1
|
van Wissen G, Lowdon JW, Cleij TJ, Eersels K, van Grinsven B. Porogenic Solvents in Molecularly Imprinted Polymer Synthesis: A Comprehensive Review of Current Practices and Emerging Trends. Polymers (Basel) 2025; 17:1057. [PMID: 40284322 PMCID: PMC12030623 DOI: 10.3390/polym17081057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/08/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
The versatility of molecularly imprinted polymers (MIPs) has led to their integration into applications like biosensing, separation, environmental monitoring, and drug delivery technologies. This diversity of applications has resulted in a plethora of synthesis approaches to precisely tailor the materials' properties to the specific demands. A critical, yet often overlooked, factor in MIP synthesis is the choice of porogen. Porogens play a pivotal role in defining the morphology, surface properties, swelling behavior, and binding efficiencies of the resulting MIPs. While aprotic solvents have traditionally been the standard in molecular imprinting, recent developments have expanded the variety of employed porogens accompanied by notable improvements in MIP performance. Therefore, this review aims to highlight both traditional and emerging types of porogens used in molecular imprinting, their influence on polymer properties and sorption performance, and their application across various sensing and extraction applications.
Collapse
Affiliation(s)
- Gil van Wissen
- Sensor Engineering Department, Faculty of Science and Engineering, Maastricht University, P.O. Box 616, 6200 MD Maastricht, The Netherlands
| | | | | | | | | |
Collapse
|
2
|
Beiranvand M, Yamini Y, Khataei MM. Hydrophobic Deep Eutectic Solvents as New Supported Liquid Membranes for Extraction of β-Blockers by Hollow Fiber-Electromembrane Extraction. J Sep Sci 2025; 48:e70102. [PMID: 40205677 DOI: 10.1002/jssc.70102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 04/11/2025]
Abstract
In this work, an electromembrane extraction method is presented to extract some β-blockers in biological samples. A new hydrophobic deep eutectic solvent, as a green solvent, was synthesized. The hydrophobic deep eutectic solvent was immobilized in the wall pores of the hollow fiber membrane and used as a supported liquid membrane. β-Blockers were transported from the sample solution through an SLM, including tris-(2-ethylhexyl) phosphate, into the acceptor phase located in the lumen of the hollow fiber. High-performance liquid chromatography with ultraviolet detection has been used to separate and analyze the β-blockers. Effective parameters on the extraction efficiency of the β-blockers such as hydrophobic deep eutectic solvent molar ratio (2:1), extraction voltage (75 V), type of ion carrier and its concentration (tris-(2-ethylhexyl) phosphate, 5%), pH of donor and acceptor phases (ultrapure water and 100 mM of HCl), hollow fiber length (7 cm), extraction time (20 min), stirring speed of sample solution (600 rpm), and salt effect (0%) were investigated and optimized. The method provides a decent linearity by the coefficient of determination values higher than 0.9946. Limits of detection were in the range of 0.25-3.3 ng mL-1, and limits of quantification were found in the range of 0.75-10.0 ng mL-1 in water. Finally, the method was successfully used to determine the β-blockers concentrations in real urine and plasma samples with relative recoveries between 90.6% and 108.6%.
Collapse
Affiliation(s)
- Mehri Beiranvand
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | - Yadollah Yamini
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran, Iran
| | | |
Collapse
|
3
|
Zhu N, Liu Z, Zhang Q, He M, Chen B, Hu B. 3D printed clear resin stir bar sorptive extraction coupled with high performance liquid chromatography for trace chlorophenols analysis in environmental water samples. J Chromatogr A 2025; 1743:465693. [PMID: 39855022 DOI: 10.1016/j.chroma.2025.465693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/15/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025]
Abstract
3D printing is an additive manufacturing technology based on digital model files. 3D printing has become a popular manufacturing tool in various fields. Stereolithography offers a series of advantages compared to its counterparts, such as smooth prints, appropriate resolution in all the axes, acceptable organic solvent compatibility and sufficient tightness to the flowing of solutions/solvents at moderate/high pressure. Thus, this work used stereolithography and clear resin (polymethyl methacrylate resin and epoxy resin) to prepare stir bars' coatings, which reduced the size of the fabricated stir bar (1 mm) and no swelling property in organic solvents. In this work, three types of structures were designed as the coatings of stir bars, which were solid, discal, and lattice coatings with equal mass (0.13 g). Because of the largest surface area, lattice coatings were chosen to make clear resin stir bars. The clear resin stir bars were used for stir bar sorptive extraction and combined with high performance liquid chromatography to develop a new method, which was successfully applied to detect four chlorophenols in environmental water samples. Compared with the previous work using melt deposition modeling 3D printing, this work could print hollow structures with higher precision. The stir bars could have higher rotational speed (700 rpm vs 350 rpm), smaller desorption volume (500 μL vs 2 mL), and shorter extraction time (60 min vs 90 min). The stir bars also had excellent mechanical performance and long lifetimes of up to 160 times. LODs of this method were between 0.30 μg/L (2-CP) and 0.97 μg/L (2,4,6-TCP) (S/N = 3), which were below the concentration limits of surface water samples. Relative standard deviations of the stir bars were 1.4-3.9 % (n = 7, c = 10 μg/L).
Collapse
Affiliation(s)
- Ning Zhu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Zhichen Liu
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Qiulin Zhang
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Man He
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Beibei Chen
- Department of Chemistry, Wuhan University, Wuhan 430072, China
| | - Bin Hu
- Department of Chemistry, Wuhan University, Wuhan 430072, China.
| |
Collapse
|
4
|
Song L, Zhang J, Wang M, Huang Z, Zhang Y, Zhang X, Liang Y, He J. Simultaneously Selective Separation of Zearalenone and Four Aflatoxins From Rice Samples Using Co-Pseudo-Template Imprinted Polymers With MIL-101(Cr)-NH2 as Core. J Chromatogr Sci 2024; 62:892-903. [PMID: 38862395 DOI: 10.1093/chromsci/bmae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 04/26/2024] [Indexed: 06/13/2024]
Abstract
A novel approach for the simultaneous separation of zearalenone (ZEN) and four types of aflatoxins (AFB1, AFB2, AFG1 and AFG2) from rice samples was presented. This approach utilized modified MIL-101(Cr)-NH2 as core, with molecularly imprinted polymers (MIPs) serving as the shell. The MIL-101(Cr)-NH2 was prepared via ring-opening reaction, while the imprinted polymers were synthesized using warfarin and 4-methylumbelliferyl acetate as co-pseudo template, ethylene glycol dimethacrylate as the cross-linker and azobisisobutyronitrile as initiator. The resulting co-pseudo-template-MIPs (CPT-MIPs) were thoroughly characterized and evaluated. Adsorption studies demonstrate that the adsorption process of CPT-MIPs follows a chemical monolayer adsorption mechanism, with imprinted factors ranging from 1.24 to 1.52 and selective factors ranging from 1.29 to 1.52. Self-made columns were prepared, and the method for separation was developed and validated. The limit of detections ranged from 0.12 to 2.09 μg/kg, and the limit of qualifications ranged from 1.2 to 6.25 μg/kg. To assess the reliability of the method, ZEN and AFs were spiked at three different levels, and the recoveries ranged from 79.53 to 94.58%, with relative standard deviations of 2.90-5.78%.
Collapse
Affiliation(s)
- Lixin Song
- Department of Environment Engineering, Henan Vocational College of Water Conservancy and Environment, 136 Huayuan Road, Jinshui District, Zhengzhou 450001, PR China
| | - Jian Zhang
- Department of Environment Engineering, Henan Vocational College of Water Conservancy and Environment, 136 Huayuan Road, Jinshui District, Zhengzhou 450001, PR China
| | - Mingyu Wang
- School of Chemistry and Chemical Engineering, Henan University of Technology, 100 Lianhua Road, Zhongyuan District, Zhengzhou 450001, PR China
| | - Zhipeng Huang
- School of Chemistry and Chemical Engineering, Henan University of Technology, 100 Lianhua Road, Zhongyuan District, Zhengzhou 450001, PR China
| | - Yunxia Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, 100 Lianhua Road, Zhongyuan District, Zhengzhou 450001, PR China
| | - Xing Zhang
- School of Chemistry and Chemical Engineering, Henan University of Technology, 100 Lianhua Road, Zhongyuan District, Zhengzhou 450001, PR China
| | - Yutao Liang
- School of Chemistry and Chemical Engineering, Henan University of Technology, 100 Lianhua Road, Zhongyuan District, Zhengzhou 450001, PR China
| | - Juan He
- School of Chemistry and Chemical Engineering, Henan University of Technology, 100 Lianhua Road, Zhongyuan District, Zhengzhou 450001, PR China
| |
Collapse
|
5
|
Xu CY, Zhen CQ, He YJ, Cui YY, Yang CX. Solvent and monomer regulation synthesis of core-shelled magnetic β-cyclodextrin microporous organic network for efficient extraction of estrogens in biological samples prior to HPLC analysis. J Chromatogr A 2024; 1728:464991. [PMID: 38788322 DOI: 10.1016/j.chroma.2024.464991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 05/09/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
The abnormal estrogens levels in human body can cause many side effects and diseases, but the quantitative detection of the trace estrogens in complex biological samples still remains great challenge. Here we reported the fabrication of a novel core-shell structured magnetic cyclodextrin microporous organic network (Fe3O4@CD-MON) for rapid magnetic solid phase extraction (MSPE) of four estrogens in human serum and urine samples prior to HPLC-UV determination. The uniform spherical core-shell Fe3O4@CD-MONs was successfully regulated by altering the reactive monomers and solvents. The Fe3O4@CD-MONs owned high specific surface area, good hydrophobicity, large superparamagnetism, and abundant extraction sites for estrogens. Under optimal conditions, the proposed MSPE-HPLC-UV method provided wide linearity range (2.0-400 μg L-1), low limits of detection (0.5-1.0 μg L-1), large enrichment factors (183-198), less adsorbent consumption (3 mg), short extraction time (3 min), and good stability and reusability (at least 8 cycles). The established method had also been successfully applied to the enrichment and detection of four estrogens in serum and urine samples with a recovery of 88.4-105.1 % and a relative standard deviation of 1.0-5.9 %. This work confirmed the feasibility of solvent and monomer regulation synthesis of Fe3O4@CD-MON composites, and revealed the great prospects of magnetic CD-MONs for efficient enrichment of trace estrogens in complex biological samples.
Collapse
Affiliation(s)
- Chun-Ying Xu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Chang-Qing Zhen
- Department of Hematology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Yu-Jing He
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Yuan-Yuan Cui
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| |
Collapse
|
6
|
Khoshoei-Darki F, Momenbeik F. Melamine sponges incorporated azo-linked porous organic polymer as adsorbent for extraction and determination of six B vitamins using pipette tip micro solid-phase extraction. J Chromatogr A 2024; 1727:464978. [PMID: 38788401 DOI: 10.1016/j.chroma.2024.464978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
A novel azo-linked porous organic polymer (AL-POP) was synthesized from caffeic acid and benzidine via an azo-coupling reaction and characterized by FTIR, SEM-EDS, BET, TGA, XRD and zeta potential analysis. AL-POPs were incorporated into melamine sponges and used for pipette tip micro solid-phase extraction (PT-MSPE) of six types of B vitamins (including thiamine, riboflavin, nicotinamide, pyridoxine, folic acid, and cyanocobalamin). After extraction, the samples were analyzed using high performance liquid chromatography-diode array detection (HPLC-DAD) system. The effect of AL-POP composition on the extraction efficiency (EE) of vitamins was investigated and benzidine to caffeic acid mol ratio of 1.5, 3.35 mmol of NaNO2, and reaction time of 8 h were selected as optimum conditions. The efficiency of the extraction process was improved by optimizing various parameters such as the amount of sorbent, pH and ionic strength of the sample, sample volume, number of sorption and desorption cycles, type of wash solvent, and type and volume of eluent solvent. Linearity (R2≥0.9987), Limit of detection (LOD) (11.88-18.97 ng/mL), limit of quantification (LOQ) (39.62-63.23 ng/mL), and enrichment factor (EF) (1.27-4.31) were obtained using calibration curves plotted under optimum conditions. Recovery values of these six B vitamins in the spiked multivitamin syrup samples varied from 80.01% to 108.35%, with a relative standard deviation (RSD) below 5.44%. Eventually, the optimized method was successfully used to extract and quantify the B vitamins in multivitamin syrup and non-alcoholic beer.
Collapse
Affiliation(s)
| | - Fariborz Momenbeik
- Department of Chemistry, University of Isfahan, Isfahan 81746-73441, Iran.
| |
Collapse
|
7
|
Murugan K, Natarajan A. A novel N-CNDs/PAni modified molecular imprinted polymer for ultraselective and sensitive detection of ciprofloxacin in lentic ecosystems: a dual responsive optical sensor. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:3413-3429. [PMID: 38766762 DOI: 10.1039/d4ay00323c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The research study describes the development of a hybrid nanocomposite called nitro-doped carbon nanodots/polyaniline/molecularly imprinted polymer (N-CNDs/PAni/MIP). This composite is specifically engineered to function as a durable and flexible dual-response sensor to detect and analyze pharmaceutical organic contaminants (POCs). Powder X-Ray diffraction (PXRD), Fourier transform infrared (FT-IR), thermogravimetric analysis (TGA), transmission electron microscopy (TEM), and scanning electron microscopy (SEM) were employed to perform an exhaustive structural and morphological analysis of N-CNDs/PAni/MIP. N-CNDs/PAni/MIP emitted blue luminescence under ultraviolet irradiation and exhibited typical excitation-dependent emission properties. It can act as fluorescent probe for the detection of CIPRO with high selectivity and sensitivity with an IF value of 4.2. Furthermore, N-CNDs/PAni/MIP exhibited high peroxidase-like catalytic behavior. After adding CIPRO to the N-CNDs/PAni/MIP/TMB/H2O2 system, the blue color of the solution faded due to the reduction of blue ox-TMB to colorless TMB. Based on these two phenomena, with CIPRO as the target analyte, the N-CNDs/PAni/MIP dual sensor showed a minimal detection limit of 70 pM for the fluorescent signaling platform and 3.5 nM for the colorimetric probe with a linear range of 0.038-200 nM. The fluorometric and colorimetric assays based on N-CNDs/PAni/MIP for CIPRO detection were then successfully applied to lentic water as well as to tap water samples, demonstrating the sensitivity and dependability of the instrument. Furthermore, the synthesized PVA (N-CNDs/PAni/MIP) films enable the recognition of CIPRO, and these films have the potential to be integrated into portable sensing devices, providing a practical solution for rapid and on-site detection of CIPRO in various samples.
Collapse
Affiliation(s)
- Komal Murugan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603 203, India.
| | - Abirami Natarajan
- Department of Chemistry, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu-603 203, India.
| |
Collapse
|
8
|
Boontongto T, Santaladchaiyakit Y, Burakham R. Molecularly imprinted polymer-coated paper for the selective extraction of organophosphorus pesticides from fruits, vegetables, and cereal grains. Talanta 2024; 270:125536. [PMID: 38101032 DOI: 10.1016/j.talanta.2023.125536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/02/2023] [Accepted: 12/06/2023] [Indexed: 12/17/2023]
Abstract
Biodegradable molecularly imprinted polymer-coated paper (MIP@paper) was effectively produced by polymerization using azinphos-methyl as a template molecule, terephthalic acid as a functional monomer, ethylene glycol dimethacrylate as a cross-linker, and aqueous ethanol as a green porogenic solvent. The material was subsequently composited onto cellulose paper, which served as the natural substrate, by dip coating with the aid of chitosan and citric acid natural adhesive. The properties, such as static and dynamic adsorption, selectivity, and reusability, were assessed. At rapid adsorption equilibrium (10 min), the MIP@paper had a high adsorption capacity in the range of 2.5-3.7 mg g-1 and good recognition with imprinting factors up to 2.1. In addition, the proposed MIP@paper was utilized efficiently as a sorbent for dispersive solid phase extraction (d-SPE) of eight organophosphorus pesticides (OPPs) prior to high-performance liquid chromatography (HPLC) analysis. The d-SPE-HPLC method displayed low detection limits of 1.2-4.5 μg kg-1 and significant enrichment factors (up to 320-fold). The proposed method was effectively applied for the determination of OPP residues in agricultural products, including fruits, vegetables, and cereal grains, with satisfactory spiked recoveries (80.1-119.1 %). Thus, the MIP@paper material provided a selective and environmentally favorable method for extracting and determining organophosphorus pesticides.
Collapse
Affiliation(s)
- Tittaya Boontongto
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Yanawath Santaladchaiyakit
- Department of Chemistry, Faculty of Engineering, Rajamangala University of Technology Isan, Khon Kaen Campus, Khon Kaen 40000, Thailand
| | - Rodjana Burakham
- Materials Chemistry Research Center, Department of Chemistry, Faculty of Science, Khon Kaen University, Khon Kaen 40002, Thailand.
| |
Collapse
|
9
|
Mansi, Balyan U, Bhutani C, Khanna L, Rao S, Singh R, Khanna P. Ultrasound-Assisted Extraction, Optimization, Phytochemical Screening and Analysis of Phenolics from Cycas Zeylanica and Antioxidant Activity Evaluation. Chem Biodivers 2024; 21:e202301436. [PMID: 38358064 DOI: 10.1002/cbdv.202301436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 02/03/2024] [Accepted: 02/14/2024] [Indexed: 02/16/2024]
Abstract
The present study focuses on investigating the phytochemical screening of indigenous species, C. zeylanica, for the first time. The leaf extracts have been prepared using ultrasound-assisted methods to obtain the best extraction results using different time and temperature conditions such as 30, 60, and 90 min. and 30, 40, and 60 °C, respectively. The results have been optimized using response surface methodology. Under the optimal extraction conditions of 60 °C for 43.57 minutes, an extract was produced with a yield of 0.238 g and a high total phenolic content of 181.1965 mg GAE/g. The total phenolic content has been evaluated and the presence of gallic acid has been confirmed through the HPLC technique. The optimal extract (OE) showed excellent antioxidant activity for the DPPH assay, with an IC50 of 3.1 μg/ml. Finally, GC-MS profiling has been done to screen the volatile component of the plant extract.
Collapse
Affiliation(s)
- Mansi
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi, 110078, India
| | - Upasna Balyan
- University School of Chemical Technology, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi, 110078, India
| | - Charu Bhutani
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi, 110078, India
| | - Leena Khanna
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi, 110078, India
| | - Satya Rao
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi, 110078, India
| | - Rita Singh
- University School of Environment Management, Guru Gobind Singh Indraprastha University, Sector 16-C, Dwarka, New Delhi, 110078, India
| | - Pankaj Khanna
- Department of Chemistry, Acharya Narendra Dev College, University of Delhi, Kalkaji, New Delhi, -110019, India
| |
Collapse
|
10
|
Susanti I, Pratiwi R, Rosandi Y, Hasanah AN. Separation Methods of Phenolic Compounds from Plant Extract as Antioxidant Agents Candidate. PLANTS (BASEL, SWITZERLAND) 2024; 13:965. [PMID: 38611494 PMCID: PMC11013868 DOI: 10.3390/plants13070965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024]
Abstract
In recent years, discovering new drug candidates has become a top priority in research. Natural products have proven to be a promising source for such discoveries as many researchers have successfully isolated bioactive compounds with various activities that show potential as drug candidates. Among these compounds, phenolic compounds have been frequently isolated due to their many biological activities, including their role as antioxidants, making them candidates for treating diseases related to oxidative stress. The isolation method is essential, and researchers have sought to find effective procedures that maximize the purity and yield of bioactive compounds. This review aims to provide information on the isolation or separation methods for phenolic compounds with antioxidant activities using column chromatography, medium-pressure liquid chromatography, high-performance liquid chromatography, counter-current chromatography, hydrophilic interaction chromatography, supercritical fluid chromatography, molecularly imprinted technologies, and high-performance thin layer chromatography. For isolation or purification, the molecularly imprinted technologies represent a more accessible and more efficient procedure because they can be applied directly to the extract to reduce the complicated isolation process. However, it still requires further development and refinement.
Collapse
Affiliation(s)
- Ike Susanti
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Jl Raya Bandung Sumedang KM 21 r, Sumedang 45363, Indonesia
| | - Rimadani Pratiwi
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Jl Raya Bandung Sumedang KM 21 r, Sumedang 45363, Indonesia
| | - Yudi Rosandi
- Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| | - Aliya Nur Hasanah
- Pharmaceutical Analysis and Medicinal Chemistry Department, Faculty of Pharmacy, Universitas Padjadjaran, Jl Raya Bandung Sumedang KM 21 r, Sumedang 45363, Indonesia
- Drug Development Study Center, Faculty of Pharmacy, Universitas Padjadjaran, Jl. Raya Bandung Sumedang KM 21, Sumedang 45363, Indonesia
| |
Collapse
|
11
|
Shakeel F, Alam P, Alqarni MH, Iqbal M, Khalid Anwer M, Alshehri S. A greener RP-HPTLC-densitometry method for the quantification of apremilast in nanoformulations and commercial tablets: Greenness assessment by analytical eco-scale, ChlorTox, and AGREE methods. ARAB J CHEM 2024; 17:105571. [DOI: 10.1016/j.arabjc.2023.105571] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
|
12
|
Mardani A, Farajzadeh MA, Nemati M, Afshar Mogaddam MR. In-situ formation of CO 2-incorportaed solid sorbent for dispersive solid phase extraction of phenolic compounds from water and wastewater samples prior to gas chromatography-flame ionization detector. Anal Chim Acta 2024; 1287:342062. [PMID: 38182369 DOI: 10.1016/j.aca.2023.342062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/21/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Herein, a new extraction procedure based on in-situ formation of carbon dioxide-incorporated solid sorbent was introduced for dispersive solid phase extraction of phenolic compounds from aqueous samples. In this study, incorporation of carbon dioxide into the structure of a diamine led to the formation of a solid compound in the sample solution that adsorbed the analytes. RESULTS The sample solution was mixed with isophorone diamine and placed under carbon dioxide stream. By doing so, isophorone diamine reacted with carbon dioxide and produced a carbamic acid analogue. It was dispersed into the sample solution as tiny particles that adsorbed the analytes. The adsorbed analytes were eluted by a volatile organic solvent and concentrated more by the vaporization of the eluate. The extraction procedure was done at low temperature to limit the releasing carbon dioxide from the produced compound. To obtain the reliable results, the method was validated and the obtained limits of detection and quantification were in the ranges of 0.29-41 and 0.96-1.3 ng/mL, respectively. Acceptable relative standard deviation (≤7.3%) and coefficient of determination (≥0.994) values confirmed the method repeatability and linearity. High enrichment factors (410-435) and extraction recoveries (82-87%) were attained with the introduced method. SIGNIFICANCE AND NOVELTY In this work, a chemical reaction was done between isophorone diamine and carbon dioxide in solution. The produced product (sorbent) was insoluble in solution and dispersed in whole parts of the solution as tiny particles. A high contact area between the sorbent and analytes provided high extraction efficiency for the analytes. The method was successful utilized in determining target analytes in real samples and the matrix effect of the samples had no important effect on the obtained results.
Collapse
Affiliation(s)
- Asghar Mardani
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Engineering Faculty, Near East University, 99138, Nicosia, North Cyprus, Mersin 10, Turkey
| | - Mahboob Nemati
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Food and Drug Control, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Zhuang Z, Cheng D, Han B, Li R, Shen Y, Wang M, Wang Z, Ding W, Chen G, Zhou Y, Jing T. Preparation of double-system imprinted polymer-coated multi-walled carbon nanotubes and their application in simultaneous determination of thyroid-disrupting chemicals in dust samples. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 907:167858. [PMID: 37863228 DOI: 10.1016/j.scitotenv.2023.167858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 09/11/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Dust ingestion is a significant route of human exposure to thyroid-disrupting chemicals (TDCs), and simultaneous determination of multi-contaminants is a great challenge for environmental monitoring. In this study, molecularly imprinted polymer-coated multi-walled carbon nanotubes using thyroxine as the template were synthesized for highly selective TDCs capture. This polymer was prepared by integrating the atom transfer radical polymerization using 2-(3-indol-yl)ethylmethacrylamide as the monomer with the self-polymerization of dopamine. Construction of double-system imprinted cavities could significantly improve their selective recognition performance for TDCs and the coincidence rate reached 88.5 %. The prepared polymers were applied as the solid phase extraction adsorbent to simultaneously determine 7 groups of 35 TDCs. The proposed method showed wide linear range (0.25-1000 ng L-1), low limits of detection (0.02-0.23 ng L-1) and acceptable recoveries (81.8 %-103.5 %). The occurrence and distribution of TDCs were then studied in indoor dust samples (n = 65) collected from four cities in China. We found that tetrabromobisphenol A was the predominant compound and perfluorinated compounds were the most abundant TDCs. In addition, the distribution ratio of TDCs varied between regions. This study provides an efficient technology for direct exposure assessment of multi-contaminants.
Collapse
Affiliation(s)
- Zhijia Zhuang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Danqi Cheng
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Bin Han
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Ruifang Li
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yang Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Mengyi Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Zhu Wang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Wenping Ding
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Guang Chen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Yikai Zhou
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China
| | - Tao Jing
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, Hubei 430030, China.
| |
Collapse
|
14
|
Li Y, Yan Z, Fan J, Yao X, Cai Y. Preparation of COF-coated nickel foam adsorbents for dispersive solid-phase extraction of 16 polycyclic aromatic hydrocarbons from Chinese herbal medicines. Talanta 2023; 265:124916. [PMID: 37442001 DOI: 10.1016/j.talanta.2023.124916] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023]
Abstract
Covalent organic framework coated nickel foam (NF@COF) was prepared as a sorbent for the dispersive solid phase extraction (DSPE) of polycyclic aromatic hydrocarbons (PAHs) from Chinese herbal medicines (CHMs) prior to their determination by gas chromatography-mass spectrometry (GC-MS). The structure and morphology of the as-synthesized NF@COF were characterized by different techniques. Various key parameters affecting the performance of the DSPE method, including the amount of sorbent, desorption solvent, desorption volume and time, extraction time, and sample volume, were investigated. Under the optimized conditions, NF@COF combined with GC-MS was successfully applied to the determination of 16 PAHs in CHMs. The method showed wide linearity (20-2000 ng mL-1), low limits of determination (0.3-2.7 ng mL-1), and high recoveries (78.0-124%). These results revealed that NF@COF has the potential for efficient extraction of PAHs from complex samples.
Collapse
Affiliation(s)
- Yang Li
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| | - Zhihong Yan
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Jiahua Fan
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Xuelian Yao
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China
| | - Ying Cai
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, Jiangxi, 330004, China.
| |
Collapse
|
15
|
Ashour ES, Hegazy MA, Al-Alamein AMA, El-Sayed GM, Ghoniem NS. Green chromatographic methods for determination of co-formulated lidocaine hydrochloride and miconazole nitrate along with an endocrine disruptor preservative and potential impurity. BMC Chem 2023; 17:151. [PMID: 37941018 PMCID: PMC10633899 DOI: 10.1186/s13065-023-01065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 10/26/2023] [Indexed: 11/10/2023] Open
Abstract
Recently, green analytical chemistry (GAC) is a key issue towards the idea of sustainability, the analytical community is focused on developing analytical methods that incorporate green chemistry principles to minimize adverse impacts on the environment and humans. Herein, we present 2 sustainable, selective, and validated chromatographic methods. Initially, lidocaine hydrochloride (LDC) and miconazole nitrate (MIC) with two preservatives; methyl paraben (MTP) and saccharin sodium (SAC) were chromatographed via TLC-densitometric method which employed ethyl acetate: methanol: formic acid (9:1:0.1, by volume) as the mobile phase with UV detection at 220.0 nm, good correlation was obtained in the range of 0.3-3.0 µg/band for MIC and LDC. Following that, RP-HPLC was successfully applied for separating quinary mixture of LDC, MIC, MTP, SAC along with LDC impurity; dimethyl aniline (DMA) using C18 column, and a gradient green mobile phase composed of methanol and phosphate buffer (pH 6.0) in different ratios with a flow rate 1.5 mL/min and UV detection at 210.0 nm, linearity ranges from 1.00 to 100.00 µg/mL for MIC, 2.00-100.00 µg/mL for LDC and 1.00--20.00 µg/mL for MTP and DMA. No records to date regarding the determination of the two drugs, besides MTP and DMA. The proposed methods were validated according to the ICH guidelines and applied successfully to the analysis of the compounds. The methods' results were statistically compared to those obtained by applying the reported one, indicating no significant difference regarding both accuracy and precision. The methods' greenness profiles have been assessed and compared with those of the reported method using different assessment tools.
Collapse
Affiliation(s)
- Esraa S Ashour
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El-Aini, Cairo, 11562, Egypt.
| | - Maha A Hegazy
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El-Aini, Cairo, 11562, Egypt
| | - Amal M Abou Al-Alamein
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El-Aini, Cairo, 11562, Egypt
| | - Ghada M El-Sayed
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El-Aini, Cairo, 11562, Egypt
| | - Nermine S Ghoniem
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El-Aini, Cairo, 11562, Egypt
| |
Collapse
|
16
|
Wang S, Zhang L, Zeng J, Hu X, Wang X, Yu L, Wang D, Cheng L, Ahmed R, Romanovski V, Li P, Zhang Z. Multi-templates molecularly imprinted polymers for simultaneous recognition of multiple targets: From academy to application. Trends Analyt Chem 2023; 166:117173. [DOI: 10.1016/j.trac.2023.117173] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
|
17
|
Moradi N, Soufi G, Kabir A, Karimi M, Bagheri H. Polyester fabric-based nano copper-polyhedral oligomeric silsesquioxanes sorbent for thin film extraction of non-steroidal anti-inflammatory drugs. Anal Chim Acta 2023; 1270:341461. [PMID: 37311613 DOI: 10.1016/j.aca.2023.341461] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/24/2023] [Accepted: 05/30/2023] [Indexed: 06/15/2023]
Abstract
In this study, in-situ preparation of copper nanoparticles under sonoheating conditions followed by coating on commercial polyester fabric is reported. Through the self-assembly interaction of thiol groups and copper nanoparticles, the modified polyhedral oligomeric silsesquioxanes (POSS) was deposited on the fabric's surface. In the next step, radical thiol-ene click reactions were implemented to create more layers of POSSs. Subsequently, the modified fabric was applied for sorptive thin film extraction of non-steroidal anti-inflammatory drugs (NSAIDs) including naproxen, ibuprofen, diclofenac, and mefenamic acid from urine samples, followed by high-performance liquid chromatography equipped with a UV detector. The morphology of the prepared fabric phase was characterized by scanning electron microscopy, water angle contact, energy dispersive spectrometry mapping, analysis of nitrogen adsorption-desorption isotherms, and attenuated total reflectance Fourier transform infrared spectroscopy. The significant extraction parameters, including the acidity of the sample solution, desorption solvent and its volume, extraction time, and desorption time, were investigated using the one-variable-at-a-time approach. Under the optimal condition, NSAIDs' detection limit was 0.3-1 ng mL-1 with a wide linear range of 1-1000 ng mL-1. The recovery values were between 94.0% and 110.0%, with relative standard deviations of less than 6.3%. The prepared fabric phase exhibited acceptable repeatability, stability, and sorption property toward NSAIDs in urine samples.
Collapse
Affiliation(s)
- Nasrin Moradi
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran
| | - Gohar Soufi
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran
| | - Abuzar Kabir
- Department of Chemistry and Biochemistry, Florida International University, Miami, FL, USA
| | - Majid Karimi
- Polymerization Engineering Department, Iran Polymer and Petrochemical Institute (IPPI), P.O. Box 14965/115, Tehran, Iran
| | - Habib Bagheri
- Environmental and Bio-Analytical Laboratories, Department of Chemistry, Sharif University of Technology, P.O. Box 11365-9516, Tehran, Iran.
| |
Collapse
|
18
|
Surapong N, Pongpinyo P, Santaladchaiyakit Y, Burakham R. A biobased magnetic dual-dummy-template molecularly imprinted polymer using a deep eutectic solvent as a coporogen for highly selective enrichment of organophosphates. Food Chem 2023; 418:136045. [PMID: 36996646 DOI: 10.1016/j.foodchem.2023.136045] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/23/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023]
Abstract
An eco-friendly magnetic dual-dummy-template molecularly imprinted polymer (MDDMIP) was prepared by a "one-pot" green synthesis using mixed-valence iron hydroxide as the magnetic material, a deep eutectic solvent as the coporogen, and caffeic acid and glutamic acid as binary monomers. The adsorption properties toward organophosphorus pesticides (OPPs) were investigated. High adsorption capacities (269.65-304.93 mg g-1), quick adsorption times (20 s), and high imprinting factors (2.28-3.83) were obtained. The proposed MDDMIP was utilized for magnetic solid phase extraction (MSPE) of OPPs prior to quantification by high performance liquid chromatography (HPLC). The developed method exhibited outstanding linearity (0.05-500 μg L-1), low detection limits (0.003-0.015 μg L-1), and excellent enrichment factors (940-1310 folds). The MSPE-HPLC method was successfully applied for the detection of OPPs in vegetable, fruit, and grain samples with acceptable recoveries (80-119%). This method is a good potential method for the analysis of pesticide residues in complex matrices.
Collapse
|
19
|
Shamim A, Ansari MJ, Aodah A, Iqbal M, Aqil M, Mirza MA, Iqbal Z, Ali A. QbD-Engineered Development and Validation of a RP-HPLC Method for Simultaneous Estimation of Rutin and Ciprofloxacin HCl in Bilosomal Nanoformulation. ACS OMEGA 2023; 8:21618-21627. [PMID: 37360463 PMCID: PMC10286274 DOI: 10.1021/acsomega.3c00956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/23/2023] [Indexed: 06/28/2023]
Abstract
In the given study, a new reverse-phase high-performance liquid chromatography (RP-HPLC) method has been reported for the simultaneous estimation of ciprofloxacin hydrochloride (CPX) and rutin (RUT) using quality by design (QbD) approach. The analysis was carried out by applying the Box-Behnken design having fewer design points and less experimental runs. It relates between factors and responses and gives statistically significant values, along with enhancing the quality of the analysis. CPX and RUT were separated on the Kromasil C18 column (4.6 × 150 mm, 5 μm) using an isocratic mobile phase combination of phosphoric acid buffer (pH 3.0) and acetonitrile with the ratio of 87:13% v/v at a flow rate of 1.0 mL/min. CPX and RUT were detected at their respective wavelengths of 278 and 368 nm using a photodiode array detector. The developed method was validated according to guideline ICH Q2 R (1). The validation parameters taken were linearity, system suitability, accuracy, precision, robustness, sensitivity, and solution stability which were in the acceptable range. The findings suggest that the developed RP-HPLC method can be successfully applied to analyze novel CPX-RUT-loaded bilosomal nanoformulation prepared by thin-film hydration technique.
Collapse
Affiliation(s)
- Athar Shamim
- Department
of Pharmaceutics, School of Pharmaceutical
Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohammad Javed Ansari
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Alhussain Aodah
- Department
of Pharmaceutics, College of Pharmacy, Prince
Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Muzaffar Iqbal
- Department
of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451,Saudi Arabia
| | - Mohd. Aqil
- Department
of Pharmaceutics, School of Pharmaceutical
Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Mohd. Aamir Mirza
- Department
of Pharmaceutics, School of Pharmaceutical
Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Zeenat Iqbal
- Department
of Pharmaceutics, School of Pharmaceutical
Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Asgar Ali
- Department
of Pharmaceutics, School of Pharmaceutical
Education and Research, Jamia Hamdard, New Delhi 110062, India
| |
Collapse
|
20
|
Xiang J, Zhou P, Mei H, Liu X, Wang H, Wang X, Li Y. Highly efficient nanocomposites based on molecularly imprinted magnetic covalent organic frameworks for selective extraction of bisphenol A from liquid matrices. Mikrochim Acta 2023; 190:200. [PMID: 37140689 DOI: 10.1007/s00604-023-05778-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 04/02/2023] [Indexed: 05/05/2023]
Abstract
Highly efficient nanocomposites, hydrophobic molecularly imprinted magnetic covalent organic frameworks (MI-MCOF), have been farbricated by a facile Schiff-base reaction. The MI-MCOF was based on terephthalaldehyde (TPA) and 1,3,5-tris(4-aminophenyl) benzene (TAPB) as functional monomer and crosslinker, anhydrous acetic acid as catalyst, bisphenol AF as dummy template, and NiFe2O4 as magnetic core. This organic framework significantly reduced the time consumption of conventional imprinted polymerization and avoided the use of traditional initiator and cross-linking agents. The synthesized MI-MCOF exhibited superior magnetic responsivity and affinity, as well as high selectivity and kinetics for bisphenol A (BPA) in water and urine samples. The equilibrium adsorption capacity (Qe) of BPA on the MI-MCOF was 50.65 mg g-1, which was 3-7-fold higher than of its three structural analogues. The imprinting factor of BPA reached up to 3.17, and the selective coefficients of three analogues were all > 2.0, evidencing the excellent selectivity of fabricated nanocomposites to BPA. Based on the MI-MCOF nanocomposites, the magnetic solid-phase extraction (MSPE), combined with HPLC and fluorescence detection (HPLC-FLD), offered superior analytical performance: wide linear range of 0.1-100 μg L-1, high correlation coefficient of 0.9996, low limit of detection of 0.020 μg L-1, good recoveries of 83.5-110%, and relative standard deviations (RSDs) of 0.5-5.7% in environmental water, beverage, and human urine samples. Consequently, the MI-MCOF-MSPE/HPLC-FLD method provides a good prospect in selective extraction of BPA from complex matrices while replacing traditional magnetic separation and adsorption materials.
Collapse
Affiliation(s)
- Jianxing Xiang
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
- Chongqing Jiangbei Center for Disease Control and Prevention, Chongqing, 400000, China
| | - Peipei Zhou
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - He Mei
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Xiaodong Liu
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China
| | - Huili Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Yanyan Li
- College of Public Health and Management, Wenzhou Medical University, Wenzhou, 325035, China.
- Department of Sports and Health, Guangzhou Sport University, Guangzhou, 510500, China.
| |
Collapse
|
21
|
Chen J, Xu F, Wang Y. Biomass-derived magnetic nanocomposites modified by choline chloride/citric acid based natural deep eutectic solvents for the magnetic solid phase extraction of trypsin. Analyst 2023; 148:2316-2326. [PMID: 37096998 DOI: 10.1039/d3an00273j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
A novel biomass-derived magnetic nanocomposite of Fe3O4-Chitin@NADES-CC composed of a natural deep eutectic solvent (NADES), biological polysaccharide (Chitin) and magnetic Fe3O4 was synthesized. After being systematically characterized by Fourier transform infrared spectrometry, thermogravimetry, vibrating sample magnetometry, X-ray diffraction, transmission electron microscopy and dynamic light scattering, Fe3O4-Chitin@NADES-CC was used as an extractant to separate trypsin (Tryp) on the basis of magnetic solid phase extraction. Simultaneously, the extraction conditions of Fe3O4-Chitin@NADES-CC for Tryp were investigated in turn by single-factor experiments, including screening the types of extractants, the initial concentration of Tryp, the pH value of the solution, the influence of ionic strength, extraction time and temperature, etc. Under the optimal conditions, the extraction capacity of Fe3O4-Chitin@NADES-CC for Tryp could reach up to 1082.67 mg g-1. Adsorption isotherm tests certified that the Langmuir adsorption equilibrium fitted well with the extraction model in this study, which showed that the extraction of Fe3O4-Chitin@NADES-CC for Tryp was monolayer adsorption. In addition, in the sections on the regeneration-reuse, selectivity and methodological studies, all the results exhibited the superiority of the Fe3O4-Chitin@NADES-CC and Tryp separation strategy which has been established in this work. Finally, Fe3O4-Chitin@NADES-CC was ultimately applied to the separation of Tryp from a real bovine pancreas crude extract by the analysis of SDS-PAGE. All the above results highlight that the proposed Fe3O4-Chitin@NADES-CC biomass-derived magnetic nanocomposite can be applied in the field of protein purification.
Collapse
Affiliation(s)
- Jing Chen
- College of Material and Chemical Engineering, Tongren University, Tongren, 554300, P.R. China.
| | - Fangting Xu
- Hengyang Animal Husbandry and Fisheries Affairs Center, Hengyang, 421001, P.R. China
| | - Yuzhi Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P.R. China.
| |
Collapse
|
22
|
Bosco CD, De Cesaris MG, Felli N, Lucci E, Fanali S, Gentili A. Carbon nanomaterial-based membranes in solid-phase extraction. Mikrochim Acta 2023; 190:175. [PMID: 37022492 PMCID: PMC10079727 DOI: 10.1007/s00604-023-05741-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/09/2023] [Indexed: 04/07/2023]
Abstract
Carbon nanomaterials (CNMs) have some excellent properties that make them ideal candidates as sorbents for solid-phase extraction (SPE). However, practical difficulties related to their handling (dispersion in the atmosphere, bundling phenomena, reduced adsorption capability, sorbent loss in cartridge/column format, etc.) have hindered their direct use for conventional SPE modes. Therefore, researchers working in the field of extraction science have looked for new solutions to avoid the above-mentioned problems. One of these is the design of CNM-based membranes. These devices can be of two different types: membranes that are exclusively composed of CNMs (i.e. buckypaper and graphene oxide paper) and polysaccharide membranes containing dispersed CNMs. A membrane can be used either as a filter, operating under flow-through mode, or as a rotating device, operating under the action of magnetic stirring. In both cases, the main advantages arising from the use of membranes are excellent results in terms of transport rates, adsorption capability, high throughput, and ease of employment. This review covers the preparation/synthesis procedures of such membranes and their potential in SPE applications, highlighting benefits and shortcomings in comparison with conventional SPE materials (especially, microparticles carbonaceous sorbents) and devices. Further challenges and expected improvements are addressed too.
Collapse
Affiliation(s)
- Chiara Dal Bosco
- Department of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185, Rome, Italy
| | | | - Nina Felli
- Department of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Elena Lucci
- Department of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185, Rome, Italy
| | - Salvatore Fanali
- Teaching Committee of Ph.D. School in Nanoscience and Advanced Technologies, University of Verona, Strada Le Grazie, 15 37129, Verona, Italy
| | - Alessandra Gentili
- Department of Chemistry, Sapienza University, P.le Aldo Moro 5, 00185, Rome, Italy.
- Hydro-Eco Research Centre, Sapienza University, Rome, Italy.
| |
Collapse
|
23
|
Zhang W, Feng Y, Pan L, Zhang G, Guo Y, Zhao W, Xie Z, Zhang S. Silica microparticles modified with ionic liquid bonded chitosan as hydrophilic moieties for preparation of high-performance liquid chromatographic stationary phases. Mikrochim Acta 2023; 190:176. [PMID: 37022499 DOI: 10.1007/s00604-023-05755-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 03/16/2023] [Indexed: 04/07/2023]
Abstract
Two novel stationary phases, 1-(4-bromobutyl)-3-methylimidazolium bromide bonded chitosan modified silica and 1-(4-bromobutyl)-3-methylimidazolium bromide bonded chitosan derivatized calix[4]arene modified silica stationary phase, were synthesized using 1-(4-bromobutyl)-3-methylimidazolium bromide bonding chitosan as a polarity regulator solving the limitation of the strong hydrophobicity of calixarene in the application of hydrophilic field. The resulting materials were characterized by solid-state nuclear magnetic resonance, Fourier-transform infrared spectra, scanning electron microscopy, elemental analysis, and thermogravimetric analysis. Based on the hydrophilicity endowed by 1-(4-bromobutyl)-3-methylimidazolium bromide bonded chitosan, the retention mode of ILC-Sil and ILCC4-Sil could be effectively switched from the hydrophilic mode to a hydrophilic/hydrophobic mixed mode and could simultaneously provide various interactions with solutes, including hydrophilic, π-π, ion-exchange, inclusion, hydrophobic, and electrostatic interactions. On the basis of these interactions, successful separation and higher shape selectivity were achieved among compounds that vary in polarity under both reverse-phase and hydrophilic interactive liquid chromatography conditions. Moreover, the ILCC4-Sil was successfully applied to the determination of morphine in actual samples using solid-phase extraction and mass spectrometry. The LOD and LOQ were 15 pg/mL and 54 pg/mL, respectively. This work presents an exceptionally flexible adjustment strategy for the retention and selectivity of a silica stationary phase by tuning the modification group.
Collapse
Affiliation(s)
- Wenfen Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
| | - Yumin Feng
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Long Pan
- College of Biological Engineering, Henan University of Technology, Zhengzhou, 450001, People's Republic of China
| | - Guangrui Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Yun Guo
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Wuduo Zhao
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Zhengkun Xie
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, People's Republic of China
| | - Shusheng Zhang
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, People's Republic of China.
- Laboratory of Zhongyuan, Flavour Science Research Center of Zhengzhou University, Kexue Avenue 100, Zhengzhou, Henan, 450001, People's Republic of China.
| |
Collapse
|
24
|
Rajpal S, Mishra P, Mizaikoff B. Rational In Silico Design of Molecularly Imprinted Polymers: Current Challenges and Future Potential. Int J Mol Sci 2023; 24:ijms24076785. [PMID: 37047758 PMCID: PMC10095314 DOI: 10.3390/ijms24076785] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
The rational design of molecularly imprinted polymers has evolved along with state-of-the-art experimental imprinting strategies taking advantage of sophisticated computational tools. In silico methods enable the screening and simulation of innovative polymerization components and conditions superseding conventional formulations. The combined use of quantum mechanics, molecular mechanics, and molecular dynamics strategies allows for macromolecular modelling to study the systematic translation from the pre- to the post-polymerization stage. However, predictive design and high-performance computing to advance MIP development are neither fully explored nor practiced comprehensively on a routine basis to date. In this review, we focus on different steps along the molecular imprinting process and discuss appropriate computational methods that may assist in optimizing the associated experimental strategies. We discuss the potential, challenges, and limitations of computational approaches including ML/AI and present perspectives that may guide next-generation rational MIP design for accelerating the discovery of innovative molecularly templated materials.
Collapse
Affiliation(s)
- Soumya Rajpal
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | - Prashant Mishra
- Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology Delhi, New Delhi 110016, India
| | - Boris Mizaikoff
- Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
- Hahn-Schickard, Sedanstraße 14, 89077 Ulm, Germany
| |
Collapse
|
25
|
Ding YZ, Zhang YD, Shi YP. Transition metal composites for selective analysis of vitamin B 2 in rice by ultrahigh-performance liquid chromatography-tandem mass spectrometry. J Chromatogr A 2023; 1693:463881. [PMID: 36857984 DOI: 10.1016/j.chroma.2023.463881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 03/03/2023]
Abstract
A novel amino-functionalized zinc ferrite nanoparticles/MXene (ZnFe2O4-NH2/MXene composite which consist of ZnFe2O4-NH2 and single/few layers MXene was designed and synthesized as an efficient extractant for analysis of vitamin B2 in rice first combined with ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). As a result, the single/few layer MXene was tightly attached to the spherical ZnFe2O4-NH2 nanoparticles by electrostatic self-assembly interaction, which present large specific surface area and fast mass transfer rate. The relevant experimental parameters, including the pH of the solution, extraction time, adsorbent amount, desorption solvent, desorption solvent volume and desorption time were investigated and optimized. Under optimum conditions, the ZnFe2O4-NH2/MXene composite exhibited excellent selectivity and adsorption capacity for vitamin B2 through hydrogen bonding interactions and the metal-π complexation interaction. The adsorption kinetics, isotherms, and thermodynamic studies were systemically investigated to evaluate the adsorption mechanism and characteristics, which ascribed to chemical adsorption, monolayer adsorption and a spontaneous endothermic process. Furthermore, the performance of the proved method was validated with the good linear correlation coefficient (r = 0.999), low limit of detection (0.86 ng·mL-1) and the limit of quantification (2.98 ng·mL-1), satisfactory recoveries (81.7-102.5%) and reasonable accuracy (RSD<7.8%). The theoretical and technological underpinning for investigating the kinship amongst vitamin alterations and the degree of rice storage was set using this suggested approach to assess vitamin B2 in rice from various years.
Collapse
Affiliation(s)
- Yu-Zhu Ding
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yi-Da Zhang
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Yan-Ping Shi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.
| |
Collapse
|
26
|
Yontar AK, Çevik S. Effects of Plant Extracts and Green-Synthesized Silver Nanoparticles on the Polyvinyl Alcohol (PVA) Nanocomposite Films. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2023. [DOI: 10.1007/s13369-023-07643-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
27
|
Shirani M, Aslani A, Ansari F, Parandi E, Nodeh HR, Jahanmard E. Zirconium oxide/ titanium oxide nanorod decorated nickel foam as an efficient sorbent in syringe filter based solid-phase extraction of pesticides in some vegetables. Microchem J 2023. [DOI: 10.1016/j.microc.2023.108507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Yadav S, Shah A, Malhotra P. Orange Pomace Facilitated Synthesis of Cu
2
O/ZnO Nanocomposites for Visual and Optical Sensing of Silver Ions in Water for Environmental Remediation. ChemistrySelect 2023. [DOI: 10.1002/slct.202203775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Sushma Yadav
- Department of Chemistry Daulat Ram College University of Delhi Delhi 110007 India
| | - Anjali Shah
- Department of Chemistry Daulat Ram College University of Delhi Delhi 110007 India
| | - Priti Malhotra
- Department of Chemistry Daulat Ram College University of Delhi Delhi 110007 India
- Institute of Eminence School of Climate Change and Sustainability University of Delhi Delhi India
| |
Collapse
|
29
|
Hedar M, Intisar A, Hussain T, Hussain N, Bilal M. Challenges and Issues in Biopolymer Applications. HANDBOOK OF BIOPOLYMERS 2023:1497-1511. [DOI: 10.1007/978-981-19-0710-4_55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
30
|
Wang T, Xie H, Cao Y, Xu Q, Gan N. Magnetic solid phase extraction coupled with high-performance liquid chromatography-diode array detection based on assembled magnetic covalent organic frameworks for selective extraction and detection of microcystins in aquatic foods. J Chromatogr A 2022; 1685:463614. [DOI: 10.1016/j.chroma.2022.463614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/25/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
31
|
Colorimetric and fluorogenic detection of nitrite anion in water and food based on Griess reaction of fluorene derivatives. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
32
|
Bagheri AR, Aramesh N, Lee HK. Chitosan- and/or cellulose-based materials in analytical extraction processes: A review. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
33
|
Sun M, Feng J, Feng Y, Xin X, Ding Y, Sun M. Preparation of ionic covalent organic frameworks and their applications in solid-phase extraction. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
34
|
Ma X, Lin H, Yong Y, Ju X, Li Y, Liu X, Yu Z, Wujin C, She Y, Zhang J, Abd El-Aty AM. Molecularly imprinted polymer-specific solid-phase extraction for the determination of 4-hydroxy-2(3H)benzoxazolone isolated from Acanthus ilicifolius Linnaeus using high-performance liquid chromatography-tandem mass spectrometry. Front Nutr 2022; 9:950044. [PMID: 36337639 PMCID: PMC9634063 DOI: 10.3389/fnut.2022.950044] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/04/2022] [Indexed: 11/13/2022] Open
Abstract
The minor constituent found in Acanthus ilicifolius Linnaeus, 4-hydroxy-2 (3H) benzoxazolone alkaloid (HBOA), has a range of versatile applications. Herein, a quick and straightforward method for extracting HBOA from A. ilicifolius Linnaeus was proposed. HBOA was used as a template, whereas methacrylic acid, ethylene glycol dimethacrylate, and acetonitrile were used as functional monomers, cross-linkers, and porogens, respectively. Molecularly imprinted polymers (MIPs) were synthesized by precipitation polymerization, and their adsorption isotherms, dynamics, and selective binding ability were characterized and analyzed. The results showed that the adsorption amount of the template was 90.18 mg/g. The MIPs were used as solid-phase extraction fillers and actual sample extraction columns, with a linear range of 0–100 μg/L, average recovery of 78.50–101.12%, and a relative standard deviation of 1.20–3.26%. The HBOA concentrations in the roots, stems, and leaves were 1,226, 557, and 205 μg/g, respectively. In addition, MIP–SPE was successfully used in isolating and purifying HBOA from different parts of A. ilicifolius Linnaeus, indicating its effectiveness in extracting and determining HBOA in other herbs.
Collapse
Affiliation(s)
- Xingbin Ma
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China
| | - Hongling Lin
- Zhanjiang Experimental Station, Southern-Subtropical Crop Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- College of Veterinary Medicine, Gansu Agricultural University, Lanzhou, China
- Key Lab of Veterinary Pharmaceutics Development, Ministry of Agriculture/Key Lab of New Animal Drug Project, Gansu Province/Lanzhou Institute of Husbandry Science and Veterinary Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- *Correspondence: Hongling Lin
| | - Yanhong Yong
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China
| | - Xianghong Ju
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China
| | - Youquan Li
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China
| | - Xiaoxi Liu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China
| | - Zhichao Yu
- Department of Veterinary Medicine, Guangdong Ocean University, Zhanjiang, China
| | - Cuomu Wujin
- Institute of Veterinary and Animal Husbandry, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - Yongxin She
- Institute of Quality Standards and Testing Technology for Agri-Products, Chinese Academy of Agricultural Sciences, Beijing, China
- Yongxin She
| | - Jiyu Zhang
- Key Lab of Veterinary Pharmaceutics Development, Ministry of Agriculture/Key Lab of New Animal Drug Project, Gansu Province/Lanzhou Institute of Husbandry Science and Veterinary Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Institute of Veterinary and Animal Husbandry, Tibet Academy of Agricultural and Animal Husbandry Sciences, Lhasa, China
| | - A. M. Abd El-Aty
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan, China
- Department of Pharmacology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
- Department of Medical Pharmacology, Medical Faculty, Ataturk University, Erzurum, Turkey
| |
Collapse
|
35
|
Çatak J, Gizlici MN. The effect of in vitro simulated gastrointestinal digestive system on the biodegradation of B group vitamins in bread. Heliyon 2022; 8:e11061. [PMID: 36281396 PMCID: PMC9587319 DOI: 10.1016/j.heliyon.2022.e11061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 04/06/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Today, there is a growing interest in the consumption of whole grain products and the development of bread enriched with vitamins that have functional properties. Considerable losses arise in naturally found vitamins with food processing. Therefore, it is recommended to add vitamins to bread to obtain a satisfactory level. The aim of the current research was to investigate and assess the bioaccessibilities of the vitamins B1, B2, B3, and B6 in enriched commercial whole wheat breads by an in vitro digestion model. The average bioaccessibility of vitamin B1, B2, B3, and B6 in enriched breads after digestion was 80%, 64%, 79%, and 64%, respectively. After digestion, the bioaccessibilities of vitamins were affected. Mainly, vitamins B2 and B6 had the lowest bioaccessibility than vitamins B1 and B3. In vitro bioaccessibility was 70.9–90.2%, 54.2–89.7%, 42.1–94.9%, and 44.1–92.5% for vitamins B1, B2, B3, and B6, respectively in enriched commercial whole wheat bread. Vitamin B3 was seen with predominantly higher levels among the breads. Knowing the content of these vitamins in breads after digestion is necessary for the healthy nutrition of the population and for determining daily intake.
Collapse
|
36
|
Wang L, Wen L, Chen Y, Wang F, Li C. Construction of ratiometric fluorescence sensor and test strip with smartphone based on molecularly imprinted dual-emission quantum dots for the selective and sensitive detection of domoic acid. CHEMOSPHERE 2022; 304:135405. [PMID: 35724721 DOI: 10.1016/j.chemosphere.2022.135405] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Domoic acid (DA), a highly neurotoxic metabolite produced by phytoplankton, contaminates seafood products and threats humankind. Herein, we have proposed a molecular imprinting fluorescence sensor with internal standard ratiometric mode for sensing of DA in seafood and seawater. In this study, the silicon-coated blue luminous carbon dots (B-CDs@SiO2) and CdTe acted as reference probe (430 nm) and response probe (610 nm), respectively. Subsequently, the two probes were assembled and the molecularly imprinted polymer (MIP) was introduced as the recognition element to construct the core component of the sensor (B-CDs@SiO2/CdTe MIP). When DA exists, it can be specifically adsorbed by the amino-rich imprinted sites on surface of B-CDs@SiO2/CdTe MIP and further assembled into the hydrogen-bonds complex, which can lead to the decrease in the fluorescence signal of MIP at 610 nm owing to the electron transfer from CdTe to DA. However, the fluorescence signal of MIP at 430 nm is not affected because of the protection of silica layer. Based on this principle, the designed internal standard ratiometric fluorescence sensor reveals high sensitivity, excellent selectivity, and wide linear range of 0.03-1 μM with a detection limit of 18 nM. Further, the portable fluorescent test strip with smartphone has been designed for semi-quantitative sensing of DA, which has potential application prospects for field analysis.
Collapse
Affiliation(s)
- Linjie Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Lejuan Wen
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Yixin Chen
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China
| | - Fei Wang
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China; Cell and Biomolecule Recognition Research Center, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China.
| | - Caolong Li
- Department of Chemistry, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China; Cell and Biomolecule Recognition Research Center, School of Science, China Pharmaceutical University, Nanjing, 211198, Jiangsu, PR China.
| |
Collapse
|
37
|
Ostovan A, Arabi M, Wang Y, Li J, Li B, Wang X, Chen L. Greenificated Molecularly Imprinted Materials for Advanced Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203154. [PMID: 35734896 DOI: 10.1002/adma.202203154] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/12/2022] [Indexed: 06/15/2023]
Abstract
Molecular imprinting technology (MIT) produces artificial binding sites with precise complementarity to substrates and thereby is capable of exquisite molecular recognition. Over five decades of evolution, it is predicted that the resulting host imprinted materials will overtake natural receptors for research and application purposes, but in practice, this has not yet been realized due to the unsustainability of their life cycles (i.e., precursors, creation, use, recycling, and end-of-life). To address this issue, greenificated molecularly imprinted polymers (GMIPs) are a new class of plastic antibodies that have approached sustainability by following one or more of the greenification principles, while also demonstrating more far-reaching applications compared to their natural counterparts. In this review, the most recent developments in the delicate design and advanced application of GMIPs in six fast-growing and emerging fields are surveyed, namely biomedicine/therapy, catalysis, energy harvesting/storage, nanoparticle detection, gas sensing/adsorption, and environmental remediation. In addition, their distinct features are highlighted, and the optimal means to utilize these features for attaining incredibly far-reaching applications are discussed. Importantly, the obscure technical challenges of the greenificated MIT are revealed, and conceivable solutions are offered. Lastly, several perspectives on future research directions are proposed.
Collapse
Affiliation(s)
- Abbas Ostovan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Maryam Arabi
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Yunqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Jinhua Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Bowei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
| | - Xiaoyan Wang
- School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Shandong Key Laboratory of Coastal Environmental Processes, Shandong Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao, 266237, China
- School of Environmental & Municipal Engineering, Qingdao University of Technology, Qingdao, 266033, China
| |
Collapse
|
38
|
Green chromatography as a novel alternative for the quality control of Serjania marginata Casar. Leaves. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
39
|
Green Synthesis of Magnesium Oxide Nanoparticles Using Mariposa christia vespertilionis Leaves Extract and Its Antimicrobial Study Toward S. aureus and E. coli. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-022-07282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
40
|
Synaridou MS, Tsamis V, Tsanaktsidou E, Ouranidis A, Kachrimanis K, Markopoulou CK. Response Surface and Freezing-Out Methodologies for the Extraction, Separation, and Validation of Seven Vitamins in a Novel Supplement with Determination by High-Performance Liquid Chromatography. ANAL LETT 2022. [DOI: 10.1080/00032719.2022.2125003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Affiliation(s)
- Maria S. Synaridou
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasilis Tsamis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Eleni Tsanaktsidou
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Andreas Ouranidis
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kyriakos Kachrimanis
- Laboratory of Pharmaceutical Technology, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Catherine K. Markopoulou
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki, Greece
| |
Collapse
|
41
|
Erk N, Mehmandoust M, Soylak M. Electrochemical Sensing of Favipiravir with an Innovative Water-Dispersible Molecularly Imprinted Polymer Based on the Bimetallic Metal-Organic Framework: Comparison of Morphological Effects. BIOSENSORS 2022; 12:bios12090769. [PMID: 36140154 PMCID: PMC9496828 DOI: 10.3390/bios12090769] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/15/2022] [Accepted: 09/16/2022] [Indexed: 05/22/2023]
Abstract
Molecularly imprinted polymers (MIPs) are widely used as modifiers in electrochemical sensors due to their high sensitivity and promise of inexpensive mass manufacturing. Here, we propose and demonstrate a novel MIP-sensor that can measure the electrochemical activity of favipiravir (FAV) as an antiviral drug, thereby enabling quantification of the concentration of FAV in biological and river water samples and in real-time. MOF nanoparticles’ application with various shapes to determine FAV at nanomolar concentrations was described. Two different MOF nanoparticle shapes (dodecahedron and sheets) were systematically compared to evaluate the electrochemical performance of FAV. After carefully examining two different morphologies of MIP-Co-Ni@MOF, the nanosheet form showed a higher performance and efficiency than the nanododecahedron. When MIP-Co/Ni@MOF-based and NIP-Co/Ni@MOF electrodes (nanosheets) were used instead, the minimum target concentrations detected were 7.5 × 10−11 (MIP-Co-Ni@MOF) and 8.17 × 10−9 M (NIP-Co-Ni@MOF), respectively. This is a significant improvement (>102), which is assigned to the large active surface area and high fraction of surface atoms, increasing the amount of greater analyte adsorption during binding. Therefore, water-dispersible MIP-Co-Ni@MOF nanosheets were successfully applied for trace-level determination of FAV in biological and water samples. Our findings seem to provide useful guidance in the molecularly imprinted polymer design of MOF-based materials to help establish quantitative rules in designing MOF-based sensors for point of care (POC) systems.
Collapse
Affiliation(s)
- Nevin Erk
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
- Correspondence:
| | - Mohammad Mehmandoust
- Department of Analytical Chemistry, Faculty of Pharmacy, Ankara University, Ankara 06560, Turkey
| | - Mustafa Soylak
- Department of Chemistry, Faculty of Sciences, Erciyes University, Kayseri 38039, Turkey
- Technology Research & Application Center (TAUM), Erciyes University, Kayseri 38039, Turkey
- Turkish Academy of Sciences (TUBA), Ankara 06670, Turkey
| |
Collapse
|
42
|
Fu J, Zhou S, Wu X, Tang S, Zhao P, Tang K, Chen Y, Yang Z, Zhang Z, Chen H. Down/up-conversion dual-mode ratiometric fluorescence imprinted sensor embedded with metal-organic frameworks for dual-channel multi-emission multiplexed visual detection of thiamphenicol. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 309:119762. [PMID: 35835275 DOI: 10.1016/j.envpol.2022.119762] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/23/2022] [Accepted: 07/09/2022] [Indexed: 06/15/2023]
Abstract
The establishment of a fluorescence sensing system for sensitive and selective visual detection of trace antibiotics is of great significance to food safety and human health risk assessment. A simple and rapid one-pot strategy was developed successfully to synthesize a down/up-conversion dual-excitation multi-emission fluorescence imprinted sensor for dual-channel thiamphenicol (TAP) detection. In this strategy, the metal-organic frameworks were in situ incorporated into the fluorescence imprinted sensor, guiding the coordination induced emission of abiotic carbon dots and signal-amplification effect of fluorescence sensing. Under dual-excitation (370 nm and 780 nm), the fluorescence imprinted sensor exhibited a dual-channel fluorescence response toward TAP with two-part linear ranges of 5.0 nM-6.0 μM and 6.0 μM-26.0 μM. Significantly, the fluorescence color ranged from blue to purple to red can be observed with the naked eye. The results of the dual-channel TAP determination in actual samples by the fluorescence imprinted sensor indicated that the fluorescence imprinted sensor provided a sensitive, selective, and multiplexed visual detection of TAP in complex sample.
Collapse
Affiliation(s)
- Jinli Fu
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Shu Zhou
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Xiaodan Wu
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Sisi Tang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Pengfei Zhao
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Kangling Tang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Yu Chen
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Zhaoxia Yang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China
| | - Zhaohui Zhang
- College of Chemistry and Chemical Engineering, Jishou University, Hunan, 416000, PR China; School of Pharmaceutical Sciences, Jishou University, Jishou, 416000, PR China; State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, PR China.
| | - Hongjun Chen
- School of Pharmaceutical Sciences, Jishou University, Jishou, 416000, PR China
| |
Collapse
|
43
|
Zhang X, Gao J, Chu Q, Lyu H, Xie Z. Specific recognition and determination of trace phthalic acid esters by molecularly imprinted polymer based on metal organic framework. Anal Chim Acta 2022; 1227:340292. [DOI: 10.1016/j.aca.2022.340292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/14/2022] [Accepted: 08/17/2022] [Indexed: 11/01/2022]
|
44
|
Mirhosseini H, Shamspur T, Mostafavi A. Novel adsorbent g
‐C
3
N
4
/
ZnV
2
O
4
for efficient removal of crystal violet dye: removal process optimization, adsorption isotherms and kinetic modeling. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hadiseh Mirhosseini
- Department of Chemistry, Faculty of science Shahid Bahonar University of Kerman Kerman Iran
- Young Research Society Shahid Bahonar University of Kerman Kerman Iran
| | - Tayebeh Shamspur
- Department of Chemistry, Faculty of science Shahid Bahonar University of Kerman Kerman Iran
| | - Ali Mostafavi
- Department of Chemistry, Faculty of science Shahid Bahonar University of Kerman Kerman Iran
| |
Collapse
|
45
|
Hu R, Yan Y, Jiang L, Huang C, Shen X. Determination of total cathinones with a single molecularly imprinted fluorescent sensor assisted by electromembrane microextraction. Mikrochim Acta 2022; 189:324. [PMID: 35939150 DOI: 10.1007/s00604-022-05405-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022]
Abstract
An electromembrane microextraction (EME)-assisted fluorescent molecularly imprinted polymer (MIP) sensing method is presented for detecting the total cathinone drugs in urine samples. In this detection system, the clean-up ability of EME eliminated the matrix effects on both target binding with MIPs and the luminescence of the fluorophore in the sensor. Moreover, by optimizing the extraction conditions of EME, different cathinone drugs with a same concentration show a same response on the single aggregation induced emission (AIE) based MIP (AIE-MIP) sensor (λex = 360 nm, λem = 467 nm). The recoveries were 57.9% for cathinone (CAT) and 78.2% for methcathinone (MCAT). The EME-assisted "light-up" AIE-MIP sensing method displayed excellent performance with a linear range of 2.0-12.0 μmol L-1 and a linear determination coefficient (R2) of 0.99. The limit of detection (LOD) value for EME-assisted "light-up" AIE-MIP sensing method was 0.3 μmol L-1. The relative standard deviation (RSD) values for the detection were found to be within the range 2.0-12.0%. To the best of our knowledge, this is the first time that determination of total illicit drugs with a single fluorescent MIP sensor was achieved and also the first utilization of sample preparation to tune the sensing signal of the sensor to be reported. We believe that this versatile combination of fluorescent MIP sensor and sample preparation can be used as a common protocol for sensing the total amount of a group of analytes in various fields.
Collapse
Affiliation(s)
- Rong Hu
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, China
| | - Yibo Yan
- Department of Forensic Medicine, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, China
| | - Long Jiang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, China
| | - Chuixiu Huang
- Department of Forensic Medicine, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, China.
| | - Xiantao Shen
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, #13 Hangkong Road, Wuhan, 430030, China.
| |
Collapse
|
46
|
Expanding the applicability of magnet integrated fabric phase sorptive extraction in food analysis: Extraction of triazine herbicides from herbal infusion samples. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107524] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
47
|
Emam AA, Abdelaleem EA, Abdelmomen EH, Abdelmoety RH, Abdelfatah RM. Rapid and ecofriendly UPLC quantification of Remdesivir, Favipiravir and Dexamethasone for accurate therapeutic drug monitoring in Covid-19 Patient's plasma. Microchem J 2022; 179:107580. [PMID: 35582001 PMCID: PMC9098531 DOI: 10.1016/j.microc.2022.107580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/06/2022] [Accepted: 05/09/2022] [Indexed: 01/11/2023]
Abstract
Innovative therapeutic protocols to the rapidly spreading coronavirus disease (COVID19) epidemic is highly required all across the world. As demonstrated by clinical studies, Favipiravir (FVP) and Remdesivir (REM) are new antiviral medicines that are effective against COVID-19. REM is the first FDA approved antiviral medicine against COVID-19. In addition to antivirals, corticosteroids such as dexamethasone (DEX), and anticoagulants such as apixaban (PX) are used in multidrug combinations protocols. This work develops and validates simple and selective screening of the four medicines of COVID -19 therapeutic protocol. FVP, REM, DEX, and PX as internal standard in human plasma using UPLC method by C18 column and methanol, acetonitrile, and water acidified by orthophosphate (pH = 4) in a ratio of (15: 35: 50, by volume) as an eluate flowing at 0.3 mL/min. The eluent was detected at 240 nm. The method was linear over (0.1-10 μg/mL) for each of FVP, REM, and DEX. The validation of the UPLC method was assessed in accordance with FDA guidelines. The method can detect as low as down to 0.1 μg/mL for all. The recoveries of the drugs in spiked human plasma ranged from 97.67 to 102.98 percent. Method accuracy and precision were assessed and the drugs showed good stability. The method was proven to be green to the environment after greenness checking by greenness profile and Eco-Scale tool.
Collapse
Affiliation(s)
- Aml A. Emam
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Eglal A. Abdelaleem
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| | - Esraa H. Abdelmomen
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt,Corresponding author at: Faculty of pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| | - Refaat H. Abdelmoety
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Nahda University (NUB), Beni-Suef, Egypt
| | - Rehab M. Abdelfatah
- Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
48
|
Wang L, Tao Y, Wang J, Tian M, Liu S, Quan T, Yang L, Wang D, Li X, Gao D. A novel hydroxyl-riched covalent organic framework as an advanced adsorbent for the adsorption of anionic azo dyes. Anal Chim Acta 2022; 1227:340329. [DOI: 10.1016/j.aca.2022.340329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/22/2022] [Accepted: 08/24/2022] [Indexed: 11/26/2022]
|
49
|
Determination of trace metal ions in Gentiana rigescens by inductively coupled plasma-optical emission spectrometry after deep eutectic solvent-based digestion and related pharmacodynamic evaluation. Anal Chim Acta 2022; 1221:340109. [DOI: 10.1016/j.aca.2022.340109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/14/2022] [Accepted: 06/19/2022] [Indexed: 11/22/2022]
|
50
|
Davari SD, Rabbani M, Basti AA, Koohi MK. Determination of furfurals in baby food samples after extraction by a novel functionalized magnetic porous carbon. RSC Adv 2022; 12:21181-21190. [PMID: 35975073 PMCID: PMC9344589 DOI: 10.1039/d2ra02481k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/18/2022] [Indexed: 11/21/2022] Open
Abstract
Herein, a novel polypyrrole-polyaniline functionalized magnetic porous carbon (MPC@PPy-PANI) composite material was fabricated and utilized for the separation/extraction of furfurals from baby food and dry milk samples. In this way, magnetite@silica nanoparticles were first synthesized, and then a magnetic metal–organic framework (MMIL-101(Fe)) was prepared. After that, the MMIL-101(Fe) was pyrolyzed in a neutral atmosphere to obtain MPC. Ultimately, the MPC was functionalized with a co-polymer of aniline–pyrrole via oxidation polymerization. The synthesis of MPC@PPy-PANI was confirmed with FT-IR spectroscopy, SEM, TEM, VSM, and XRD techniques. Furfural and hydroxymethyl furfural were selected as the model analytes, which were separated/quantified on an HPLC-UV instrument. The LODs, LOQs, and linear dynamic ranges (LDRs) were in the range of 0.3–0.7 μg kg−1, 1.0–2.5 μg kg−1, and 1.0–600 μg kg−1, respectively. Repeatability of the method was studied as an RSD parameter, and was located in the range of 5.5–6.8% (within-day, n = 5) and 8.2–9.4% (between-day, n = 3 days). The applicability of the proposed method was established by analyzing several baby food and dry milk samples. The relative recovery (RR%) and repeatability were located in the range of 86–111% and 3.3–10.1%, respectively, showing excellent accuracy and precision of the method. Herein, a novel polypyrrole-polyaniline functionalized magnetic porous carbon (MPC@PPy- PANI) composite material was fabricated and utilized for the separation/extraction of furfurals from baby food and dry milk samples.![]()
Collapse
Affiliation(s)
- Seyedeh Dorsa Davari
- Department of Food Science and Technology, Islamic Azad University Tehran North Branch Tehran Iran
| | - Mohammad Rabbani
- Department of Marine Chemistry, Faculty of Marine Science and Technology, Islamic Azad University North Tehran Branch Tehran Iran +98 22173060
| | | | - Mohammad Kazem Koohi
- Department of Basic Sciences, Faculty of Veterinary Medicine, University of Tehran Tehran Iran
| |
Collapse
|