1
|
Kulkarni SP, Magdum VV, Chitare YM, Malavekar DB, Kim JH, Alshehri S, Gunjakar JL, Patole SP. 2D porous hexaniobate-bismuth vanadate hybrid photocatalyst for photodegradation of aquatic refractory pollutants. Heliyon 2024; 10:e39235. [PMID: 39498093 PMCID: PMC11532252 DOI: 10.1016/j.heliyon.2024.e39235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 11/07/2024] Open
Abstract
Metal oxide semiconductors are highly promising due to their excellent photocatalytic performance in the photodegradation of industrial waste containing refractory chemical compounds. A hybrid structure with other semiconductors provides improved photocatalytic performance. In this work, porous and two-dimensional (2D) hexaniobate-bismuth vanadate (Nb6-BiVO4) Z-scheme hybrid photocatalysts are synthesized by chemical solution growth (CSG) of BiVO4 over electrophoretically deposited Nb6 thin films. The structural and morphological analysis of Nb6-BiVO4 hybrid thin films evidenced the well-crystalline uniform growth of monoclinic scheelite BiVO4 over lamellar Nb6 nanosheets. The Nb6-BiVO4 hybrid thin films exhibit a highly porous randomly aggregated nanosheet network, creating the house-of-cards type morphology. The Nb6-BiVO4 hybrid thin films display a strong visible light absorption with band gap energy of 2.29 eV and highly quenched photoluminescence signal, indicating their visible light harvesting nature and intimate electronic coupling between hybridized species beneficial for photocatalytic applications. The visible-light-driven photodegradation performance of methylene blue (MB), rhodamine-B (Rh-B) dyes, and tetracycline hydrochloride (TC) antibiotic over Nb6-BiVO4 hybrid are studied. The best optimized Nb6-BiVO4 thin film shows superior photocatalytic activity for photodegradation of MB, Rh-B dyes, and TC antibiotic with photodegradation rates of 87.3, 92.8, and 64.7 %, respectively, exceptionally higher than that of pristine BiVO4. Furthermore, the mineralization study of Nb6-BiVO4 thin film is conducted using chemical oxygen demand (COD) analysis. The optimized Nb6-BiVO4 thin film shows superior percentage COD removal of 83.33, 85.42, and 61.36 % for MB, Rh-B dyes and TC antibiotic, respectively. The present results highlight the expediency of hybridization in enhancing the photocatalytic activity of pristine BiVO4 by minimizing its charge recombination rate and improving chemical stability.
Collapse
Affiliation(s)
- Shirin P. Kulkarni
- Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to Be University), Kolhapur, 416 006, MS, India
| | - Vikas V. Magdum
- Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to Be University), Kolhapur, 416 006, MS, India
| | - Yogesh M. Chitare
- Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to Be University), Kolhapur, 416 006, MS, India
| | - Dhanaji B. Malavekar
- Optoelectronic Convergence Research Centre, Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Jin H. Kim
- Optoelectronic Convergence Research Centre, Department of Materials Science and Engineering, Chonnam National University, Gwangju, 61186, South Korea
| | - Sultan Alshehri
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jayavant L. Gunjakar
- Centre for Interdisciplinary Research, D. Y. Patil Education Society (Deemed to Be University), Kolhapur, 416 006, MS, India
| | - Shashikant P. Patole
- Department of Physics, Khalifa University of Science and Technology, AbuDhabi, 127788, United Arab Emirates
| |
Collapse
|
2
|
Yu Y, Tan Y, Niu W, Zhao S, Hao J, Shi Y, Dong Y, Liu H, Huang C, Gao C, Zhang P, Wu Y, Zeng L, Du B, He Y. Advances in Synthesis and Applications of Single-Atom Catalysts for Metal Oxide-Based Gas Sensors. MATERIALS (BASEL, SWITZERLAND) 2024; 17:1970. [PMID: 38730776 PMCID: PMC11084526 DOI: 10.3390/ma17091970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 04/02/2024] [Accepted: 04/11/2024] [Indexed: 05/13/2024]
Abstract
As a stable, low-cost, environment-friendly, and gas-sensitive material, semiconductor metal oxides have been widely used for gas sensing. In the past few years, single-atom catalysts (SACs) have gained increasing attention in the field of gas sensing with the advantages of maximized atomic utilization and unique electronic and chemical properties and have successfully been applied to enhance the detection sensitivity and selectivity of metal oxide gas sensors. However, the application of SACs in gas sensors is still in its infancy. Herein, we critically review the recent advances and current status of single-atom catalysts in metal oxide gas sensors, providing some suggestions for the development of this field. The synthesis methods and characterization techniques of SAC-modified metal oxides are summarized. The interactions between SACs and metal oxides are crucial for the stable loading of single-atom catalysts and for improving gas-sensitive performance. Then, the current application progress of various SACs (Au, Pt, Cu, Ni, etc.) in metal oxide gas sensors is introduced. Finally, the challenges and perspectives of SACs in metal oxide gas sensors are presented.
Collapse
Affiliation(s)
- Yuanting Yu
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Yiling Tan
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Wen Niu
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Shili Zhao
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Jiongyue Hao
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Yijie Shi
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Yingchun Dong
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Hangyu Liu
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Chun Huang
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Chao Gao
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| | - Peng Zhang
- Chongqing Key Laboratory of Toxic and Drug Analysis, Chongqing Police College, Chongqing 401331, China; (P.Z.); (Y.W.)
| | - Yuhong Wu
- Chongqing Key Laboratory of Toxic and Drug Analysis, Chongqing Police College, Chongqing 401331, China; (P.Z.); (Y.W.)
| | - Linggao Zeng
- Chongqing Institute for Food and Drug Control, Chongqing 401121, China;
| | - Bingsheng Du
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
- Chongqing Key Laboratory of Optical Fiber Sensor and Photoelectric Detection, Chongqing University of Technology, Chongqing 400054, China
| | - Yong He
- Key Laboratory of Optoelectronic Technology and Systems of the Education Ministry of China, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, China; (Y.Y.); (Y.T.); (W.N.); (S.Z.); (J.H.); (Y.S.); (Y.D.); (H.L.); (C.H.); (C.G.)
| |
Collapse
|
3
|
Karbalaei Akbari M, Siraj Lopa N, Park J, Zhuiykov S. Plasmonic Nanodomains Decorated on Two-Dimensional Oxide Semiconductors for Photonic-Assisted CO 2 Conversion. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103675. [PMID: 37241301 DOI: 10.3390/ma16103675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/26/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
Plasmonic nanostructures ensure the reception and harvesting of visible lights for novel photonic applications. In this area, plasmonic crystalline nanodomains decorated on the surface of two-dimensional (2D) semiconductor materials represent a new class of hybrid nanostructures. These plasmonic nanodomains activate supplementary mechanisms at material heterointerfaces, enabling the transfer of photogenerated charge carriers from plasmonic antennae into adjacent 2D semiconductors and therefore activate a wide range of visible-light assisted applications. Here, the controlled growth of crystalline plasmonic nanodomains on 2D Ga2O3 nanosheets was achieved by sonochemical-assisted synthesis. In this technique, Ag and Se nanodomains grew on 2D surface oxide films of gallium-based alloy. The multiple contribution of plasmonic nanodomains enabled the visible-light-assisted hot-electron generation at 2D plasmonic hybrid interfaces, and therefore considerably altered the photonic properties of the 2D Ga2O3 nanosheets. Specifically, the multiple contribution of semiconductor-plasmonic hybrid 2D heterointerfaces enabled efficient CO2 conversion through combined photocatalysis and triboelectric-activated catalysis. The solar-powered acoustic-activated conversion approach of the present study enabled us to achieve the CO2 conversion efficiency of more than 94% in the reaction chambers containing 2D Ga2O3-Ag nanosheets.
Collapse
Affiliation(s)
- Mohammad Karbalaei Akbari
- Department of Solid-State Sciences, Faculty of Science, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Republic of Korea
| | - Nasrin Siraj Lopa
- Department of Solid-State Sciences, Faculty of Science, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Republic of Korea
| | - Jihae Park
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Republic of Korea
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Wetenschapspark 1, Bluebridge, 8400 Oostende, Belgium
| | - Serge Zhuiykov
- Department of Solid-State Sciences, Faculty of Science, Ghent University, Krijgslaan 281/S1, 9000 Ghent, Belgium
- Center for Environmental and Energy Research, Ghent University Global Campus, 119-5 Songdomunhwa-ro, Yeonsu-gu, Incheon 21985, Republic of Korea
| |
Collapse
|
4
|
Gan X, Lei D. Plasmonic-metal/2D-semiconductor hybrids for photodetection and photocatalysis in energy-related and environmental processes. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214665] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
5
|
The Recent Development in Chemoresistive-Based Heterostructure Gas Sensor Technology, Their Future Opportunities and Challenges: A Review. MEMBRANES 2022; 12:membranes12060555. [PMID: 35736262 PMCID: PMC9228141 DOI: 10.3390/membranes12060555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 02/01/2023]
Abstract
Atmospheric pollution has become a critical problem for modern society; therefore, the research in this area continually aims to develop a high-performance gas sensor for health care and environmental safety. Researchers have made a significant contribution in this field by developing highly sensitive sensor-based novel selective materials. The aim of this article is to review recent developments and progress in the selective and sensitive detection of environmentally toxic gases. Different classifications of gas sensor devices are discussed based on their structure, the materials used, and their properties. The mechanisms of the sensing devices, identified by measuring the change in physical property using adsorption/desorption processes as well as chemical reactions on the gas-sensitive material surface, are also discussed. Additionally, the article presents a comprehensive review of the different morphologies and dimensions of mixed heterostructure, multilayered heterostructure, composite, core-shell, hollow heterostructure, and decorated heterostructure, which tune the gas-sensing properties towards hazardous gases. The article investigates in detail the growth and interface properties, concentrating on the material configurations that could be employed to prepare nanomaterials for commercial gas-sensing devices.
Collapse
|
6
|
Sun X, Sun J, Xu J, Li Z, Li R, Yang Z, Ren F, Jia Y, Chen F. A Plasmon-Enhanced SnSe 2 Photodetector by Non-Contact Ag Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2102351. [PMID: 34263531 DOI: 10.1002/smll.202102351] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Indexed: 06/13/2023]
Abstract
The 2D layered materials are promising candidates for broadband, low-cost photodetectors. One deficiency of 2D materials is the relatively low absorbance of light, limiting the applications of the 2D photodetectors. Doping of plasmonic nanoparticles into 2D materials may enhance the optical absorbance owing to the localized surface plasmonic resonance (LSPR) effect; however, considerable defects may be introduced into the 2D materials at the same time, resulting in certain degradation of device performance. Here, a novel design of 2D photodetectors with enhanced photoresponsivity by non-contact plasmonic nanoparticles (NPs) is proposed, consisting of a hybrid structure of few-layer SnSe2 transferred a fused silica (SiO2 ) plate with embedded Ag NPs. The system of Ag NPs-in-SiO2 shows strong LSPR effect with significantly enhanced optical absorption, acting on SnSe2 in a non-contact configuration. Benefiting from well-preserved intrinsic features of SnSe2 and LSPR effect, the responsivity of the photodetector is enhanced by 881 times with the bias voltage of 0.1 V, which is superior to previously reported results of plasmon-enhanced 2D photodetectors. Moreover, the SiO2 with embedded Ag NPs is recyclable and can be easy to be recombined with different 2D materials. This work offers additional strategy for development of efficient, low-cost 2D photodetectors by using plasmonic NPs.
Collapse
Affiliation(s)
- Xiaoli Sun
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Jiamin Sun
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Jinlong Xu
- School of Electronic Science and Engineering, Nanjing University, Nanjing, 210093, China
| | - Ziqi Li
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Rang Li
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Zaixing Yang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Feng Ren
- Department of Physics, Center for Ion Beam Application and Center for Electron Microscopy, Wuhan University, Wuhan, 430072, China
| | - Yuechen Jia
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| | - Feng Chen
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, 250100, China
| |
Collapse
|
7
|
Gbadamasi S, Mohiuddin M, Krishnamurthi V, Verma R, Khan MW, Pathak S, Kalantar-Zadeh K, Mahmood N. Interface chemistry of two-dimensional heterostructures - fundamentals to applications. Chem Soc Rev 2021; 50:4684-4729. [PMID: 33621294 DOI: 10.1039/d0cs01070g] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Two-dimensional heterostructures (2D HSs) have emerged as a new class of materials where dissimilar 2D materials are combined to synergise their advantages and alleviate shortcomings. Such a combination of dissimilar components into 2D HSs offers fascinating properties and intriguing functionalities attributed to the newly formed heterointerface of constituent components. Understanding the nature of the surface and the complex heterointerface of HSs at the atomic level is crucial for realising the desired properties, designing innovative 2D HSs, and ultimately unlocking their full potential for practical applications. Therefore, this review provides the recent progress in the field of 2D HSs with a focus on the discussion of the fundamentals and the chemistry of heterointerfaces based on van der Waals (vdW) and covalent interactions. It also explains the challenges associated with the scalable synthesis and introduces possible methodologies to produce large quantities with good control over the heterointerface. Subsequently, it highlights the specialised characterisation techniques to reveal the heterointerface formation, chemistry and nature. Afterwards, we give an overview of the role of 2D HSs in various emerging applications, particularly in high-power batteries, bifunctional catalysts, electronics, and sensors. In the end, we present conclusions with the possible solutions to the associated challenges with the heterointerfaces and potential opportunities that can be adopted for innovative applications.
Collapse
|
8
|
Xu H, Karbalaei Akbari M, Verpoort F, Zhuiykov S. Nano-engineering and functionalization of hybrid Au-Me xO y-TiO 2 (Me = W, Ga) hetero-interfaces for optoelectronic receptors and nociceptors. NANOSCALE 2020; 12:20177-20188. [PMID: 32697233 DOI: 10.1039/d0nr02184a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Bio-inspired nano-electronic devices are key instruments for the development of advanced artificial intelligence systems, which will shape the future of humanoid nano-robotics. An emerging demand is realized for an accurate reception of environmental stimuli via visual perception, processing and realization of optical signals. The present study demonstrates the capability of functionalized all-oxide heterostructured two-dimensional (2D) plasmonic devices for the self-adaptive recognition of visual optical pulses. Specifically, the nano-engineering of the metal/semiconductor interface and co-modulation of heterostructured 2D semiconductor hetero-interfaces of Au/WO3 : TiO2 and Au/Ga2O3 : TiO2 facilitated the receptive and nociceptive detection of visible light pulses. A decrease in the dark current of the Au/WO3 : TiO2 unit resulted in the development of sensitive visible light photoreceptors. Furthermore, the modulation of charge transfers at the Au/Ga2O3 : TiO2 hetero-interfaces were the key parameter to determine the optical reception characteristics and nociceptive performance of all-oxide optoelectronic devices. Specifically, the rapid thermal annealing (RTA) of 2D Ga2O3 in N2 atmosphere ensured the modulation of charge transfer at Au/Ga2O3 : TiO2 hetero-interfaces in plasmonic devices. Thus, hetero-interface engineering enabled the effective control of charge transfer at 2D hetero-interfaces for an adaptive perception of visible optical pulses. Consequently, the fabricated sensitive Au/Ga2O3 (N2) : TiO2 bio-inspired unit emulated the optical functionalities of corneal nociceptors.
Collapse
Affiliation(s)
- Hongyan Xu
- School of Materials Science & Engineering, North University of China, Taiyuan, 030051 Shanxi, PR China
| | - Mohammad Karbalaei Akbari
- Centre for Environmental & Energy Research, Ghent University, Global Campus, 21985, Incheon, South Korea. and Department of Solid State Sciences, Faculty of Science, Ghent University, 9000 Ghent, Belgium
| | - Francis Verpoort
- Centre for Environmental & Energy Research, Ghent University, Global Campus, 21985, Incheon, South Korea. and State Key Laboratory of Advanced Technology for Materials Synthesis & Processing, Wuhan University of Technology, Wuhan, 630070, PR China
| | - Serge Zhuiykov
- School of Materials Science & Engineering, North University of China, Taiyuan, 030051 Shanxi, PR China and Centre for Environmental & Energy Research, Ghent University, Global Campus, 21985, Incheon, South Korea. and Department of Solid State Sciences, Faculty of Science, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
9
|
Xu H, Wei Z, Verpoort F, Hu J, Zhuiykov S. Nanoscale Au-ZnO Heterostructure Developed by Atomic Layer Deposition Towards Amperometric H 2O 2 Detection. NANOSCALE RESEARCH LETTERS 2020; 15:41. [PMID: 32065320 PMCID: PMC7026348 DOI: 10.1186/s11671-020-3273-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Nanoscale Au-ZnO heterostructures were fabricated on 4-in. SiO2/Si wafers by the atomic layer deposition (ALD) technique. Developed Au-ZnO heterostructures after post-deposition annealing at 250 °C were tested for amperometric hydrogen peroxide (H2O2) detection. The surface morphology and nanostructure of Au-ZnO heterostructures were examined by field emission scanning electron microscopy (FE-SEM), Raman spectroscopy, atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), etc. Additionally, the electrochemical behavior of Au-ZnO heterostructures towards H2O2 sensing under various conditions is assessed by chronoamperometry and electrochemical impedance spectroscopy (EIS). The results showed that ALD-fabricated Au-ZnO heterostructures exhibited one of the highest sensitivities of 0.53 μA μM-1 cm-2, the widest linear H2O2 detection range of 1.0 μM-120 mM, a low limit of detection (LOD) of 0.78 μM, excellent selectivity under the normal operation conditions, and great long-term stability. Utilization of the ALD deposition method opens up a unique opportunity for the improvement of the various capabilities of the devices based on Au-ZnO heterostructures for amperometric detection of different chemicals.
Collapse
Affiliation(s)
- Hongyan Xu
- School of Materials Science & Engineering, North University of China, Taiyuan, 030051 People’s Republic of China
| | - Zihan Wei
- Department of Green Chemistry & Technology, Ghent University Global Campus, 119 Songdomunhwa-ro, Yeonsu-gu, Incheon, 21985 South Korea
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| | - Francis Verpoort
- Department of Green Chemistry & Technology, Ghent University Global Campus, 119 Songdomunhwa-ro, Yeonsu-gu, Incheon, 21985 South Korea
- Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Center for Chemical and Material Engineering, Wuhan University of Technology, Wuhan, People’s Republic of China
| | - Jie Hu
- College of Information Engineering, Taiyuan University of Technology, Taiyuan, 030024 Shanxi People’s Republic of China
| | - Serge Zhuiykov
- School of Materials Science & Engineering, North University of China, Taiyuan, 030051 People’s Republic of China
- Department of Green Chemistry & Technology, Ghent University Global Campus, 119 Songdomunhwa-ro, Yeonsu-gu, Incheon, 21985 South Korea
| |
Collapse
|
10
|
He F, Meng A, Cheng B, Ho W, Yu J. Enhanced photocatalytic H2-production activity of WO3/TiO2 step-scheme heterojunction by graphene modification. CHINESE JOURNAL OF CATALYSIS 2020. [DOI: 10.1016/s1872-2067(19)63382-6] [Citation(s) in RCA: 304] [Impact Index Per Article: 60.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
11
|
A bioinspired optoelectronically engineered artificial neurorobotics device with sensorimotor functionalities. Nat Commun 2019; 10:3873. [PMID: 31455784 PMCID: PMC6712026 DOI: 10.1038/s41467-019-11823-4] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/31/2019] [Indexed: 02/06/2023] Open
Abstract
Development of the next generation of bio- and nano-electronics is inseparably connected to the innovative concept of emulation and reproduction of biological sensorimotor systems and artificial neurobotics. Here, we report for the first time principally new artificial bioinspired optoelectronic sensorimotor system for the controlable immitation of opto-genetically engineered neurons in the biological motor system. The device is based on inorganic optical synapse (In-doped TiO2 nanofilm) assembled into a liquid metal (galinstan) actuator. The optoelectronic synapse generates polarised excitatory and inhibitory postsynaptic potentials to trigger the liquid metal droplet to vibrate and then mimic the expansion and contraction of biological fibre muscle. The low-energy consumption and precise modulation of electrical and mechanical outputs are the distinguished characteristics of fabricated sensorimotor system. This work is the underlying significant step towards the development of next generation of low-energy the internet of things for bioinspired neurorobotic and bioelectronic system.
Collapse
|
12
|
Ros C, Carretero NM, David J, Arbiol J, Andreu T, Morante JR. Insight into the Degradation Mechanisms of Atomic Layer Deposited TiO 2 as Photoanode Protective Layer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:29725-29735. [PMID: 31347833 DOI: 10.1021/acsami.9b05724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Around 100 nm thick TiO2 layers deposited by atomic layer deposition (ALD) have been investigated as anticorrosion protective films for silicon-based photoanodes decorated with 5 nm NiFe catalyst in highly alkaline electrolyte. Completely amorphous layers presented high resistivity; meanwhile, the ones synthesized at 300 °C, having a fully anatase crystalline TiO2 structure, introduced insignificant resistance, showing direct correlation between crystallization degree and electrical conductivity. The conductivity through crystalline TiO2 layers has been found not to be homogeneous, presenting preferential conduction paths attributed to grain boundaries and defects within the crystalline structure. A correlation between the conductivity atomic force microscopy measurements and grain interstitials can be seen, supported by high-resolution transmission electron microscopy cross-sectional images presenting defective regions in crystalline TiO2 grains. It was found that the conduction mechanism goes through the injection of electrons coming from water oxidation from the electrocatalyst into the TiO2 conduction band. Then, electrons are transported to the Si/SiOx/TiO2 interface where electrons recombine with holes given by the p+n-Si junction. No evidences of intra-band-gap states in TiO2 responsible of conductivity have been detected. Stability measurements of fully crystalline samples over 480 h in anodic polarization show a continuous current decay. Electrochemical impedance spectroscopy allows to identify that the main cause of deactivation is associated with the loss of TiO2 electrical conductivity, corresponding to a self-passivation mechanism. This is proposed to reflect the effect of OH- ions diffusing in the TiO2 structure in anodic conditions by the electric field. This fact proves that a modification takes place in the defective zone of the layer, blocking the ability to transfer electrical charge through the layer. According to this mechanism, a regeneration of the degradation process is demonstrated possible based on ultraviolet illumination, which contributes to change the occupancy of TiO2 electronic states and to recover the defective zone's conductivity. These findings confirm the connection between the structural properties of the ALD-deposited polycrystalline layer and the degradation mechanisms and thus highlight main concerns toward fabricating long-lasting metal-oxide protective layers for frontal illuminated photoelectrodes.
Collapse
Affiliation(s)
- Carles Ros
- Catalonia Institute for Energy Research (IREC) , Jardins de les Dones de Negre 1 , 08930 Sant Adrià del Besòs , Barcelona , Spain
| | - Nina M Carretero
- Catalonia Institute for Energy Research (IREC) , Jardins de les Dones de Negre 1 , 08930 Sant Adrià del Besòs , Barcelona , Spain
| | - Jeremy David
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST , Campus UAB , Bellaterra, 08193 Barcelona , Spain
| | - Jordi Arbiol
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST , Campus UAB , Bellaterra, 08193 Barcelona , Spain
- ICREA , Pg. Lluís Companys 23 , 08010 Barcelona , Spain
| | - Teresa Andreu
- Catalonia Institute for Energy Research (IREC) , Jardins de les Dones de Negre 1 , 08930 Sant Adrià del Besòs , Barcelona , Spain
| | - Joan R Morante
- Catalonia Institute for Energy Research (IREC) , Jardins de les Dones de Negre 1 , 08930 Sant Adrià del Besòs , Barcelona , Spain
- Universitat de Barcelona (UB) , Martí i Franquès, 1 , 08028 Barcelona , Spain
| |
Collapse
|
13
|
Wei Z, Hai Z, Akbari MK, Zhao Z, Sun Y, Hyde L, Verpoort F, Hu J, Zhuiykov S. Surface functionalization of wafer-scale two-dimensional WO3 nanofilms by NM electrodeposition (NM = Ag, Pt, Pd) for electrochemical H2O2 reduction improvement. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2018.12.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
14
|
Li C, Rao Y, Zhang B, Huang K, Cao X, Peng D, Wu J, Xiao L, Huang Y. Extraordinary catalysis induced by titanium foil cathode plasma for degradation of water pollutant. CHEMOSPHERE 2019; 214:341-348. [PMID: 30267907 DOI: 10.1016/j.chemosphere.2018.09.138] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 06/08/2023]
Abstract
The present paper reports a rapid and cost-effective bifunctional approach to the degradation of organic pollutants in the aqueous solution. This in situ hybrid induced photocatalytic method involves the advanced oxidation process, and photocatalytic process induced by ultraviolet radiated from the plasma discharge to improve the degradation efficiency. This powerful plasma allows the organic molecules to be cleaved either in the plasma zone or on the plasma/solution interface through hydrogen abstraction and electron transfer. Four parallel metal foil electrodes (i.e. Ta, Cu, Ti and Au coated Ti), used as cathodes in the two-electrode system, were evaluated in terms of their degradable performance to organic pollutants. It was found that the degradation rates are dependent on the electrical conduction of metal cathodes. During the discharge process, the Ti-based foil produces TiO2 particles, which then act as catalyst in the electrolyte and perform the photocatalytic process along with the plasma discharge process to degrade organic pollutants. It is of particular interest that gold nanoparticles, generated from Au coated Ti foil film during electrode discharging, are less than 5 nm in size and further enhance the TiO2 photocatalytic activity. In fact, this bifunctional plasma discharge process to the degradation of water pollutant provides an insight into more applications such as chemical conversion, water purification and dust pollution.
Collapse
Affiliation(s)
- Chaojiang Li
- College of Science, Hubei University of Technology, Hongshan District, Wuhan, 430068, China; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore; Department of Materials Science and Engineering, National University of Singapore, 9 Engineering Drive 1, 117576, Singapore
| | - Yuhan Rao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Bowei Zhang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| | - Kang Huang
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Xun Cao
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Dongdong Peng
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Junsheng Wu
- Institute of Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, China.
| | - Longqiang Xiao
- Division of Chemistry and Biological Chemistry, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore
| | - Yizhong Huang
- College of Science, Hubei University of Technology, Hongshan District, Wuhan, 430068, China; School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, 639798, Singapore.
| |
Collapse
|
15
|
Zappa D, Galstyan V, Kaur N, Munasinghe Arachchige HMM, Sisman O, Comini E. "Metal oxide -based heterostructures for gas sensors"- A review. Anal Chim Acta 2018; 1039:1-23. [PMID: 30322540 DOI: 10.1016/j.aca.2018.09.020] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 09/10/2018] [Accepted: 09/10/2018] [Indexed: 11/30/2022]
Abstract
This review focuses on the synthesis and chemical sensing characterization of metal oxide heterostructures reported since 2012. Heterostructures exhibit strong interactions between closely packed interfaces, showing superior performances compared to single structures. Surface effects appear thanks to the magnification of nanostructures' surface leading to an enhancement of surface related properties (the base of chemical sensors working mechanism). The combination of different metal oxides to form heterostructures further improves the selectivity and/or other important sensing parameters. A very large number of different morphologies and structures have been proposed, each one exhibiting peculiar sensing properties towards specific chemical compounds. Among the different preparation methodologies, a significant number has been performed by means of hydrothermal method. However, the combination of various fabrication methods seems a very efficient strategy to obtain metal oxide-based heterostructures with different morphologies and dimensions such as core-shell nanostructures, one-dimensional heterostructures, two-dimensional layered heterojunctions, and three-dimensional hierarchical heterostructures. Despite all extraordinary advances in both material science and nanotechnology and the results achieved with heterostructured chemical sensors, there are few points that still deserve further studies and investigations, such as possible diffusion across the junctions, reproducibility of the fabrication process, synergistic or catalytic effects among the materials forming the heterostructures and influence/stability of the contacts. Moreover, perfect control over their growth is mandatory for their application in commercial devices. Only a careful understanding of the growth and the interface properties could fill the existing gap between laboratory studies and real-world exploitation of these heterostructures.
Collapse
Affiliation(s)
- Dario Zappa
- SENSOR Laboratory, Dept. of Information Engineering (DII), Università degli Studi di Brescia, Via Valotti 7, 25123, Italy
| | - Vardan Galstyan
- SENSOR Laboratory, Dept. of Information Engineering (DII), Università degli Studi di Brescia, Via Valotti 7, 25123, Italy
| | - Navpreet Kaur
- SENSOR Laboratory, Dept. of Information Engineering (DII), Università degli Studi di Brescia, Via Valotti 7, 25123, Italy
| | | | - Orhan Sisman
- SENSOR Laboratory, Dept. of Information Engineering (DII), Università degli Studi di Brescia, Via Valotti 7, 25123, Italy
| | - Elisabetta Comini
- SENSOR Laboratory, Dept. of Information Engineering (DII), Università degli Studi di Brescia, Via Valotti 7, 25123, Italy.
| |
Collapse
|