1
|
Wang X, Zhou H, Bai L, Wang HQ. Growth, structure, and morphology of van der Waals epitaxy Cr 1+δTe 2 films. NANOSCALE RESEARCH LETTERS 2023; 18:23. [PMID: 36826603 DOI: 10.1186/s11671-023-03791-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/07/2023] [Indexed: 05/24/2023]
Abstract
The preparation of two-dimensional magnetic materials is a key process to their applications and the study of their structure and morphology plays an important role in the growth of high-quality thin films. Here, the growth, structure, and morphology of Cr1+δTe2 films grown by molecular beam epitaxy on mica with variations of Te/Cr flux ratio, growth temperature, and film thickness have been systematically investigated by scanning tunneling microscopy, reflection high-energy electron diffraction, scanning electron microscope, and X-ray photoelectron spectroscopy. We find that a structural change from multiple phases to a single phase occurs with the increase in growth temperature, irrespective of the Cr/Te flux ratios, which is attributed to the desorption difference of Te atoms at different temperatures, and that the surface morphology of the films grown at relatively high growth temperatures (≥ 300 °C) exhibits a quasi-hexagonal mesh-like structure, which consists of nano-islands with bending surface induced by the screw dislocations, as well as that the films would undergo a growth-mode change from 2D at the initial stage in a small film thickness (2 nm) to 3D at the later stage in thick thicknesses (12 nm and 24 nm). This work provides a general model for the study of pseudo-layered materials grown on flexible layered substrates.
Collapse
Affiliation(s)
- Xiaodan Wang
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education; Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, and Department of Physics, Xiamen University, Xiamen, 361005, People's Republic of China
- School of Physics, Shandong University, Jinan, 250100, People's Republic of China
| | - Hua Zhou
- School of Physics, Shandong University, Jinan, 250100, People's Republic of China.
| | - Lihui Bai
- School of Physics, Shandong University, Jinan, 250100, People's Republic of China
| | - Hui-Qiong Wang
- Engineering Research Center of Micro-Nano Optoelectronic Materials and Devices, Ministry of Education; Fujian Key Laboratory of Semiconductor Materials and Applications, CI Center for OSED, and Department of Physics, Xiamen University, Xiamen, 361005, People's Republic of China.
| |
Collapse
|
2
|
Investigation on highly flexible CZTS solar cells using transparent conductive ZnO/Cu/ZnO films. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
3
|
Zhang J, Shangguan S, Wang X, Deng H, Qi D, Chen S, Zheng H. Spatially modulated femtosecond laser direct ablation-based preparation of ultra-flexible multifunctional copper mesh electrodes and its application. OPTICS EXPRESS 2022; 30:39996-40008. [PMID: 36298940 DOI: 10.1364/oe.471182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/28/2022] [Indexed: 06/16/2023]
Abstract
Multifunctional electrodes possess superior properties such as high photoelectric properties and high stability. Laser manufacturing process is one of the widely used method for electrode fabrication. However, the current multifunctional electrode laser manufacturing process suffers from low fabrication speed. Here, we report a high-efficiency laser digital patterning process to fabricate copper-based flexible transparent conducting electrodes. By using a spatially modulated, one single laser spot is modulated into an array of spots with equal intensity, and the fabrication speed can be improved by more than 20 times over the traditional single pulse processing. In addition, copper mesh electrodes with a high photoelectric property have been fabricated. A transparent touch screen panel and multifunctional windows are fabricated with transparent electrodes to demonstrate their use in vehicle defogging, portable heating, and wearable devices.
Collapse
|
4
|
Li M, McCourt MJ, Galante AJ, Leu PW. Bayesian optimization of nanophotonic electromagnetic shielding with very high visible transparency. OPTICS EXPRESS 2022; 30:33182-33194. [PMID: 36242364 DOI: 10.1364/oe.468843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/12/2022] [Indexed: 06/16/2023]
Abstract
Transparent electromagnetic interference (EMI) shielding is needed in many optoelectronic applications to protect electronic devices from surrounding radiation while allowing for high visible light transmission. However, very high transmission (over 92.5%), high EMI shielding efficiency (over 30 dB) structures have yet to be achieved in the literature. Bayesian optimization is used to optimize different nanophotonic structures for high EMI shielding efficiency (SE) and high visible light transmission (T¯ v i s ). Below 90% average visible light transmission, sandwich structures consisting of high index dielectric/silver/high index dielectric films are determined to be optimal, where they are able to achieve 43.1 dB SE and 90.0% T¯ v i s . The high index of refraction dielectric layers reduce absorption losses in the silver and can be engineered to provide for antireflection through destructive interference. However, for optimal EMI shielding with T¯ v i s above 90%, the reflection losses at the air/dielectric interfaces need to be further reduced. Optimized double sided nanocone sandwich structures are determined to be best where they can achieve 41.2 dB SE and 90.8% T¯ v i s as well as 35.6 dB SE and 95.1% T¯ v i s . K-means clustering is utilized to show the performance of characteristic near-Pareto optimal structures. Double sided nanocone structures are shown to exhibit omnidirectional visible transmission with SE = 35.6 dB and over 85% T¯ v i s at incidence angles of 70 ∘.
Collapse
|
5
|
Nguyen VH, Papanastasiou DT, Resende J, Bardet L, Sannicolo T, Jiménez C, Muñoz-Rojas D, Nguyen ND, Bellet D. Advances in Flexible Metallic Transparent Electrodes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106006. [PMID: 35195360 DOI: 10.1002/smll.202106006] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Transparent electrodes (TEs) are pivotal components in many modern devices such as solar cells, light-emitting diodes, touch screens, wearable electronic devices, smart windows, and transparent heaters. Recently, the high demand for flexibility and low cost in TEs requires a new class of transparent conductive materials (TCMs), serving as substitutes for the conventional indium tin oxide (ITO). So far, ITO has been the most used TCM despite its brittleness and high cost. Among the different emerging alternative materials to ITO, metallic nanomaterials have received much interest due to their remarkable optical-electrical properties, low cost, ease of manufacturing, flexibility, and widespread applicability. These involve metal grids, thin oxide/metal/oxide multilayers, metal nanowire percolating networks, or nanocomposites based on metallic nanostructures. In this review, a comparison between TCMs based on metallic nanomaterials and other TCM technologies is discussed. Next, the different types of metal-based TCMs developed so far and the fabrication technologies used are presented. Then, the challenges that these TCMs face toward integration in functional devices are discussed. Finally, the various fields in which metal-based TCMs have been successfully applied, as well as emerging and potential applications, are summarized.
Collapse
Affiliation(s)
- Viet Huong Nguyen
- Faculty of Materials Science and Engineering, Phenikaa University, Hanoi, 12116, Viet Nam
| | | | - Joao Resende
- AlmaScience Colab, Madan Parque, Caparica, 2829-516, Portugal
| | - Laetitia Bardet
- Université Grenoble Alpes, CNRS, Grenoble INP, LMGP, Grenoble, F-38016, France
| | - Thomas Sannicolo
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Carmen Jiménez
- Université Grenoble Alpes, CNRS, Grenoble INP, LMGP, Grenoble, F-38016, France
| | - David Muñoz-Rojas
- Université Grenoble Alpes, CNRS, Grenoble INP, LMGP, Grenoble, F-38016, France
| | - Ngoc Duy Nguyen
- Département de Physique, CESAM/Q-MAT, SPIN, Université de Liège, Liège, B-4000, Belgium
| | - Daniel Bellet
- Université Grenoble Alpes, CNRS, Grenoble INP, LMGP, Grenoble, F-38016, France
| |
Collapse
|
6
|
Zhang X, Lei D, Zhang B, Yao P, Wang Z. SiN x /Cu Spectral Beam Splitting Films for Hybrid Photovoltaic and Concentrating Solar Thermal Systems. ACS OMEGA 2021; 6:21709-21718. [PMID: 34471773 PMCID: PMC8388091 DOI: 10.1021/acsomega.1c03178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/04/2021] [Indexed: 06/13/2023]
Abstract
Spectral beam splitting (SBS) films are crucial for the development of hybrid systems based on photovoltaic (PV) and concentrating solar thermal (CST) technologies. In this study, a novel double-layer SiN x /Cu SBS film was prepared via magnetron sputtering. This film was developed based on the linear Fresnel solar thermal technology used in PV/CST hybrid systems. The as-deposited film exhibited superior SBS properties, with a high transmittance of 72.9% and a reflectance of 89.7%. To optimize the optical properties, the thicknesses of the metal and SiN x layers were precisely controlled. The optimal thicknesses of the Cu and SiN x layers were determined to be 17 and 67 nm, respectively. Furthermore, the thermal stability of the SBS film was evaluated. When annealed at 50 °C, the surface of the SBS film became more uniform and smooth, and with increasing annealing time, the film became denser. No strong diffraction peaks of Cu were observed in the X-ray diffraction patterns because of the low content and poor crystallization of Cu. Atomic force microscopy investigations revealed the formation of a textured surface and a decrease in the root-mean-square roughness with an increase in the annealing time from 0 to 360 h. As a key component with considerable application potential in PV/CST hybrid systems, SBS films are currently an important research topic.
Collapse
Affiliation(s)
- Xin Zhang
- Key
Laboratory of Concentrating Solar Thermal Energy and Photovoltaic
System, Chinese Academy of Sciences, Beijing 100190, China
- Institute
of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Beijing
Engineering Research Center of Concentrating Solar Thermal Power, Beijing 100190, China
| | - Dongqiang Lei
- Key
Laboratory of Concentrating Solar Thermal Energy and Photovoltaic
System, Chinese Academy of Sciences, Beijing 100190, China
- Institute
of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Beijing
Engineering Research Center of Concentrating Solar Thermal Power, Beijing 100190, China
| | - Bo Zhang
- North
University of China, Taiyuan, Shanxi 030051, China
| | - Pan Yao
- Key
Laboratory of Concentrating Solar Thermal Energy and Photovoltaic
System, Chinese Academy of Sciences, Beijing 100190, China
- Institute
of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Beijing
Engineering Research Center of Concentrating Solar Thermal Power, Beijing 100190, China
| | - Zhifeng Wang
- Key
Laboratory of Concentrating Solar Thermal Energy and Photovoltaic
System, Chinese Academy of Sciences, Beijing 100190, China
- Institute
of Electrical Engineering, Chinese Academy of Sciences, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Beijing
Engineering Research Center of Concentrating Solar Thermal Power, Beijing 100190, China
| |
Collapse
|
7
|
Bitla Y, Chu YH. van der Waals oxide heteroepitaxy for soft transparent electronics. NANOSCALE 2020; 12:18523-18544. [PMID: 32909023 DOI: 10.1039/d0nr04219f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The quest for multifunctional, low-power and environment friendly electronics has brought research on materials to the forefront. For instance, as the emerging field of transparent flexible electronics is set to greatly impact our daily lives, more stringent requirements are being imposed on functional materials. Inherently flexible polymers and metal foil templates have yielded limited success due to their incompatible high-temperature growth and non-transparency, respectively. Although the epitaxial-transfer strategy has shown promising results, it suffers from tedious and complicated lift-off-transfer processes. The advent of graphene, in particular, and 2D layered materials, in general, with ultrathin scalability has revolutionized this field. Herein, we review the direct growth of epitaxial functional oxides on flexible transparent mica substrates via van der Waals heteroepitaxy, which mitigates misfit strain and substrate clamping for soft transparent electronics applications. Recent advances in practical applications of flexible and transparent electronic elements are discussed. Finally, several important directions, challenges and perspectives for commercialization are also outlined. We anticipate that this promising strategy to build transparent flexible optoelectronic devices and improve their performance will open up new avenues for researchers to explore.
Collapse
Affiliation(s)
- Yugandhar Bitla
- Department of Physics, School of Physical Sciences, Central University of Rajasthan, Ajmer 305817, India
| | | |
Collapse
|
8
|
Bo R, Zhang F, Bu S, Nasiri N, Di Bernardo I, Tran-Phu T, Shrestha A, Chen H, Taheri M, Qi S, Zhang Y, Mulmudi HK, Lipton-Duffin J, Gaspera ED, Tricoli A. One-Step Synthesis of Porous Transparent Conductive Oxides by Hierarchical Self-Assembly of Aluminum-Doped ZnO Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2020; 12:9589-9599. [PMID: 32019296 DOI: 10.1021/acsami.9b19423] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Transparent conductive oxides (TCOs) are highly desirable for numerous applications ranging from photovoltaics to light-emitting diodes and photoelectrochemical devices. Despite progress, it remains challenging to fabricate porous TCOs (pTCOs) that may provide, for instance, a hierarchical nanostructured morphology for the separation of photoexcited hole/electron couples. Here, we present a facile process for the fabrication of porous architectures of aluminum-doped zinc oxide (AZO), a low-cost and earth-abundant transparent conductive oxide. Three-dimensional nanostructured films of AZO with tunable porosities from 10 to 98% were rapidly self-assembled from flame-made nanoparticle aerosols. Successful Al doping was confirmed by X-ray photoemission spectroscopy, high-resolution transmission electron microscopy, elemental mapping, X-ray diffraction, and Fourier transform infrared spectroscopy. An optimal Al-doping level of 1% was found to induce the highest material conductivity, while a higher amount led to partial segregation and formation of aluminum oxide domains. A controllable semiconducting to conducting behavior with a resistivity change of more than 4 orders of magnitudes from about 3 × 102 to 9.4 × 106 Ω cm was observed by increasing the AZO film porosity from 10 to 98%. While the denser AZO morphologies may find immediate application as transparent electrodes, we demonstrate that the ultraporous semiconducting layers have potential as a light-driven gas sensor, showing a high response of 1.92-1 ppm of ethanol at room temperature. We believe that these tunable porous transparent conductive oxides and their scalable fabrication method may provide a highly performing material for future optoelectronic devices.
Collapse
Affiliation(s)
- Renheng Bo
- Nanotechnology Research Laboratory, Research School of Engineering , Australian National University , Canberra 2601 , Australia
| | - Fan Zhang
- Nanotechnology Research Laboratory, Research School of Engineering , Australian National University , Canberra 2601 , Australia
- Department of Applied Chemistry , Northwestern Polytechnical University , Xi'an 710072 , China
- College of Energy Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Shulin Bu
- Nanotechnology Research Laboratory, Research School of Engineering , Australian National University , Canberra 2601 , Australia
| | - Noushin Nasiri
- Nanotechnology Research Laboratory, Research School of Engineering , Australian National University , Canberra 2601 , Australia
- School of engineering , Macquarie University , Sydney , New South Wales 2109 , Australia
| | - Iolanda Di Bernardo
- Nanotechnology Research Laboratory, Research School of Engineering , Australian National University , Canberra 2601 , Australia
| | - Thanh Tran-Phu
- Nanotechnology Research Laboratory, Research School of Engineering , Australian National University , Canberra 2601 , Australia
| | - Aabhash Shrestha
- Nanotechnology Research Laboratory, Research School of Engineering , Australian National University , Canberra 2601 , Australia
| | - Hongjun Chen
- Nanotechnology Research Laboratory, Research School of Engineering , Australian National University , Canberra 2601 , Australia
| | - Mahdiar Taheri
- Labotatory of Advanced Nanomaterials for Sustainability, Research School of Engineering , Australian National University , Canberra 2601 , Australia
| | - Shuhua Qi
- Department of Applied Chemistry , Northwestern Polytechnical University , Xi'an 710072 , China
| | - Yi Zhang
- College of Energy Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Hemant Kumar Mulmudi
- Nanotechnology Research Laboratory, Research School of Engineering , Australian National University , Canberra 2601 , Australia
| | - Josh Lipton-Duffin
- Institute for Future Environments (IFE) and Central Analytical Research Facility (CARF) , Queensland University of Technology (QUT) , Level 6, P Block, Gardens Point campus, 2 George St. Brisbane , Queensland 4000 , Australia
| | | | - Antonio Tricoli
- Nanotechnology Research Laboratory, Research School of Engineering , Australian National University , Canberra 2601 , Australia
| |
Collapse
|
9
|
Wang Y, Yang Z, Xia T, Pan G, Zhang L, Chen H, Zhang J. Azo‐Group‐Containing Organic Compounds as Electrode Materials in Full‐Cell Lithium‐Ion Batteries. ChemElectroChem 2019. [DOI: 10.1002/celc.201901267] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yingqian Wang
- College of Material Science and EngineeringCentral South University of Forestry and Technology Changsha 410000 Hunan China
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of Technology (Shenzhen) Shenzhen 518055 Guangdong China
- Research Centre of Flexible Printed Electronic TechnologyHarbin Institute of Technology (Shenzhen) Shenzhen 518055 Guangdong China
| | - Zhixiong Yang
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of Technology (Shenzhen) Shenzhen 518055 Guangdong China
- Research Centre of Flexible Printed Electronic TechnologyHarbin Institute of Technology (Shenzhen) Shenzhen 518055 Guangdong China
| | - Tianlai Xia
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of Technology (Shenzhen) Shenzhen 518055 Guangdong China
- Research Centre of Flexible Printed Electronic TechnologyHarbin Institute of Technology (Shenzhen) Shenzhen 518055 Guangdong China
| | - Guangxing Pan
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of Technology (Shenzhen) Shenzhen 518055 Guangdong China
- Research Centre of Flexible Printed Electronic TechnologyHarbin Institute of Technology (Shenzhen) Shenzhen 518055 Guangdong China
| | - Ling Zhang
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of Technology (Shenzhen) Shenzhen 518055 Guangdong China
- Research Centre of Flexible Printed Electronic TechnologyHarbin Institute of Technology (Shenzhen) Shenzhen 518055 Guangdong China
| | - Hong Chen
- College of Material Science and EngineeringCentral South University of Forestry and Technology Changsha 410000 Hunan China
- School of Materials Science and Energy EngineeringFoshan University Foshan 528000 Guangdong China
| | - Jiaheng Zhang
- State Key Laboratory of Advanced Welding and JoiningHarbin Institute of Technology (Shenzhen) Shenzhen 518055 Guangdong China
- Research Centre of Flexible Printed Electronic TechnologyHarbin Institute of Technology (Shenzhen) Shenzhen 518055 Guangdong China
| |
Collapse
|
10
|
Wang M, Li R, Chen G, Zhou S, Feng X, Chen Y, He M, Liu D, Song T, Qi H. Highly Stretchable, Transparent, and Conductive Wood Fabricated by in Situ Photopolymerization with Polymerizable Deep Eutectic Solvents. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14313-14321. [PMID: 30915834 DOI: 10.1021/acsami.9b00728] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The rational design of high-performance, flexible, transparent, electrically conducting sensor attracts considerable attention. However, these designed devices predominantly utilize glass and plastic substrates, which are expensive and not environmentally friendly. Here, novel transparent and conductive woods (TCWs) were fabricated by using renewable wood substrates and low-cost conductive polymers. Polymerizable deep eutectic solvents (PDES), acrylic-acid (AA)/choline chloride (ChCl), were used as backfilling agents and in situ photopolymerized in the delignified wood, which endowed the materials with high transparency (transmittance of 90%), good stretchability (strain up to 80%), and high electrical conductivity (0.16 S m-1). The retained cellulose orientation and strong interactions between the cellulose-rich template and poly(PDES) endow TCWs with excellent mechanical properties. Moreover, TCWs exhibited excellent sensing behaviors to strain/touch, even at low strain. Therefore, these materials can be used to detect weak pressure such as human being's subtle bending-release activities. This work provides a new route to fabricate functional composite materials and devices which have promising potential for electronics applications in flexible displays, tactile skin sensors, and other fields.
Collapse
Affiliation(s)
- Ming Wang
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Renai Li
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Guixian Chen
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Shenghui Zhou
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Xiao Feng
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Yian Chen
- Leibniz Inst Polymerforsch Dresden eV IPF , Dresden 01069 , Germany
| | - Minghui He
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Detao Liu
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Tao Song
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
| | - Haisong Qi
- State Key Laboratory of Pulp and Paper Engineering , South China University of Technology , Guangzhou 510640 , China
- Guangdong Engineering Research Center for Green Fine Chemicals , Guangzhou 510640 , China
| |
Collapse
|
11
|
Abstract
Flexible sensors have the potential to be seamlessly applied to soft and irregularly shaped surfaces such as the human skin or textile fabrics. This benefits conformability dependant applications including smart tattoos, artificial skins and soft robotics. Consequently, materials and structures for innovative flexible sensors, as well as their integration into systems, continue to be in the spotlight of research. This review outlines the current state of flexible sensor technologies and the impact of material developments on this field. Special attention is given to strain, temperature, chemical, light and electropotential sensors, as well as their respective applications.
Collapse
|