1
|
Atchudan R, Karuppasamy BD, Perumal S, Gangadaran P, Sundramoorthy AK, Manoj D, Rajendran RL, Ahn BC, Ahamed M, Lee SW, Lee YR. Sustainable-biomass-derived multifunctional carbon dots as fluorescent probes for multi-purpose advanced imaging, migration and security solutions. SURFACES AND INTERFACES 2025; 62:106238. [DOI: 10.1016/j.surfin.2025.106238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
|
2
|
Archana PK, Vasudevan S, Panicker UG. Synergistic Interactions of Metals and Quantum Dots: Expanding Frontiers in Fluorescent Sensing. J Fluoresc 2025:10.1007/s10895-025-04144-x. [PMID: 39985617 DOI: 10.1007/s10895-025-04144-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 01/20/2025] [Indexed: 02/24/2025]
Abstract
Fluorescent sensing technologies have emerged as powerful tools in analytical science, offering exceptional sensitivity and selectivity for detecting a wide range of analytes. Among the advanced materials driving these technologies, quantum dots (QDs) and metal nanoparticles (MNPs) stand out due to their unique optical and electronic properties. When combined, these materials exhibit synergistic interactions those significantly enhance the fluorescence signals, enable efficient quenching, and offer tunable optical properties. This review explores the various protocols involved in the development, characterization, and performance evaluation of metal-QD composites; typically, metal-enhanced fluorescence (MEF) and Förster resonance energy transfer (FRET). The applications of the materials in the domain of biomedical diagnostics, environmental monitoring, and biosensing have been highlighted. The review also discusses the current challenges and future scope in the field of metal-QD-based fluorescent sensors and their possible transformative impact on next-generation sensing technologies.
Collapse
Affiliation(s)
- P K Archana
- Department of Chemistry, National Institute of Technology Calicut, 673601, Calicut, Kerala, India
| | - Suni Vasudevan
- Department of Chemistry, National Institute of Technology Calicut, 673601, Calicut, Kerala, India.
| | | |
Collapse
|
3
|
Oh MW, Son BH, Yoon JS, Yoo Y, Kim Y, Choi SB, Ahn YH, Cho WB, Park DJ. Fabrication of a uniform quantum dot film with a high quantum yield. NANOTECHNOLOGY 2024; 36:035705. [PMID: 39406256 DOI: 10.1088/1361-6528/ad86c6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024]
Abstract
We present a method that uses viscosity-lowering materials to fabricate flexible polydimethylsiloxane-based quantum dot (QD) films with high quantum yield (QY) and improved uniformity. We found that the aggregation of individual QDs was prevented, and the QY improved simultaneously in films that contained surfactants. These films showed an improved absorption of approximately 27% in the near-UV and blue light regions, along with an improved photoluminescence of approximately 18%, indicating improved light conversion from the UV to the visible frequency region.
Collapse
Affiliation(s)
- Min Woo Oh
- School of Nano Convergence Technology and Center of Nano Convergence Technology, Hallymdaehaggil 1, Chuncheon 24252, Republic of Korea
| | - Byung Hee Son
- Cheorwon Plasma Research Institute, Hokook-ro 4620, Cheorwon-gun 24062, Republic of Korea
- Department of Physics and Division of Energy System Research, Ajou University, Suwon 16499, Republic of Korea
| | - Jee Sang Yoon
- School of Nano Convergence Technology and Center of Nano Convergence Technology, Hallymdaehaggil 1, Chuncheon 24252, Republic of Korea
| | - Yonghwan Yoo
- Cheorwon Plasma Research Institute, Hokook-ro 4620, Cheorwon-gun 24062, Republic of Korea
| | - Yongduk Kim
- Cheorwon Plasma Research Institute, Hokook-ro 4620, Cheorwon-gun 24062, Republic of Korea
| | - Soo Bong Choi
- Department of Physics, Incheon National University, Incheon 22012, Republic of Korea
| | - Yeong Hwan Ahn
- Department of Physics and Division of Energy System Research, Ajou University, Suwon 16499, Republic of Korea
| | - Won Bae Cho
- Department of Nano-Semiconductor Engineering, National Korea Maritime and Ocean University, Busan 49112, Republic of Korea
| | - Doo Jae Park
- School of Nano Convergence Technology and Center of Nano Convergence Technology, Hallymdaehaggil 1, Chuncheon 24252, Republic of Korea
| |
Collapse
|
4
|
Jin L, Selopal GS, Tong X, Perepichka DF, Wang ZM, Rosei F. Heavy-Metal-Free Colloidal Quantum Dots: Progress and Opportunities in Solar Technologies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402912. [PMID: 38923167 DOI: 10.1002/adma.202402912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/13/2024] [Indexed: 06/28/2024]
Abstract
Colloidal quantum dots (QDs) hold great promise as building blocks in solar technologies owing to their remarkable photostability and adjustable properties through the rationale involving size, atomic composition of core and shell, shapes, and surface states. However, most high-performing QDs in solar conversion contain hazardous metal elements, including Cd and Pb, posing significant environmental risks. Here, a comprehensive review of heavy-metal-free colloidal QDs for solar technologies, including photovoltaic (PV) devices, solar-to-chemical fuel conversion, and luminescent solar concentrators (LSCs), is presented. Emerging synthetic strategies to optimize the optical properties by tuning the energy band structure and manipulating charge dynamics within the QDs and at the QDs/charge acceptors interfaces, are analyzed. A comparative analysis of different synthetic methods is provided, structure-property relationships in these materials are discussed, and they are correlated with the performance of solar devices. This work is concluded with an outlook on challenges and opportunities for future work, including machine learning-based design, sustainable synthesis, and new surface/interface engineering.
Collapse
Affiliation(s)
- Lei Jin
- Centre for Energy, Materials and Telecommunications, National Institute of Scientific Research, 1650 Boul. Lionel-Boulet, Varennes, QC, J3X1P7, Canada
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Gurpreet Singh Selopal
- Department of Engineering, Faculty of Agriculture, Dalhousie University, 39 Cox Rd, Banting Building, Truro, NS, B2N 5E3, Canada
| | - Xin Tong
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu, 641419, P. R. China
| | - Dmytro F Perepichka
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, QC, H3A 0B8, Canada
| | - Zhiming M Wang
- Shimmer Center, Tianfu Jiangxi Laboratory, Chengdu, 641419, P. R. China
| | - Federico Rosei
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via Giorgeri 1, Trieste, 34127, Italy
| |
Collapse
|
5
|
Gordon CK, Browne LD, Chan S, Brett MW, Zemke-Smith C, Hardy J, Price MB, Davis NJLK. Heterostructured Nanotetrapod Luminophores for Reabsorption Elimination within Luminescent Solar Concentrators. ACS APPLIED MATERIALS & INTERFACES 2023; 15:17914-17921. [PMID: 36975316 DOI: 10.1021/acsami.3c01222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Luminescent solar concentrators (LSCs) concentrate light via luminescence within a planar-waveguide and have potential use for building-integrated photovoltaics. However, their commercialization and potential applications are currently hindered greatly by photon reabsorption, where emitted waveguided light is parasitically reabsorbed by a luminophore. Nanotetrapod semiconductor materials have been theorized to be excellent luminophores for LSCs owing to their inherently large Stokes shifts. Here we present the first nanotetrapod-based LSCs (5 × 5 × 0.3 cm3) reported in the literature. External quantum efficiencies as high as 4.9 ± 0.5% were achieved under AM1.5G conditions. We also perform an in-depth investigation by optical characterization of the different operational metrics of our nanotetrapod-based LSCs and show reabsorption to be eliminated (mean number of average reabsorption events per photon equal to 0.00) in our most extended nanotetrapod devices.
Collapse
Affiliation(s)
- Calum K Gordon
- School of Chemical and Physical Sciences, The MacDiarmid Institute for Advanced Materials and Nanotechnology, The Dodd-Walls Centre for Photonic and Quantum Technologies, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Lara D Browne
- School of Chemical and Physical Sciences, The MacDiarmid Institute for Advanced Materials and Nanotechnology, The Dodd-Walls Centre for Photonic and Quantum Technologies, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Sanutep Chan
- School of Chemical and Physical Sciences, The MacDiarmid Institute for Advanced Materials and Nanotechnology, The Dodd-Walls Centre for Photonic and Quantum Technologies, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Matthew W Brett
- School of Chemical and Physical Sciences, The MacDiarmid Institute for Advanced Materials and Nanotechnology, The Dodd-Walls Centre for Photonic and Quantum Technologies, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Chase Zemke-Smith
- School of Chemical and Physical Sciences, The MacDiarmid Institute for Advanced Materials and Nanotechnology, The Dodd-Walls Centre for Photonic and Quantum Technologies, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Jake Hardy
- School of Chemical and Physical Sciences, The MacDiarmid Institute for Advanced Materials and Nanotechnology, The Dodd-Walls Centre for Photonic and Quantum Technologies, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Michael B Price
- School of Chemical and Physical Sciences, The MacDiarmid Institute for Advanced Materials and Nanotechnology, The Dodd-Walls Centre for Photonic and Quantum Technologies, Victoria University of Wellington, Wellington 6140, New Zealand
| | - Nathaniel J L K Davis
- School of Chemical and Physical Sciences, The MacDiarmid Institute for Advanced Materials and Nanotechnology, The Dodd-Walls Centre for Photonic and Quantum Technologies, Victoria University of Wellington, Wellington 6140, New Zealand
| |
Collapse
|
6
|
Villafiorita-Monteleone F, Pasini M, Botta C. Anti-Oxidation Agents to Prevent Dye Degradation in Organic-Based Host-Guest Systems Suitable for Luminescent Solar Concentrators. MATERIALS (BASEL, SWITZERLAND) 2023; 16:656. [PMID: 36676393 PMCID: PMC9862820 DOI: 10.3390/ma16020656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Luminescent solar concentrators (LSCs) have been extensively studied as they offer a practical solution to increase the efficiency of silicon-based photovoltaics (PVs). In this context, the use of natural and organic luminescent materials is desirable in order to obtain sustainable and environmentally friendly devices. Moreover, solution-processable organic host-guest systems based on Foerster Resonant Energy Transfer (FRET) processes offer the possibility to exploit a low-cost technique to obtain an efficient energy downshift from the UV-visible to red or deep red emissions in order to concentrate the radiation in the area of maximum efficiency of the PV device. Nevertheless, organic materials are subjected to photodegradation that reduces their optical properties when exposed to UV light and oxygen. In this work, we incorporated two different antioxidant molecules (i.e., octadecyl 3-(3,5-di-tert-butyl-4-hydroxyphenyl)propionate (Octa) and L-ascorbic acid (L-Asc)) in a three-dye host-guest system and studied the corresponding optical properties after prolonged irradiation times in air. It was found that the presence of the antioxidants, especially L-Asc, slowed the system's photodegradation down whilst at the same time retaining high emission efficiencies and without interfering with the cascade Resonant Energy Transfer processes among the dyes inserted in the nanochannels of the host.
Collapse
|
7
|
Dhamo L, Wegner KD, Würth C, Häusler I, Hodoroaba VD, Resch-Genger U. Assessing the influence of microwave-assisted synthesis parameters and stabilizing ligands on the optical properties of AIS/ZnS quantum dots. Sci Rep 2022; 12:22000. [PMID: 36539585 PMCID: PMC9767924 DOI: 10.1038/s41598-022-25498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/30/2022] [Indexed: 12/24/2022] Open
Abstract
Luminescent semiconductor quantum dots (QDs) are frequently used in the life and material sciences as reporter for bioimaging studies and as active components in devices such as displays, light-emitting diodes, solar cells, and sensors. Increasing concerns regarding the use of toxic elements like cadmium and lead, and hazardous organic solvents during QD synthesis have meanwhile triggered the search for heavy-metal free QDs using green chemistry syntheses methods. Interesting candidates are ternary AgInS2 (AIS) QDs that exhibit broad photoluminescence (PL) bands, large effective Stokes shifts, high PL quantum yields (PL QYs), and long PL lifetimes, which are particularly beneficial for applications such as bioimaging, white light-emitting diodes, and solar concentrators. In addition, these nanomaterials can be prepared in high quality with a microwave-assisted (MW) synthesis in aqueous solution. The homogeneous heat diffusion and instant temperature rise of the MW synthesis enables a better control of QD nucleation and growth and thus increases the batch-to-batch reproducibility. In this study, we systematically explored the MW synthesis of AIS/ZnS QDs by varying parameters such as the order of reagent addition, precursor concentration, and type of stabilizing thiol ligand, and assessed their influence on the optical properties of the resulting AIS/ZnS QDs. Under optimized synthesis conditions, water-soluble AIS/ZnS QDs with a PL QY of 65% and excellent colloidal and long-term stability could be reproducible prepared.
Collapse
Affiliation(s)
- Lorena Dhamo
- grid.71566.330000 0004 0603 5458Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany ,grid.7468.d0000 0001 2248 7639Departments of Physics, Humboldt Universität Zu Berlin, 12489 Berlin, Germany
| | - K. David Wegner
- grid.71566.330000 0004 0603 5458Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Christian Würth
- grid.71566.330000 0004 0603 5458Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Ines Häusler
- grid.7468.d0000 0001 2248 7639Departments of Physics, Humboldt Universität Zu Berlin, 12489 Berlin, Germany
| | - Vasile-Dan Hodoroaba
- grid.71566.330000 0004 0603 5458Division Surface Analysis and Interfacial Chemistry, Federal Institute for Materials Research and Testing (BAM), 12203 Berlin, Germany
| | - Ute Resch-Genger
- grid.71566.330000 0004 0603 5458Division Biophotonics, Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| |
Collapse
|
8
|
Bahmani Jalali H, De Trizio L, Manna L, Di Stasio F. Indium arsenide quantum dots: an alternative to lead-based infrared emitting nanomaterials. Chem Soc Rev 2022; 51:9861-9881. [PMID: 36408788 PMCID: PMC9743785 DOI: 10.1039/d2cs00490a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Indexed: 11/22/2022]
Abstract
Colloidal quantum dots (QDs) emitting in the infrared (IR) are promising building blocks for numerous photonic, optoelectronic and biomedical applications owing to their low-cost solution-processability and tunable emission. Among them, lead- and mercury-based QDs are currently the most developed materials. Yet, due to toxicity issues, the scientific community is focusing on safer alternatives. In this regard, indium arsenide (InAs) QDs are one of the best candidates as they can absorb and emit light in the whole near infrared spectral range and they are RoHS-compliant, with recent trends suggesting that there is a renewed interest in this class of materials. This review focuses on colloidal InAs QDs and aims to provide an up-to-date overview spanning from their synthesis and surface chemistry to post-synthesis modifications. We provide a comprehensive overview from initial synthetic methods to the most recent developments on the ability to control the size, size distribution, electronic properties and carrier dynamics. Then, we describe doping and alloying strategies applied to InAs QDs as well as InAs based heterostructures. Furthermore, we present the state-of-the-art applications of InAs QDs, with a particular focus on bioimaging and field effect transistors. Finally, we discuss open challenges and future perspectives.
Collapse
Affiliation(s)
- Houman Bahmani Jalali
- Photonic Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Luca De Trizio
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Liberato Manna
- Nanochemistry, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
| | - Francesco Di Stasio
- Photonic Nanomaterials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy.
| |
Collapse
|
9
|
Yeo HJ, Yoon SY, Jo DY, Kim HM, Kwak J, Kim SP, Kim MJ, Yang H. Effective Blue Light-Absorbing AuAg Nanoparticles in InP Quantum Dots-Based Color Conversion. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8455. [PMID: 36499950 PMCID: PMC9736556 DOI: 10.3390/ma15238455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/20/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
In typical color-by-blue mode-based quantum dot (QD) display devices, only part of the blue excitation light is absorbed by QD emitters, thus it is accompanied by the leakage of blue light through the devices. To address this issue, we offer, for the first time, the applicability of AuAg alloy nanoparticles (NPs) as effective blue light absorbers in InP QD-based color-by-blue platforms. For this, high-quality fluorescent green and red InP QDs with a double shell scheme of ZnSe/ZnS were synthesized and embedded in a transparent polymer film. Separately, a series of Au/Ag ratio-varied AuAg NPs with tunable plasmonic absorption peaks were synthesized. Among them, AuAg NPs possessing the most appropriate absorption peak with respect to spectral overlap with blue emission are chosen for the subsequent preparation of AuAg NP polymeric films with varied NP concentrations. A stack of AuAg NP polymeric film on top of InP QD film is then placed remotely on a blue light-emitting diode, successfully resulting in systematically progressive suppression of blue light leakage with increasing AuAg NP concentration. Furthermore, the beneficial function of the AuAg NP polymeric overlayer in mitigating undesirable QD excitation upon exposure to ambient lights was further examined.
Collapse
Affiliation(s)
- Hyo-Jin Yeo
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Suk-Young Yoon
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Dae-Yeon Jo
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Hyun-Min Kim
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Jeonghun Kwak
- Department of Electrical and Computer Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, Republic of Korea
| | - Myung-Joon Kim
- Department of Big Data Application, Hannam University, Daejeon 34430, Republic of Korea
| | - Heesun Yang
- Department of Materials Science and Engineering, Hongik University, Seoul 04066, Republic of Korea
| |
Collapse
|
10
|
Zheng GS, Shen CL, Lou Q, Han JF, Ding ZZ, Deng Y, Wu MY, Liu KK, Zang JH, Dong L, Shan CX. Meter-scale chemiluminescent carbon nanodot films for temperature imaging. MATERIALS HORIZONS 2022; 9:2533-2541. [PMID: 35829660 DOI: 10.1039/d2mh00495j] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Chemiluminescence (CL), as one class of luminescence driven by chemical reaction, exhibits obvious temperature-dependence in its light emission process. Herein, temperature-dependent CL emission of carbon nanodots (CDs) in the chemical reaction of peroxalate and hydrogen peroxide is demonstrated and temperature imaging based on the temperature-dependent CL has been established for the first time. In detail, the temperature-dependent CL emission of CDs in the chemical reaction of peroxalate and hydrogen peroxide is observed, and the linear relationship between the CL intensity and temperature is demonstrated in both the CL solution and film, enabling their applications in temperature sensing and imaging capabilities. The increase of the CL emission with temperature can be attributed to the accelerated electron exchange between the CDs and intermediate generated in the peroxalate system. Meter-scale chemiluminescent CD films have been constructed. The CL sensor based on the films presents a high spatial resolution of 0.4 mm and an outstanding sensitivity of 0.08 °C-1, which is amongst the best values for the thermographic luminophores. With the unique temperature response and flexible properties, non-planar, meter-scale and sensitive palm temperature imaging has been achieved. These findings present new opportunities for designing CL-based temperature probes and thermography.
Collapse
Affiliation(s)
- Guang-Song Zheng
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Cheng-Long Shen
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Qing Lou
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Jiang-Fan Han
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Zhong-Zheng Ding
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Yuan Deng
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Meng-Yuan Wu
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Kai-Kai Liu
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Jin-Hao Zang
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Lin Dong
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| | - Chong-Xin Shan
- Henan Key Laboratory of Diamond Optoelectronic Material and Devices, Key Laboratory of Material Physics, Ministry of Education, School of Physics and Microelectronics, Zhengzhou University, Zhengzhou 450052, China.
| |
Collapse
|
11
|
Zhang B, Lyu G, Kelly EA, Evans RC. Förster Resonance Energy Transfer in Luminescent Solar Concentrators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2201160. [PMID: 35678107 PMCID: PMC9376834 DOI: 10.1002/advs.202201160] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 04/27/2022] [Indexed: 05/20/2023]
Abstract
Luminescent solar concentrators (LSCs) are an emerging technology to collect and channel light from a large absorption area into a smaller one. They are a complementary technology for traditional solar photovoltaics (PV), particularly suitable for application in urban or indoor environments where their custom colors and form factors, and performance under diffuse light conditions may be advantageous. Förster resonance energy transfer (FRET) has emerged as a valuable approach to overcome some of the intrinsic limitations of conventional single lumophore LSCs, such as reabsorption or reduced quantum efficiency. This review outlines the potential of FRET to boost LSC performance, using highlights from the literature to illustrate the key criteria that must be considered when designing an FRET-LSC, including both the photophysical requirements of the FRET lumophores and their interaction with the host material. Based on these criteria, a list of design guidelines intended to aid researchers when they approach the design of a new FRET-LSC system is presented. By highlighting the unanswered questions in this field, the authors aim to demonstrate the potential of FRET-LSCs for both conventional solar-harvesting and emerging LSC-inspired technologies and hope to encourage participation from a diverse researcher base to address this exciting challenge.
Collapse
Affiliation(s)
- Bolong Zhang
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, and Fujian Provincial Key Laboratory of Nanomaterials, Fujian Institute of Research on the Structure of MaterialsChinese Academy of SciencesFuzhouFujian350002China
| | - Guanpeng Lyu
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
| | - Elaine A. Kelly
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
| | - Rachel C. Evans
- Department of Materials Science and MetallurgyUniversity of Cambridge27 Charles Babbage RoadCambridgeCB3 0FSUK
| |
Collapse
|
12
|
Han S, Wen J, Cheng Z, Chen G, Jin S, Shou C, Kuo HC, Tu CC. Luminescence-guided and visibly transparent solar concentrators based on silicon quantum dots. OPTICS EXPRESS 2022; 30:26896-26911. [PMID: 36236873 DOI: 10.1364/oe.463353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 06/23/2022] [Indexed: 06/16/2023]
Abstract
In this work, we demonstrate a new tapered prism-shaped luminescent solar concentrator (LSC), which guides most of the luminescence toward one edge instead of four, for the solar window application. Only one Si photovoltaic (PV) strip attached to the light-emitting sidewall is needed to collect the luminescence, which further reduces PV material cost and avoids electrical mismatch. To achieve high visible transmission and mitigate reabsorption, colloidal silicon quantum dots (SiQDs) with ultraviolet-selective absorption and large Stokes shift are used as the fluorophores. With the SiQD concentration equal to 8 mg mL-1, the SiQD-LSC as a solar window can attain a power conversion efficiency (PCE) equal to 0.27%, while ensuring high average visible transmission (AVT = 86%) and high color rendering index (CRI = 94 with AM1.5G as the incident spectrum). When adjusted to front-facing, the Si PV strip can harvest not only the direct sunlight but also the concentrated SiQD fluorescence guided from the LSC. As a result, the overall solar window PCE can be increased to 1.18%, and the PCE of the front-facing Si PV strip alone can be increased by 7% due to the luminescence guided from the SiQD-LSC.
Collapse
|
13
|
Han M, Karatum O, Nizamoglu S. Optoelectronic Neural Interfaces Based on Quantum Dots. ACS APPLIED MATERIALS & INTERFACES 2022; 14:20468-20490. [PMID: 35482955 PMCID: PMC9100496 DOI: 10.1021/acsami.1c25009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 04/15/2022] [Indexed: 05/26/2023]
Abstract
Optoelectronic modulation of neural activity is an emerging field for the investigation of neural circuits and the development of neural therapeutics. Among a wide variety of nanomaterials, colloidal quantum dots provide unique optoelectronic features for neural interfaces such as sensitive tuning of electron and hole energy levels via the quantum confinement effect, controlling the carrier localization via band alignment, and engineering the surface by shell growth and ligand engineering. Even though colloidal quantum dots have been frontier nanomaterials for solar energy harvesting and lighting, their application to optoelectronic neural interfaces has remained below their significant potential. However, this potential has recently gained attention with the rise of bioelectronic medicine. In this review, we unravel the fundamentals of quantum-dot-based optoelectronic biointerfaces and discuss their neuromodulation mechanisms starting from the quantum dot level up to electrode-electrolyte interactions and stimulation of neurons with their physiological pathways. We conclude the review by proposing new strategies and possible perspectives toward nanodevices for the optoelectronic stimulation of neural tissue by utilizing the exceptional nanoscale properties of colloidal quantum dots.
Collapse
Affiliation(s)
- Mertcan Han
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Onuralp Karatum
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Sedat Nizamoglu
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
- Graduate
School of Biomedical Science and Engineering, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
14
|
Gull S, Jamil MH, Zhang X, Kwok H, Li G. Stokes Shift in Inorganic Lead Halide Perovskites: Current Status and Perspective. ChemistryOpen 2022; 11:e202100285. [PMID: 35147296 PMCID: PMC8889505 DOI: 10.1002/open.202100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/18/2021] [Indexed: 11/08/2022] Open
Abstract
Inorganic metal halide perovskite system is considered as a promising candidate for applications from display to biomedical industry. Intrinsic inorganic lead halides possess small Stokes shift or self-absorption, providing negative impact for both photo voltaic and biomedical applications. Therefore, the development of an inorganic halide perovskite system with large Stokes shift is a significant venture. This review aims to provide an updated survey of the Stokes shift phenomena in the inorganic lead halide perovskites. The first section focuses about the mechanism, the second section gives different approaches in preparing inorganic perovskites with distinct Stokes shift, while the third section highlights the potential applications in both photovoltaic and biomedical areas. This review provides deep insight about the importance and usefulness of such phenomena in inorganic lead halides, essential for various applications.
Collapse
Affiliation(s)
- Sehrish Gull
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - M. Haris Jamil
- College of Electronics and Electrical EngineeringShenzhen UniversityShenzhenChina
| | - Xiuwen Zhang
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| | - Hoi‐sing Kwok
- State Key Lab of Advanced Displays and Optoelectronics TechnologiesHong Kong University of Science and TechnologyClear Water BayKowloonHong Kong
| | - Guijun Li
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Physics and Optoelectronic EngineeringShenzhen UniversityShenzhenChina
| |
Collapse
|
15
|
Giroux M, Zahra Z, Salawu OA, Burgess RM, Ho KT, Adeleye AS. Assessing the Environmental Effects Related to Quantum Dot Structure, Function, Synthesis and Exposure. ENVIRONMENTAL SCIENCE. NANO 2022; 9:867-910. [PMID: 35401985 PMCID: PMC8992011 DOI: 10.1039/d1en00712b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Quantum dots (QDs) are engineered semiconductor nanocrystals with unique fluorescent, quantum confinement, and quantum yield properties, making them valuable in a range of commercial and consumer imaging, display, and lighting technologies. Production and usage of QDs are increasing, which increases the probability of these nanoparticles entering the environment at various phases of their life cycle. This review discusses the major types and applications of QDs, their potential environmental exposures, fates, and adverse effects on organisms. For most applications, release to the environment is mainly expected to occur during QD synthesis and end-product manufacturing since encapsulation of QDs in these devices prevents release during normal use or landfilling. In natural waters, the fate of QDs is controlled by water chemistry, light intensity, and the physicochemical properties of QDs. Research on the adverse effects of QDs primarily focuses on sublethal endpoints rather than acute toxicity, and the differences in toxicity between pristine and weathered nanoparticles are highlighted. A proposed oxidative stress adverse outcome pathway framework demonstrates the similarities among metallic and carbon-based QDs that induce reactive oxygen species formation leading to DNA damage, reduced growth, and impaired reproduction in several organisms. To accurately evaluate environmental risk, this review identifies critical data gaps in QD exposure and ecological effects, and provides recommendations for future research. Future QD regulation should emphasize exposure and sublethal effects of metal ions released as the nanoparticles weather under environmental conditions. To date, human exposure to QDs from the environment and resulting adverse effects has not been reported.
Collapse
Affiliation(s)
- Marissa Giroux
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Zahra Zahra
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA
| | - Omobayo A. Salawu
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA
| | - Robert M Burgess
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Kay T Ho
- U.S. Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, Rhode Island, USA
| | - Adeyemi S Adeleye
- Department of Civil and Environmental Engineering, University of California, Irvine, Irvine, CA 92697-2175, USA
| |
Collapse
|
16
|
Wang Y, Liu Y, Xie G, Chen J, Li P, Zhang Y, Li H. Highly Luminescent and Stable Organic-Inorganic Hybrid Films for Transparent Luminescent Solar Concentrators. ACS APPLIED MATERIALS & INTERFACES 2022; 14:5951-5958. [PMID: 35067042 DOI: 10.1021/acsami.1c20698] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Here, a highly luminescent, stable, and visible-transparent organic-inorganic hybrid film was in situ synthesized in a siloxane-polyether (di-ureasil) sol-gel process by dissolving a 4-hydroxy-2-methyl-1,5-naphthyridine-3-carbonitrile (2mCND) ligand and a europium(III) ion. Doping a europium(III) complex into di-ureasil achieves an boost in photoluminescence quantum efficiency (PLQY) from 23.25 to 68.9%. In particular, the excellent photostability of the hybrid film was demonstrated after a 15 h aging experiment in strong UV-LED irradiation (∼468 mW/cm2). Compared to the polymethyl methacrylate (PMMA) matrix, di-ureasil containing a europium(III) complex shows an improved UV resistance, making it a promising candidate for various photonic applications. By integrating the hybrid film onto an acrylic substrate, a transparent luminescent solar concentrator (LSC) was fabricated, which reveals an optical conversion efficiency of ∼0.51% with a G factor of 3.1 at an optical transmission level of ∼90%. Such an LSC could be of particular interest in future transparent photovoltaic windows.
Collapse
Affiliation(s)
- Yuan Wang
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, PR China
| | - Yeqi Liu
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, Shandong 250022, China
| | - Guangmin Xie
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, PR China
| | - Jinglei Chen
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, PR China
| | - Peng Li
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, PR China
| | - Yuhai Zhang
- Collaborative Innovation Center of Technology and Equipment for Biological Diagnosis and Therapy in Universities of Shandong, Institute for Advanced Interdisciplinary Research (iAIR), University of Jinan, Jinan, Shandong 250022, China
| | - Huanrong Li
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Guangrong Dao 8, Hongqiao District, Tianjin 300130, PR China
| |
Collapse
|
17
|
Eren GO, Sadeghi S, Shahzad M, Nizamoglu S. Protocol on synthesis and characterization of copper-doped InP/ZnSe quantum dots as ecofriendly luminescent solar concentrators with high performance and large area. STAR Protoc 2021; 2:100664. [PMID: 34308379 PMCID: PMC8283155 DOI: 10.1016/j.xpro.2021.100664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Luminescent solar concentrators (LSCs) are simple and cost-effective solar energy-harvesting devices. Indium phosphide (InP)-based colloidal quantum dots (QDs) are promising QDs for efficient LSC devices due to their environmentally benign nature. One major challenge in LSC devices is reabsorption losses. To minimize the reabsorption, Stokes shift engineering is a critical process to designing the QD material. Here, we present a protocol that contains the preparation of structurally engineered copper-doped InP/ZnSe QDs and their LSC application. For complete details on the use and execution of this protocol, please refer to Sadeghi et al. (2020).
Collapse
Affiliation(s)
- Guncem Ozgun Eren
- Department of Biomedical Science and Engineering, Koç University, Istanbul 34450, Turkey
| | - Sadra Sadeghi
- Department of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Mehwish Shahzad
- Graduate School of Material Science and Engineering, Koç University, Istanbul 34450, Turkey
| | - Sedat Nizamoglu
- Department of Biomedical Science and Engineering, Koç University, Istanbul 34450, Turkey
- Department of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
18
|
Eren G, Sadeghi S, Bahmani Jalali H, Ritter M, Han M, Baylam I, Melikov R, Onal A, Oz F, Sahin M, Ow-Yang CW, Sennaroglu A, Lechner RT, Nizamoglu S. Cadmium-Free and Efficient Type-II InP/ZnO/ZnS Quantum Dots and Their Application for LEDs. ACS APPLIED MATERIALS & INTERFACES 2021; 13:32022-32030. [PMID: 34196177 PMCID: PMC8283760 DOI: 10.1021/acsami.1c08118] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 06/17/2021] [Indexed: 05/31/2023]
Abstract
It is a generally accepted perspective that type-II nanocrystal quantum dots (QDs) have low quantum yield due to the separation of the electron and hole wavefunctions. Recently, high quantum yield levels were reported for cadmium-based type-II QDs. Hence, the quest for finding non-toxic and efficient type-II QDs is continuing. Herein, we demonstrate environmentally benign type-II InP/ZnO/ZnS core/shell/shell QDs that reach a high quantum yield of ∼91%. For this, ZnO layer was grown on core InP QDs by thermal decomposition, which was followed by a ZnS layer via successive ionic layer adsorption. The small-angle X-ray scattering shows that spherical InP core and InP/ZnO core/shell QDs turn into elliptical particles with the growth of the ZnS shell. To conserve the quantum efficiency of QDs in device architectures, InP/ZnO/ZnS QDs were integrated in the liquid state on blue light-emitting diodes (LEDs) as down-converters that led to an external quantum efficiency of 9.4% and a power conversion efficiency of 6.8%, respectively, which is the most efficient QD-LED using type-II QDs. This study pointed out that cadmium-free type-II QDs can reach high efficiency levels, which can stimulate novel forms of devices and nanomaterials for bioimaging, display, and lighting.
Collapse
Affiliation(s)
- Guncem
Ozgun Eren
- Department
of Biomedical Science and Engineering, Koç
University, Istanbul 34450, Turkey
| | - Sadra Sadeghi
- Graduate
School of Material Science and Engineering, Koç University, Istanbul 34450, Turkey
| | - Houman Bahmani Jalali
- Department
of Biomedical Science and Engineering, Koç
University, Istanbul 34450, Turkey
| | - Maximilian Ritter
- Institute
of Physics, Montanuniversitaet Leoben, Leoben 8700, Austria
| | - Mertcan Han
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Isinsu Baylam
- Koç
University Surface Science and Technology Center (KUYTAM), Koç University, Istanbul 34450, Turkey
| | - Rustamzhon Melikov
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Asim Onal
- Graduate
School of Material Science and Engineering, Koç University, Istanbul 34450, Turkey
| | - Fatma Oz
- Department
of Biomedical Science and Engineering, Koç
University, Istanbul 34450, Turkey
| | - Mehmet Sahin
- Department
of Nanotechnology Engineering, Abdullah
Gul University, Kayseri 38080, Turkey
| | - Cleva W. Ow-Yang
- SUNUM
Nanotechnology Research and Application Center, Sabanci University, Istanbul 34956, Turkey
| | - Alphan Sennaroglu
- Koç
University Surface Science and Technology Center (KUYTAM), Koç University, Istanbul 34450, Turkey
- Laser
Research Laboratory, Departments of Physics and Electrical-Electronics
Engineering, Koç University, Istanbul 34450, Turkey
| | - Rainer T. Lechner
- Institute
of Physics, Montanuniversitaet Leoben, Leoben 8700, Austria
| | - Sedat Nizamoglu
- Department
of Biomedical Science and Engineering, Koç
University, Istanbul 34450, Turkey
- Graduate
School of Material Science and Engineering, Koç University, Istanbul 34450, Turkey
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
- Koc
University Boron and Advanced Materials Application and Research Center, Koç University, Istanbul 34450, Turkey
| |
Collapse
|
19
|
Quantum dot assisted luminescent hexarhenium cluster dye for a transparent luminescent solar concentrator. Sci Rep 2021; 11:13833. [PMID: 34226592 PMCID: PMC8257676 DOI: 10.1038/s41598-021-93223-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/15/2021] [Indexed: 11/08/2022] Open
Abstract
A luminescent solar concentrator (LSC) is a solar-light harvesting device that concentrates light on a photovoltaic cell placed at the edge of an LSC panel to convert it into electricity. The nano-sized inorganic-organic cluster complex (dMDAEMA)4[Re6S8(NCS)6] (this refers to RMC where dMDAEMA is 2-dimethyl amino ethyl methacrylate) is a promising candidate for LSC luminophores due to its downshifted broad photoluminescence suitable for photovoltaic cells. However, the low quantum yield (QY) of RMC limits the performance. Here, zinc-doped CuGaS/ZnS core/shell quantum dots (ZQD) were used as energy transferring donor with high QY to improve the performance of the LSC. The two metal chalcogenide luminophores, RMC and ZQD, are chemically suitable for dispersion in an amphiphilic polymer matrix, producing a transparent waveguide with suppressed reabsorption and extended harvesting coverage of the solar spectrum. We achieved an ηopt of 3.47% and a PCE of 1.23% while maintaining greater than 80% transparency in the visible range. The high performance of this dual-dye LSC with suppressed reabsorption, and scattering losses is not only due to uniform dispersion of dyes in a polymer matrix, but also energy transfer from ZQD to RMC. This report suggests a new possibility for promising various multi-dye LSCs for use in building-integrated photovoltaic windows.
Collapse
|
20
|
Li J, Zhao H, Zhao X, Gong X. Red and yellow emissive carbon dots integrated tandem luminescent solar concentrators with significantly improved efficiency. NANOSCALE 2021; 13:9561-9569. [PMID: 34008686 DOI: 10.1039/d1nr01908b] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Luminescent solar concentrators (LSCs) can collect solar light from a large area and concentrate it on their small-area edges mounted with solar cells for efficient solar-to-electricity conversion. Thus, LSCs show huge promise for realizing building-integrated photovoltaics because of their semi-transparency and light weight. However, the low optical efficiency of LSCs becomes a great obstacle for their application in real energy conversion. Herein, yellow emissive carbon dots with a record-breaking ultrahigh quantum yield of up to 86.4% were prepared via a simple hydrothermal approach using low-cost precursors. By combining them with red emissive carbon dots (quantum yield of 17.6%), a large area (∼100 cm2) tandem LSC was fabricated. The power conversion efficiency (PCE) of the large-area carbon dot-integrated tandem LSC reaches up to 3.8%, which is among the best reported in literature for a similar lateral size of LSCs. In particular, the tandem structure based on two laminated layers is novel, and is fit for the real structural application of keeping windows warm, where two glass slides are usually used. The high-efficiency tandem LSC using eco-friendly carbon dots as fluorophores paves way for real applications of LSCs.
Collapse
Affiliation(s)
- Jiurong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | | | | | | |
Collapse
|
21
|
Huang HY, Ca KB, Io CC, Chen PW, Soebroto RJ, Shen JL, Yeh JM, Yuan CT. Electronically Coupled Gold Nanoclusters Render Deep-Red Emission with High Quantum Yields. J Phys Chem Lett 2020; 11:9344-9350. [PMID: 33090790 DOI: 10.1021/acs.jpclett.0c02851] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Electronic coupling can be used to tailor electronic states and optical properties of the luminophores. Therefore, electronically coupled systems would provide unique properties, which cannot be achieved by individual constituents. Here, electronically coupled gold nanoclusters (AuNCs) were prepared on the basis of organosilane grafting and a sol-gel-derived porous silica template. After prolonged drying, the formed AuNCs@silica composites exhibited red-shifted, line-width-narrowed, deep-red emission with high quantum yields (QYs) of ∼66% due to electronic-coupling-enhanced radiative rates and covalent-bonding-suppressed nonradiative relaxation. Meanwhile, the absorption maximum was slightly blue-shifted, leading to a large Stokes shift. All experimental findings revealed the formation of electronically coupled AuNC aggregates confined inside the nanopores and bonded to silica matrix. The mechanism is distinctly different from conventional aggregation-enhanced emission. Our work would provide great potential to engineer photophysical properties by controlling the packing modes.
Collapse
Affiliation(s)
- Hsiu-Ying Huang
- Department of Physics, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Kun-Bin Ca
- Department of Physics, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Chong-Cho Io
- Master Program in Nanotechnology, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Po-Wen Chen
- Physics Division, Institute of Nuclear Energy Research, Taoyuan, Taiwan
| | - Ruth Jeane Soebroto
- Master Program in Nanotechnology, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Ji-Lin Shen
- Department of Physics, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Jui-Ming Yeh
- Department of Chemistry, Chung Yuan Christian University, Taoyuan, Taiwan
| | - Chi-Tsu Yuan
- Department of Physics, Chung Yuan Christian University, Taoyuan, Taiwan
- Master Program in Nanotechnology, Chung Yuan Christian University, Taoyuan, Taiwan
| |
Collapse
|
22
|
Kataria V, Mehta DS. Multispectral harvesting rare-earth oxysulphide based highly efficient transparent luminescent solar concentrator. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2020.09.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
23
|
Chen B, Li D, Wang F. InP Quantum Dots: Synthesis and Lighting Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002454. [PMID: 32613755 DOI: 10.1002/smll.202002454] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 05/30/2020] [Indexed: 05/24/2023]
Abstract
InP quantum dots (QDs) are typical III-V group semiconductor nanocrystals that feature large excitonic Bohr radius and high carrier mobility. The merits of InP QDs include large absorption coefficient, broad color tunability, and low toxicity, which render them promising alternatives to classic Cd/Pb-based QDs for applications in practical settings. Over the past two decades, the advances in wet-chemistry methods have enabled the synthesis of small-sized colloidal InP QDs with the assistance of organic ligands. By proper selection of synthetic protocols and precursor materials coupled with surface passivation, the QYs of InP QDs are pushed to near unity with modest color purity. The state-of-the-art InP QDs with appealing optical and electronic properties have excelled in many applications with the potential for commercialization. This work focuses on the recent development of wet-chemistry protocols and various precursor materials for the synthesis and surface modification of InP QDs. Current methods for constructing light-emitting diodes using novel InP-based QDs are also summarized.
Collapse
Affiliation(s)
- Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Dongyu Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- Key Laboratory of Environmentally Friendly Functional Materials and Devices, Lingnan Normal University, Zhanjiang, 524048, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
24
|
Sadeghi S, Bahmani Jalali H, Srivastava SB, Melikov R, Baylam I, Sennaroglu A, Nizamoglu S. High-Performance, Large-Area, and Ecofriendly Luminescent Solar Concentrators Using Copper-Doped InP Quantum Dots. iScience 2020; 23:101272. [PMID: 32590328 PMCID: PMC7322176 DOI: 10.1016/j.isci.2020.101272] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/02/2020] [Accepted: 06/09/2020] [Indexed: 02/01/2023] Open
Abstract
Colloidal quantum dots (QDs) are promising building blocks for luminescent solar concentrators (LSCs). For their widespread use, they need to simultaneously satisfy non-toxic material content, low reabsorption, high photoluminescence quantum yield, and large-scale production. Here, copper doping of zinc carboxylate-passivated InP core and nano-engineering of ZnSe shell facilitated high in-device quantum efficiency of QDs over 80%, having well-matched spectral emission profile with the photo-response of silicon solar cells. The optimized QD-LSCs showed an optical quantum efficiency of 37% and an internal concentration factor of 4.7 for a 10 × 10-cm2 device area under solar illumination, which is comparable with the state-of-the-art LSCs based on cadmium-containing QDs and lead-containing perovskites. Synthesis of the copper-doped InP/ZnSe QDs in gram-scale and large-area deposition (3,000 cm2) onto commercial window glasses via doctor-blade technique showed their scalability for mass production. These results position InP-based QDs as a promising alternative for efficient solar energy harvesting. The luminescent solar concentrators based on copper-doped InP QDs are demonstrated Efficient excitation transfer led to the exceptionally high in-film PLQY of 81.2% The LSCs based on copper-doped QDs showed the optical quantum efficiency of 37% The gram-scale synthesis of QDs led to the fabrication of large-area LSCs (3,000 cm2)
Collapse
Affiliation(s)
- Sadra Sadeghi
- Graduate School of Materials Science and Engineering, Koç University, Istanbul 34450, Turkey
| | - Houman Bahmani Jalali
- Department of Biomedical Sciences and Engineering, Koç University, Istanbul 34450, Turkey
| | | | - Rustamzhon Melikov
- Department of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Isinsu Baylam
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Istanbul 34450, Turkey
| | - Alphan Sennaroglu
- Koç University Surface Science and Technology Center (KUYTAM), Koç University, Istanbul 34450, Turkey; Laser Research Laboratory, Departments of Physics and Electrical-Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Sedat Nizamoglu
- Graduate School of Materials Science and Engineering, Koç University, Istanbul 34450, Turkey; Department of Biomedical Sciences and Engineering, Koç University, Istanbul 34450, Turkey; Department of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey.
| |
Collapse
|
25
|
Zhao H, Liu G, Han G. High-performance laminated luminescent solar concentrators based on colloidal carbon quantum dots. NANOSCALE ADVANCES 2019; 1:4888-4894. [PMID: 36133122 PMCID: PMC9418409 DOI: 10.1039/c9na00527g] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 11/04/2019] [Indexed: 06/01/2023]
Abstract
Luminescent solar concentrators (LSCs) are light-weight, semitransparent and large-area sunlight collectors for solar-to-electricity conversion. To date, carbon quantum dots (C-QDs) have attracted a lot of attention due to their size/shape/composition tunable optical properties, high quantum yield, excellent photostability, lower toxicity and simple synthetic methods using earth-abundant and low-cost precursors. However, due to the overlap between their absorption and emission spectra, it is still challenging to fabricate high-efficiency LSCs based on C-dots. In this work, we used C-QDs to fabricate semi-transparent large-area laminated LSCs (10 × 10 cm2). C-QDs have the absorption spectrum ranging from 300 to 550 nm with a Stokes shift of 0.6 eV. By optimizing the concentration of C-QDs, the laminated LSC exhibits a highest η opt of 1.6%, which is 1.6 times higher than that of a single-layer LSC (100 mW cm-2). In addition, the laminated LSC exhibits a power conversion efficiency of 0.7% under natural sunlight illumination (62 mW cm-2) with excellent photostability. These findings suggest that laminated structured LSCs could be used for efficient solar energy harvesting compared to single layer or tandem structured LSCs based on colloidal C-QDs.
Collapse
Affiliation(s)
- Haiguang Zhao
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
- College of Physics, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
| | - Guiju Liu
- College of Physics, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
| | - Guangting Han
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University No. 308 Ningxia Road Qingdao 266071 P. R. China
| |
Collapse
|
26
|
Efficient White LEDs Using Liquid-state Magic-sized CdSe Quantum Dots. Sci Rep 2019; 9:10061. [PMID: 31296920 PMCID: PMC6624196 DOI: 10.1038/s41598-019-46581-2] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Accepted: 06/27/2019] [Indexed: 12/05/2022] Open
Abstract
Magic clusters have attracted significant interest to explore the dynamics of quantum dot (QD) nucleation and growth. At the same time, CdSe magic-sized QDs reveal broadband emission in the visible wavelength region, which advantageously offer simple integration of a single-type of nanomaterial and high color rendering ability for white light-emitting diodes (LEDs). Here, we optimized the quantum yield of magic-sized CdSe QDs up to 22% via controlling the synthesis parameters without any shelling or post-treatment process and integrated them in liquid-state on blue LED to prevent the efficiency drop due to host-material effect. The fabricated white LEDs showed color-rendering index and luminous efficiency up to 89 and 11.7 lm/W, respectively.
Collapse
|
27
|
You Y, Tong X, Wang W, Sun J, Yu P, Ji H, Niu X, Wang ZM. Eco-Friendly Colloidal Quantum Dot-Based Luminescent Solar Concentrators. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1801967. [PMID: 31065522 PMCID: PMC6498128 DOI: 10.1002/advs.201801967] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 01/21/2019] [Indexed: 05/20/2023]
Abstract
Luminescent solar concentrators (LSCs) have attracted significant attention as promising solar energy conversion devices for building integrated photovoltaic (PV) systems due to their simple architecture and cost-effective fabrication. Conventional LSCs are generally comprised of an optical waveguide slab with embedded emissive species and coupled PV cells. Colloidal semiconductor quantum dots (QDs) have been demonstrated as efficient emissive species for high-performance LSCs because of their outstanding optical properties including tunable absorption and emission spectra covering the ultraviolet/visible to near-infrared region, high photoluminescence quantum yield, large absorption cross sections, and considerable photostability. However, current commonly used QDs for high-performance LSCs consist of highly toxic heavy metals (i.e., cadmium and lead), which are fatal to human health and the environment. In this regard, it is highly desired that heavy metal-free and environmentally friendly QD-based LSCs are comprehensively studied. Here, notable advances and developments of LSCs based on unary, binary, and ternary eco-friendly QDs are presented. The synthetic approaches, optical properties of these eco-friendly QDs, and consequent device performance of QD-based LSCs are discussed in detail. A brief outlook pointing out the existing challenges and prospective developments of eco-friendly QD-based LSCs is provided, offering guidelines for future device optimizations and commercialization.
Collapse
Affiliation(s)
- Yimin You
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Xin Tong
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Wenhao Wang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Jiachen Sun
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Peng Yu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Haining Ji
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
- School of Materials and EnergyState Key Laboratory of Electronic Thin Film and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Xiaobin Niu
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
- School of Materials and EnergyState Key Laboratory of Electronic Thin Film and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| | - Zhiming M. Wang
- Institute of Fundamental and Frontier SciencesUniversity of Electronic Science and Technology of ChinaChengdu610054P. R. China
| |
Collapse
|
28
|
Sadeghi S, Melikov R, Bahmani Jalali H, Karatum O, Srivastava SB, Conkar D, Firat-Karalar EN, Nizamoglu S. Ecofriendly and Efficient Luminescent Solar Concentrators Based on Fluorescent Proteins. ACS APPLIED MATERIALS & INTERFACES 2019; 11:8710-8716. [PMID: 30777750 DOI: 10.1021/acsami.9b00147] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In recent years, luminescent solar concentrators (LSCs) have received renewed attention as a versatile platform for large-area, high-efficiency, and low-cost solar energy harvesting. So far, artificial or engineered optical materials, such as rare-earth ions, organic dyes, and colloidal quantum dots (QDs) have been incorporated into LSCs. Incorporation of nontoxic materials into efficient device architectures is critical for environmental sustainability and clean energy production. Here, we demonstrated LSCs based on fluorescent proteins, which are biologically produced, ecofriendly, and edible luminescent biomaterials along with exceptional optical properties. We synthesized mScarlet fluorescent proteins in Escherichia coli expression system, which is the brightest protein with a quantum yield of 61% in red spectral region that matches well with the spectral response of silicon solar cells. Moreover, we integrated fluorescent proteins in an aqueous medium into solar concentrators, which preserved their quantum efficiency in LSCs and separated luminescence and wave-guiding regions due to refractive index contrast for efficient energy harvesting. Solar concentrators based on mScarlet fluorescent proteins achieved an external LSC efficiency of 2.58%, and the integration at high concentrations increased their efficiency approaching to 5%, which may facilitate their use as "luminescent solar curtains" for in-house applications. The liquid-state integration of proteins paves a way toward efficient and "green" solar energy harvesting.
Collapse
|
29
|
Ma W, Li W, Liu R, Cao M, Zhao X, Gong X. Carbon dots and AIE molecules for highly efficient tandem luminescent solar concentrators. Chem Commun (Camb) 2019; 55:7486-7489. [DOI: 10.1039/c9cc02676b] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
High-performance tandem LSCs fabricated using N-doped carbon dots and AIE fluorescent materials can be obtained.
Collapse
Affiliation(s)
- Wenwen Ma
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Wenjing Li
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Ruiyuan Liu
- School of Biomedical Engineering
- Southern Medical University
- Guangzhou 510515
- China
| | - Mengyan Cao
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Xiujian Zhao
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology
- Wuhan 430070
- China
| | - Xiao Gong
- State Key Laboratory of Silicate Materials for Architectures
- Wuhan University of Technology
- Wuhan 430070
- China
| |
Collapse
|
30
|
Talite MJ, Huang HY, Wu YH, Sena PG, Cai KB, Lin TN, Shen JL, Chou WC, Yuan CT. Greener Luminescent Solar Concentrators with High Loading Contents Based on in Situ Cross-Linked Carbon Nanodots for Enhancing Solar Energy Harvesting and Resisting Concentration-Induced Quenching. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34184-34192. [PMID: 30204408 DOI: 10.1021/acsami.8b10618] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A luminescent solar concentrator (LSC) is composed of loaded luminophores and a waveguide that can be employed to harvest and concentrate both direct and diffused sunlight for promising applications in solar windows. Thus far, most of efficient LSCs still relied on the heavy-metal-containing colloidal quantum dots (CQDs) dispersed into a polymer matrix with a very low loading (typically <1 wt %). Such low-loading constraint is required to mitigate the concentration-induced quenching (CIQ) and maintain high optical quality and film uniformity, but this would strongly reduce the light-absorbing efficiency. To address all issues, greener LSCs with high loading concentration were prepared by in situ cross-linking organosilane-functionalized carbon nanodots (Si-CNDs), and their photophysical properties relevant to LSC operation were studied. The PL emission is stable and does not suffer from the severe CIQ effect for cross-linked Si-CNDs even with 25 wt % loadings, thus exhibiting high solid-state quantum yields (QYs) up to 45 ± 5% after the calibration of the reabsorption losses. Furthermore, such LSCs can still hold high optical quality and film uniformity, leading to low scattering losses and high internal quantum efficiency of ∼22%. However, the reabsorption losses need to be further addressed to realize large-area LSCs based on earth-abundant, cost-effective CNDs.
Collapse
Affiliation(s)
- Maria Jessabel Talite
- Department of Electrophysics , National Chiao Tung University , Hsinchu 300 , Taiwan
| | | | | | | | | | | | | | - Wu-Ching Chou
- Department of Electrophysics , National Chiao Tung University , Hsinchu 300 , Taiwan
| | | |
Collapse
|
31
|
Bahmani Jalali H, Mohammadi Aria M, Dikbas UM, Sadeghi S, Ganesh Kumar B, Sahin M, Kavakli IH, Ow-Yang CW, Nizamoglu S. Effective Neural Photostimulation Using Indium-Based Type-II Quantum Dots. ACS NANO 2018; 12:8104-8114. [PMID: 30020770 PMCID: PMC6117749 DOI: 10.1021/acsnano.8b02976] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Light-induced stimulation of neurons via photoactive surfaces offers rich opportunities for the development of therapeutic methods and high-resolution retinal prosthetic devices. Quantum dots serve as an attractive building block for such surfaces, as they can be easily functionalized to match the biocompatibility and charge transport requirements of cell stimulation. Although indium-based colloidal quantum dots with type-I band alignment have attracted significant attention as a nontoxic alternative to cadmium-based ones, little attention has been paid to their photovoltaic potential as type-II heterostructures. Herein, we demonstrate type-II indium phosphide/zinc oxide core/shell quantum dots that are incorporated into a photoelectrode structure for neural photostimulation. This induces a hyperpolarizing bioelectrical current that triggers the firing of a single neural cell at 4 μW mm-2, 26-fold lower than the ocular safety limit for continuous exposure to visible light. These findings show that nanomaterials can induce a biocompatible and effective biological junction and can introduce a route in the use of quantum dots in photoelectrode architectures for artificial retinal prostheses.
Collapse
Affiliation(s)
- Houman Bahmani Jalali
- Department of Biomedical
Science and Engineering, Koç University, Istanbul 34450, Turkey
| | | | - Ugur Meric Dikbas
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
| | - Sadra Sadeghi
- Department of Material Science and Engineering, Koç University, Istanbul 34450, Turkey
| | - Baskaran Ganesh Kumar
- Department of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Mehmet Sahin
- Department of Materials Science and Nanotechnology Engineering, Abdullah Gul University, Kayseri 38080, Turkey
| | - Ibrahim Halil Kavakli
- Department of Molecular Biology and Genetics, Koç University, Istanbul 34450, Turkey
- Department of Chemical and Biological Engineering, Koç University, Istanbul 34450, Turkey
| | - Cleva W. Ow-Yang
- Department of Material Science and Nano Engineering, Sabanci University, Istanbul 34956, Turkey
| | - Sedat Nizamoglu
- Department of Biomedical
Science and Engineering, Koç University, Istanbul 34450, Turkey
- Department of Material Science and Engineering, Koç University, Istanbul 34450, Turkey
- Department of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
- E-mail:
| |
Collapse
|
32
|
Kumar BG, Sadeghi S, Melikov R, Aria MM, Jalali HB, Ow-Yang CW, Nizamoglu S. Structural control of InP/ZnS core/shell quantum dots enables high-quality white LEDs. NANOTECHNOLOGY 2018; 29:345605. [PMID: 29846177 DOI: 10.1088/1361-6528/aac8c9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Herein, we demonstrate that the structural and optical control of InP-based quantum dots (QDs) can lead to high-performance light-emitting diodes (LEDs). Zinc sulphide (ZnS) shells passivate the InP QD core and increase the quantum yield in green-emitting QDs by 13-fold and red-emitting QDs by 8-fold. The optimised QDs are integrated in the liquid state to eliminate aggregation-induced emission quenching and we fabricated white LEDs with a warm, neutral and cool-white appearance by the down-conversion mechanism. The QD-functionalized white LEDs achieve luminous efficiency (LE) up to 14.7 lm W-1 and colour-rendering index up to 80. The structural and optical control of InP/ZnS core/shell QDs enable 23-fold enhancement in LE of white LEDs compared to ones containing only QDs of InP core.
Collapse
|
33
|
Bahmani Jalali H, Melikov R, Sadeghi S, Nizamoglu S. Excitonic Energy Transfer within InP/ZnS Quantum Dot Langmuir-Blodgett Assemblies. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2018; 122:11616-11622. [PMID: 30057655 PMCID: PMC6057685 DOI: 10.1021/acs.jpcc.8b00744] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 05/05/2018] [Indexed: 05/11/2023]
Abstract
Interparticle energy transfer offers great promise to a diverse range of applications ranging from artificial solar energy harvesting to nanoscale rulers in biology. Here, we assembled InP/ZnS core/shell quantum dot monolayers via the Langmuir-Blodgett technique and studied the effect of ZnS shell thickness on the excitonic energy transfer within these core/shell quantum dots. Three types of InP-based core/shell quantum dot Langmuir-Blodgett assemblies with different ZnS shell thicknesses were assembled. The structural and optical properties of colloidal quantum dots reveal the successful multiple ZnS shell growth, and atomic force microscopy studies show the smoothness of the assembled monolayers. Time-resolved photoluminescence (PL) and fluorescence lifetime imaging microscopy (FLIM) studies of the thick-shell QD monolayer reveal narrower lifetime distribution in comparison with the thin-shell QD monolayer. The interparticle excitonic energy transfer was studied by spectrally resolved PL traces, and higher energy transfer was observed for the thin-shell InP/1ZnS QD monolayer. Finally, we calculated the average exciton energy and indicated that the energy transfer induced exciton energy shift decreased significantly from 95 to 27 meV after multiple ZnS shell growth.
Collapse
Affiliation(s)
- Houman Bahmani Jalali
- Department
of Biomedical Science and Engineering, Koç
University, Istanbul 34450, Turkey
| | - Rustamzhon Melikov
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
| | - Sadra Sadeghi
- Department
of Material Science and Engineering, Koç
University, Istanbul 34450, Turkey
| | - Sedat Nizamoglu
- Department
of Biomedical Science and Engineering, Koç
University, Istanbul 34450, Turkey
- Department
of Electrical and Electronics Engineering, Koç University, Istanbul 34450, Turkey
- Department
of Material Science and Engineering, Koç
University, Istanbul 34450, Turkey
- E-mail:
| |
Collapse
|