for building various high-performance sensors. As an emerging 2D material, MXenes possess several advantageous features of adjustable surface properties, tunable bandgap, and excellent mechanical strength, making them attractive in various applications. Herein, we particularly focus on the recent research progress in MXene-based sensors, discuss the merits of MXenes and their derivatives as sensing materials for collecting various signals, and try to elucidate the design principles and working mechanisms of the corresponding MXene-based sensors, including strain/stress sensors, gas sensors, electrochemical sensors, optical sensors, and humidity sensors. In the end, we analyze the main challenges and future outlook of MXene-based materials in sensor applications.
Collapse
Affiliation(s)
- Yangyang Pei
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, P.R. China
| | - Xiaoli Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, P.R. China
| | - Zengyu Hui
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, P.R. China
| | - Jinyuan Zhou
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiao Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, P.R. China
| | - Gengzhi Sun
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, P.R. China
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, P.R. China
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, P.R. China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE), and Xi'an Institute of Biomedical Materials and Engineering, Northwestern Polytechnical University (NPU), Xi'an 710072, P.R. China
- Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing 211816, P.R. China
| |
Collapse
|
15
|
Abstract
Wearable electronics have been receiving increasing attention for the past few decades. Particularly, fiber-based electronics are considered to be ideal for many applications for their flexibility, lightweight, breathability, and comfortability. Furthermore, fibers and fiber-based textiles can be 3D-molded with ease and potentially integrated with everyday clothes or accessories. These properties are especially desired in the fields of bio-related sensors and energy-storage systems. Wearable sensors utilize a tight interface with human skin and clothes for continuous environmental scanning and non-invasive health monitoring. At the same time, their flexible and lightweight properties allow more convenient and user-friendly experiences to the wearers. Similarly, for the wearable devices to be more accessible, it is crucial to incorporate energy harvesting and storage systems into the device themselves, removing the need to attach an external power source. This review summarizes the recent applications of fibers and fiber-based textiles in mechanical, photonic, and biomedical sensors. Pressure and strain sensors and their implementation as electronic skins will be explored, along with other various fiber sensors capable of imaging objects or monitoring safety and health markers. In addition, we attempt to elucidate recent studies in energy-storing fibers and their implication in self-powered and fully wireless wearable devices.
Collapse
|
16
|
Peng B, Zhao F, Ping J, Ying Y. Recent Advances in Nanomaterial-Enabled Wearable Sensors: Material Synthesis, Sensor Design, and Personal Health Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002681. [PMID: 32893485 DOI: 10.1002/smll.202002681] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/15/2020] [Indexed: 05/20/2023]
Abstract
Wearable sensors have gained much attention due to their potential in personal health monitoring in a timely, cost-effective, easy-operating, and noninvasive way. In recent studies, nanomaterials have been employed in wearable sensors to improve the sensing performance in view of their excellent properties. Here, focus is mainly on the nanomaterial-enabled wearable sensors and their latest advances in personal health monitoring. Different kinds of nanomaterials used in wearable sensors, such as metal nanoparticles, carbon nanomaterials, metallic nanomaterials, hybrid nanocomposites, and bio-nanomaterials, are reviewed. Then, the progress of nanomaterial-based wearable sensors in personal health monitoring, including the detection of ions and molecules in body fluids and exhaled breath, physiological signals, and emotion parameters, is discussed. Furthermore, the future challenges and opportunities of nanomaterial-enabled wearable sensors are discussed.
Collapse
Affiliation(s)
- Bo Peng
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Fengnian Zhao
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jianfeng Ping
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Yibin Ying
- Laboratory of Agricultural Information Intelligent Sensing, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, P. R. China
- Zhejiang A&F University, Hangzhou, 311300, P. R. China
| |
Collapse
|
17
|
Boorboor Ajdari F, Kowsari E, Niknam Shahrak M, Ehsani A, Kiaei Z, Torkzaban H, Ershadi M, Kholghi Eshkalak S, Haddadi-Asl V, Chinnappan A, Ramakrishna S. A review on the field patents and recent developments over the application of metal organic frameworks (MOFs) in supercapacitors. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213441] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
18
|
Garg N, Kumar M, Kumari N, Deep A, Sharma AL. Chemoresistive Room-Temperature Sensing of Ammonia Using Zeolite Imidazole Framework and Reduced Graphene Oxide (ZIF-67/rGO) Composite. ACS OMEGA 2020; 5:27492-27501. [PMID: 33134712 PMCID: PMC7594151 DOI: 10.1021/acsomega.0c03981] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
The present work demonstrates the application of a composite of the zeolite imidazole framework (ZIF-67) and reduced graphene oxide (rGO), synthesized via a simple hydrothermal route for the sensitive sensing of ammonia. The successful synthesis of ZIF-67 and rGO composite was confirmed with structural and spectroscopic characterizations. A porous structure and a high surface area (1080 m2 g-1) of the composite indicate its suitability as a gas sensing material. The composite material was coated as a thin film onto interdigitated gold electrodes. The sensor displays a change in its chemoresistive property (i.e., resistance) in the presence of ammonia (NH3) gas. A sensor response of 1.22 ± 0.02 [standard deviation (sd)] is measured for 20 ppm of NH3, while it shows a value of 4.77 ± 0.15 (sd) for 50 ppm of NH3. The fabricated sensor is reproducible and offers a stable response, while also providing tolerance against humidity and some other volatile compounds. The average response and recovery times of the sensor, for 50 ppm NH3 concentration, are found to be 46.5 ± 2.12 (sd) and 66.5 ± 2.12 (sd) s, respectively. The limit of detection of the sensor was found to be 74 ppb.
Collapse
Affiliation(s)
- Naini Garg
- CSIR-Central
Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mukesh Kumar
- CSIR-Central
Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
| | - Neelam Kumari
- CSIR-Central
Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
| | - Akash Deep
- CSIR-Central
Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Amit L. Sharma
- CSIR-Central
Scientific Instruments Organisation, Sector 30-C, Chandigarh 160030, India
- Academy
of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
19
|
Doan THP, Ta QTH, Sreedhar A, Hang NT, Yang W, Noh JS. Highly Deformable Fabric Gas Sensors Integrating Multidimensional Functional Nanostructures. ACS Sens 2020; 5:2255-2262. [PMID: 32597174 DOI: 10.1021/acssensors.0c01083] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Highly strain-endurable gas sensors were implemented on fabric, which was taken from a real T-shirt, employing a sequential coating method. Multidimensional, functional nanostructures such as reduced graphene oxide, ZnO nanorods, palladium nanoparticles, and silver nanowires were integrated for their realization. It was revealed that the fabric gas sensors could detect both oxidizing and reducing gases at room temperature with differing signs and magnitudes of responses. Noticeably, the fabric gas sensors could normally work even under large strains up to 100%, which represents the highest strain tolerance in the gas sensor field. Furthermore, the fabric gas sensors turned out to bear harsh bending and twisting stresses. It was also demonstrated that the sequential coating method is an effective and facile way to control the size of the fabric gas sensor.
Collapse
Affiliation(s)
- Thanh Hoang Phuong Doan
- Department of Nano-Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| | - Qui Thanh Hoai Ta
- Department of Nano-Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| | - Adem Sreedhar
- Department of Nano-Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| | - Nguyen Thuy Hang
- Department of Physics, Dongguk University, 30 Phildong-ro 1gil, Jung-gu, Seoul 04620, Korea
| | - Woochul Yang
- Department of Physics, Dongguk University, 30 Phildong-ro 1gil, Jung-gu, Seoul 04620, Korea
| | - Jin-Seo Noh
- Department of Nano-Physics, Gachon University, 1342 Seongnamdaero, Sujeong-gu, Seongnam-si, Gyeonggi-do 13120, Korea
| |
Collapse
|
20
|
Liu W, Erol O, Gracias DH. 3D Printing of an In Situ Grown MOF Hydrogel with Tunable Mechanical Properties. ACS APPLIED MATERIALS & INTERFACES 2020; 12:33267-33275. [PMID: 32644785 DOI: 10.1021/acsami.0c08880] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Due to their precisely modifiable microporosity and chemical functionality, Metal-Organic Frameworks (MOFs) have revolutionized catalysis, separations, gas storage, drug delivery, and sensors. However, because of their rigid and brittle powder morphology, it is challenging to build customizable MOF shapes with tunable mechanical properties. Here, we describe a new three-dimensional (3D) printing approach to create stretchable and tough MOF hydrogel structures with tunable mechanical properties. We formulate a printable ink by combining prepolymers of a versatile double network (DN) hydrogel of acrylamide and alginate, a shear-thinning agent, and MOF ligands. Importantly, by simultaneous cross-linking of alginate and in situ growth of the HKUST-1 using copper ions, we are able to create composites with high MOF dispersity in the DN hydrogel matrix with high pore accessibility. We extensively characterize the inks and uncover parameters to tune modulus, strength, and toughness of the 3D prints. We also demonstrate the excellent performance of the MOF hydrogels for dye absorption. Our approach incorporates all of the advantageous attributes of 3D printing while offering a rational approach to merge stretchable hydrogels and MOFs, and our findings are of broad relevance to wearables, implantable and flexible sensors, chemical separations, and soft robotics.
Collapse
Affiliation(s)
- Wangqu Liu
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - Ozan Erol
- Department of Mechanical Engineering and Hopkins Extreme Materials Institute, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| | - David H Gracias
- Department of Chemical & Biomolecular Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Materials Science and Engineering, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
- Department of Chemistry, Johns Hopkins University, 3400 North Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
21
|
Zhong XF, Sun X. Nanomedicines based on nanoscale metal-organic frameworks for cancer immunotherapy. Acta Pharmacol Sin 2020; 41:928-935. [PMID: 32355277 PMCID: PMC7468577 DOI: 10.1038/s41401-020-0414-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 12/13/2022]
Abstract
Cancer immunotherapy, with an aim to enhance host immune responses, has been recognized as a promising therapeutic treatment for cancer. A diversity of immunomodulatory agents, including tumor-associated antigens, adjuvants, cytokines and immunomodulators, has been explored for their ability to induce a cascading adaptive immune response. Nanoscale metal-organic frameworks (nMOFs), a class of crystalline-shaped nanomaterials formed by the self-assembly of organic ligands and metal nodes, are attractive for cancer immunotherapy because they feature tunable pore size, high surface area and loading capacity, and intrinsic biodegradability. In this review we summarize recent progress in the development of nMOFs for cancer immunotherapy, including cancer vaccine delivery and combination of in situ vaccination with immunomodulators to reverse immune suppression. Current challenges and future perspectives for rational design of nMOF-based cancer immunotherapy are also discussed.
Collapse
Affiliation(s)
- Xiao-Fang Zhong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610064, China.
| |
Collapse
|
22
|
Fabrications of metal organic frameworks derived hierarchical porous carbon on carbon nanotubes as efficient bioanode catalysts of NAD+-dependent alcohol dehydrogenase. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135958] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Li HY, Zhao SN, Zang SQ, Li J. Functional metal–organic frameworks as effective sensors of gases and volatile compounds. Chem Soc Rev 2020; 49:6364-6401. [DOI: 10.1039/c9cs00778d] [Citation(s) in RCA: 434] [Impact Index Per Article: 86.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review summarizes the recent advances of metal organic framework (MOF) based sensing of gases and volatile compounds.
Collapse
Affiliation(s)
- Hai-Yang Li
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Shu-Na Zhao
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Shuang-Quan Zang
- Green Catalysis Center, and College of Chemistry
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Jing Li
- Department of Chemistry and Chemical Biology
- Rutgers University
- Piscataway
- USA
| |
Collapse
|
24
|
Koo W, Kim S, Jang J, Kim D, Kim I. Catalytic Metal Nanoparticles Embedded in Conductive Metal-Organic Frameworks for Chemiresistors: Highly Active and Conductive Porous Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1900250. [PMID: 31728270 PMCID: PMC6839632 DOI: 10.1002/advs.201900250] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 04/09/2019] [Indexed: 05/22/2023]
Abstract
Conductive porous materials having a high surface reactivity offer great promise for a broad range of applications. However, a general and scalable synthesis of such materials remains challenging. In this work, the facile synthesis of catalytic metal nanoparticles (NPs) embedded in 2D metal-organic frameworks (MOFs) is reported as highly active and conductive porous materials. After the assembly of 2D conductive MOFs (C-MOFs), i.e., Cu3(hexahydroxytriphenylene)2 [Cu3(HHTP)2], Pd or Pt NPs are functionalized within the cavities of C-MOFs by infiltration of metal ions and subsequent reduction. The unique structure of Cu3(HHTP)2 with a cavity size of 2 nm confines the bulk growth of metal NPs, resulting in ultra-small (≈2 nm) and well-dispersed metal NPs loaded in 2D C-MOFs. The Pd or Pt NPs-loaded Cu3(HHTP)2 exhibits remarkably improved NO2 sensing performance at room temperature due to the high reactivity of catalytic metal NPs and the high porosity of C-MOFs. The catalytic effect of Pd and Pt NPs on NO2 sensing of Cu3(HHTP)2, in terms of reaction rate kinetics and activation energy, is demonstrated.
Collapse
Affiliation(s)
- Won‐Tae Koo
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
- Advanced Nanosensor Research CenterKI NanocenturyKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Sang‐Joon Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
- Present address:
Department of Materials Science and EngineeringMassachusetts Institute of TechnologyCambridgeMA02139USA
| | - Ji‐Soo Jang
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
- Advanced Nanosensor Research CenterKI NanocenturyKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Dong‐Ha Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
- Advanced Nanosensor Research CenterKI NanocenturyKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| | - Il‐Doo Kim
- Department of Materials Science and EngineeringKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
- Advanced Nanosensor Research CenterKI NanocenturyKorea Advanced Institute of Science and Technology (KAIST)291 Daehak‐roYuseong‐guDaejeon34141Republic of Korea
| |
Collapse
|
25
|
Li W, Chen R, Qi W, Cai L, Sun Y, Sun M, Li C, Yang X, Xiang L, Xie D, Ren T. Reduced Graphene Oxide/Mesoporous ZnO NSs Hybrid Fibers for Flexible, Stretchable, Twisted, and Wearable NO 2 E-Textile Gas Sensor. ACS Sens 2019; 4:2809-2818. [PMID: 31566369 DOI: 10.1021/acssensors.9b01509] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
E-textiles are gaining growing popularity recently due to low cost, light weight, and conformable compatibility with clothes in wearable and portable smart electronics. Here, an easy-handing, low cost, and scalable fabricating strategy is reported to fabricate conductive, highly flexible, and mechanically stretchable/twisted fiber gas sensor with great wearability and knittability. The proposed gas sensor is built using commercially available cotton/elastic threads as flexible/stretchable templates and reduced graphene oxide/mesoporous zinc oxide nanosheets as sensing layers to form conducting fibers. The as-prepared fiber demonstrates sensitive sensing response, excellent long-term stability (84 days), low theoretical detection limit (43.5 ppb NO2), great mechanical deformation tolerance (3000 bending cycles, 1000 twisting cycles and 65% strain strength), and washing durability in room-temperature gas detection. More significantly, scalable wearable characteristics including repairability, reliability, stability, and practicability have been efficiently improved, which are achieved by knotting the fractured fibers, incorporating multiple sensors in series/parallel and weaving multisensor array networks integrated into clothes. The good sensing properties, superior flexibility, and scalable applications of wearable fibers may provide a broad window for widespread monitoring of numerous human activities in personal mobile electronics and human-machine interactions.
Collapse
Affiliation(s)
- Weiwei Li
- Department of Basic Sciences, Air Force Engineering University, Xi’an 710051, China
| | | | | | - Li Cai
- Department of Basic Sciences, Air Force Engineering University, Xi’an 710051, China
| | | | | | - Chuang Li
- Department of Basic Sciences, Air Force Engineering University, Xi’an 710051, China
| | - Xiaokuo Yang
- Department of Basic Sciences, Air Force Engineering University, Xi’an 710051, China
| | | | | | | |
Collapse
|
26
|
Punde NS, Rajpurohit AS, Srivastava AK. Sensitive electrochemical platform based on nano-cylindrical strontium titanate/N-doped graphene hybrid composite for simultaneous detection of diphenhydramine and bromhexine. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
|
28
|
Li X, Li C, Wu C, Wu K. Strategy for Highly Sensitive Electrochemical Sensing: In Situ Coupling of a Metal–Organic Framework with Ball-Mill-Exfoliated Graphene. Anal Chem 2019; 91:6043-6050. [DOI: 10.1021/acs.analchem.9b00556] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiaoyu Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Caoling Li
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Can Wu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Key Laboratory for the Green Preparation and Application of Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Materials, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei 430062, China
| | - Kangbing Wu
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
29
|
An aluminum adjuvant-integrated nano-MOF as antigen delivery system to induce strong humoral and cellular immune responses. J Control Release 2019; 300:81-92. [PMID: 30826373 DOI: 10.1016/j.jconrel.2019.02.035] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 01/21/2019] [Accepted: 02/25/2019] [Indexed: 12/21/2022]
Abstract
Metal-organic frameworks (MOFs) have high surface area, tunable pore size, and high loading capacity, making them promising for drug delivery. However, their synthesis requires organic solvents, high temperature and high pressure that are incompatible with biomacromolecules. Zeolitic imidazole frameworks (ZIF-8) which forms through coordination between zinc ions and 2-methylimidazole (MeIM) have emerged as an advanced functional material for drug delivery due to its unique features such as high loading and pH-sensitive degradation. In this study, we took advantage of a natural biomineralization process to create aluminum-containing nanoZIF-8 particles for antigen delivery. Without organic solvents or stabilizing agent, nanoparticles (ZANPs) were synthesized by a mild and facile method with aluminum, model antigen ovalbumin (OVA) and ZIF-8 integrated. A high antigen loading capacity (%) of 30.6% and a pH dependent antigen release were achieved. A Toll-like receptor 9 agonist cytosine-phosphate-guanine oligodeoxynucleotides (CpG) was adsorbed on the surface of ZANPs (hereafter CpG/ZANPs) to boost the immune response. After subcutaneous injection in vivo, CpG/ZANPs targeted lymph nodes (LNs), where their cargo was efficiently internalized by LN-resident antigen-presenting cells (APCs). ZANPs decomposition in lysosomes released antigen into the cytoplasm and enhanced cross-presentation. Moreover, CpG/ZANPs induced strong antigen-specific humoral and cytotoxic T lymphocyte responses that significantly inhibited the growth of EG7-OVA tumors while showing minimal cytotoxicity. We demonstrate that ZANPs may be a safe and effective vehicle for the development of cancer vaccines.
Collapse
|
30
|
Ray TR, Choi J, Bandodkar AJ, Krishnan S, Gutruf P, Tian L, Ghaffari R, Rogers JA. Bio-Integrated Wearable Systems: A Comprehensive Review. Chem Rev 2019; 119:5461-5533. [PMID: 30689360 DOI: 10.1021/acs.chemrev.8b00573] [Citation(s) in RCA: 475] [Impact Index Per Article: 79.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Bio-integrated wearable systems can measure a broad range of biophysical, biochemical, and environmental signals to provide critical insights into overall health status and to quantify human performance. Recent advances in material science, chemical analysis techniques, device designs, and assembly methods form the foundations for a uniquely differentiated type of wearable technology, characterized by noninvasive, intimate integration with the soft, curved, time-dynamic surfaces of the body. This review summarizes the latest advances in this emerging field of "bio-integrated" technologies in a comprehensive manner that connects fundamental developments in chemistry, material science, and engineering with sensing technologies that have the potential for widespread deployment and societal benefit in human health care. An introduction to the chemistries and materials for the active components of these systems contextualizes essential design considerations for sensors and associated platforms that appear in following sections. The subsequent content highlights the most advanced biosensors, classified according to their ability to capture biophysical, biochemical, and environmental information. Additional sections feature schemes for electrically powering these sensors and strategies for achieving fully integrated, wireless systems. The review concludes with an overview of key remaining challenges and a summary of opportunities where advances in materials chemistry will be critically important for continued progress.
Collapse
Affiliation(s)
- Tyler R Ray
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Jungil Choi
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Amay J Bandodkar
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Siddharth Krishnan
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - Philipp Gutruf
- Department of Biomedical Engineering University of Arizona Tucson , Arizona 85721 , United States
| | - Limei Tian
- Department of Biomedical Engineering , Texas A&M University , College Station , Texas 77843 , United States
| | - Roozbeh Ghaffari
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| | - John A Rogers
- Northwestern University , 2145 Sheridan Road , Evanston , Illinois 60208 , United States
| |
Collapse
|
31
|
Hua L, Hui Z, Sun Y, Zhao X, Xu H, Gong Y, Chen R, Yu C, Zhou J, Sun G, Huang W. Oxygen vacancy enriched hollow cobaltosic oxide frames with ultrathin walls for efficient energy storage and biosensing. NANOSCALE 2018; 10:21006-21012. [PMID: 30422143 DOI: 10.1039/c8nr07444e] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Transition metal oxides (TMOs) with desired morphologies and atomic structures have promising applications in energy storage, catalysis, and biosensing because of their large specific surface area, high theoretical capacitance, abundant active sites, etc. In this study, hierarchical Co3O4 with enriched oxygen vacancies and finely tuned nanostructures, e.g. high porosity, thin wall thickness, hollow or yolk-shell structure, is prepared by dynamically balancing the decomposition and oxidation of the zeolitic imidazolate framework-67 (ZIF-67) precursor directly calcined in air at 300 °C. The optimized Co3O4 hollow frame inherits the original shape of the parent ZIF-67 with a high volume retention of 83% and features an ultrathin wall thickness of 10 nm, a large accessible surface area of 63.7 m2 g-1 and a high content of surface oxygen vacancies. It thus delivers an excellent specific capacitance of 770 F g-1 at 1 A g-1, a rate capability of 570.9 F g-1 at 20 A g-1 and excellent cycling stability for energy storage, and a high sensitivity of 0.7 mA mM-1 cm-2, a low detection limit of 0.2 μM (S/N = 3), and a wide linear detectable range of 0.005-1.175 mM for electrochemical non-enzymatic detection of glucose.
Collapse
Affiliation(s)
- Li Hua
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing 211816, P. R. China.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Cui T, Zhu Z, Cheng R, Tong YL, Peng G, Wang CF, Chen S. Facile Access to Wearable Device via Microfluidic Spinning of Robust and Aligned Fluorescent Microfibers. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30785-30793. [PMID: 30113800 DOI: 10.1021/acsami.8b11926] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Microfluidic spinning technology (MST) has drawn much attention owing to its ideal platform for ordered fluorescent fibers, along with their large-scale manipulation, high efficiency, flexibility, and environment friendliness. Here, we employed the MST to fabricate a series of uniform fluorescent microfibers. By adjusting the microfluidic spinning parameters, the as-prepared microfibers of different diameters are successfully obtained. For more practice, these regular arranged fibers could be formed to versatile fluorescent codes by using various microfluidic chips. Also, these versatile fluorescent fibers could be further weaved into a white fluorescent film via continuous and cross-spinning process, which could be applied in a white light emitting diode (WLED) and a wearable device. Besides, we investigated the MST-directed microreactors to carry out green synthesis of CdSe quantum dots (QDs) fibers by the knot of Y-type microfluidic chip. The as-prepared CdSe QDs show nice optical property and are good candidate as phosphors in WLED. This strategy offers a facile and environment-friendly route to fluorescent hybrid microfibers and might open their potential application in optical devices, security, and fluorescent coding.
Collapse
Affiliation(s)
- Tingting Cui
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials , Nanjing Tech University , 5 Xin Mofan Road , Nanjing 210009 , P. R. China
| | - Zhijie Zhu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials , Nanjing Tech University , 5 Xin Mofan Road , Nanjing 210009 , P. R. China
| | - Rui Cheng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials , Nanjing Tech University , 5 Xin Mofan Road , Nanjing 210009 , P. R. China
| | - Yu-Long Tong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials , Nanjing Tech University , 5 Xin Mofan Road , Nanjing 210009 , P. R. China
| | - Gang Peng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials , Nanjing Tech University , 5 Xin Mofan Road , Nanjing 210009 , P. R. China
| | - Cai-Feng Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials , Nanjing Tech University , 5 Xin Mofan Road , Nanjing 210009 , P. R. China
| | - Su Chen
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Jiangsu Key Laboratory of Fine Chemicals and Functional Polymer Materials , Nanjing Tech University , 5 Xin Mofan Road , Nanjing 210009 , P. R. China
| |
Collapse
|
33
|
Zhang L, Liu W, Shi W, Xu X, Mao J, Li P, Ye C, Yin R, Ye S, Liu X, Cao X, Gao C. Boosting Lithium Storage Properties of MOF Derivatives through a Wet-Spinning Assembled Fiber Strategy. Chemistry 2018; 24:13792-13799. [PMID: 29992663 DOI: 10.1002/chem.201802826] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Revised: 07/02/2018] [Indexed: 11/05/2022]
Abstract
Graphene composite fibers are of great importance in constructing electrode materials with high flexibility and conductivity for energy storage and electronic devices. Integration of multifunctional metal-organic frameworks (MOFs) into graphene fiber scaffolds enables novel functions and enhanced physical/chemical properties. The close-packed and aligned graphene sheets along with the porous MOF-derived structures can achieve excellent lithium storage performance through synergetic effects. In this work, a facile and general strategy is demonstrated for the preparation of MOF/graphene oxide (GO) fibers, which serve as precursors for the subsequent preparation of porous metal oxide/reduced graphene oxide (rGO) composite fibers. The obtained composites, for example, porous Fe2 O3 /rGO and Co3 O4 /rGO fibers, possess unique features of MOF-derived porous structures and excellent electrical conductivity. When tested as anode materials for lithium-ion batteries in coin cells, the MOF/GO fiber-derived porous metal oxide/rGO composite fibers exhibited high specific capacity, excellent rate capability and cycling performance. Moreover, a flexible fiber battery was fabricated based on the Fe2 O3 /rGO composite fiber, which demonstrates its potential application for flexible electronic devices.
Collapse
Affiliation(s)
- Lin Zhang
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Wenxian Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Wenhui Shi
- Center for Membrane Separation and Water Science and Technology, Ocean College, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Xilian Xu
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Jing Mao
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Peng Li
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Chenzeng Ye
- Center for Membrane Separation and Water Science and Technology, Ocean College, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Ruilian Yin
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Shaofeng Ye
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Xiaoyue Liu
- Center for Membrane Separation and Water Science and Technology, Ocean College, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China
| | - Xiehong Cao
- College of Materials Science and Engineering, Zhejiang University of Technology, 18 Chaowang Road, Hangzhou, 310014, China.,State Key Laboratory Breeding Base of Green Chemistry Synthesis, Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Chao Gao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Polymer Building, 38 Zheda Road, Hangzhou, 310027, China
| |
Collapse
|
34
|
Devkota J, Kim KJ, Ohodnicki PR, Culp JT, Greve DW, Lekse JW. Zeolitic imidazolate framework-coated acoustic sensors for room temperature detection of carbon dioxide and methane. NANOSCALE 2018; 10:8075-8087. [PMID: 29671422 DOI: 10.1039/c7nr09536h] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The integration of nanoporous materials such as metal organic frameworks (MOFs) with sensitive transducers can result in robust sensing platforms for monitoring gases and chemical vapors for a range of applications. Here, we report on an integration of the zeolitic imidazolate framework - 8 (ZIF-8) MOF with surface acoustic wave (SAW) and thickness shear mode quartz crystal microbalance (QCM) devices to monitor carbon dioxide (CO2) and methane (CH4) under ambient conditions. The MOF was directly coated on the Y-Z LiNbO3 SAW delay lines (operating frequency, f0 = 436 MHz) and AT-cut quartz TSM resonators (resonant frequency, f0 = 9 MHz) and the devices were tested for various gases in N2 under ambient conditions. The devices were able to detect the changes in CO2 or CH4 concentrations with relatively higher sensitivity to CO2, which was due to its higher adsorption potential and heavier molecular weight. The sensors showed full reversibility and repeatability which were attributed to the physisorption of the gases into the MOF and high stability of the devices. Both types of sensors showed linear responses relative to changes in the binary gas compositions thereby allowing to construct calibration curves which correlated well with the expected mass changes in the sorbent layer based on mixed-gas gravimetric adsorption isotherms measured on bulk samples. For 200 nm thick films, the SAW sensitivities to CO2 and CH4 were 1.44 × 10-6/vol% and 8 × 10-8/vol%, respectively, against the QCM sensitivities 0.24 × 10-6/vol% and 1 × 10-8/vol%, respectively, which were evaluated as the fractional change in the signal. The SAW sensors were also evaluated for 100 nm-300 nm thick films, the sensitivities of which were found to increase with the thickness due to the increased number of pores for the adsorption of a larger amount of gases. In addition, the MOF-coated SAW delay lines had a good response in wireless mode, demonstrating their potential to operate remotely for the detection of the gases at emission sites across the energy infrastructure.
Collapse
|