1
|
Arnaiz M, Fernandez M, Suty A, Martin‐Fuentes S, Carriazo D, Bouvet‐Marchand A, Villaverde A, Morant‐Miñana MC. Novel Binders for Aqueous Electrode Processing of Electrochemical Capacitors. CHEMSUSCHEM 2025; 18:e202401316. [PMID: 39422349 PMCID: PMC11874645 DOI: 10.1002/cssc.202401316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
This work studies the use of epoxy and polyurethane formulations as binders for the aqueous processing of activated carbon (AC) electrodes used as positive and negative electrodes in Electrochemical Double Layer Capacitors (EDLCs). The use of amine and carbodiimide as crosslinkers is also evaluated. The mechanical properties of those different binders have been investigated, looking towards aqueous processable and flexible electrodes. Microstructural analysis of the fabricated AC electrodes has been carried out to understand the pore-blocking effect exhibited by certain polymers. Furthermore, electrochemical characterization of all the systems has been performed by cyclic voltammetry, electrochemical impedance spectroscopy, and constant current charge/discharge measurements at different current densities. The obtained results show that polyurethane (PU) outperforms in terms of energy and power density the carboxymethyl cellulose:styrene butadiene rubber (CMC : SBR) reference system. Moreover, the studied polyurethanes maintain close to 100 % of their initial capacitance after 2500 cycles under a current density of 5 A g-1 and a discharge time of 20 s.
Collapse
Affiliation(s)
- María Arnaiz
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE)Basque Research and Technology Alliance (BRTA)Alava Technology Park, Albert Einstein 4801510Vitoria-GasteizSpain
| | - Marcial Fernandez
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE)Basque Research and Technology Alliance (BRTA)Alava Technology Park, Albert Einstein 4801510Vitoria-GasteizSpain
| | - Antoine Suty
- Specific Polymers150 Avenue des Cocardières34160CastriesFrance
| | - Silvia Martin‐Fuentes
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE)Basque Research and Technology Alliance (BRTA)Alava Technology Park, Albert Einstein 4801510Vitoria-GasteizSpain
| | - Daniel Carriazo
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE)Basque Research and Technology Alliance (BRTA)Alava Technology Park, Albert Einstein 4801510Vitoria-GasteizSpain
- IkerbasqueBasque Foundation for Science48013BilbaoSpain
| | | | - Aitor Villaverde
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE)Basque Research and Technology Alliance (BRTA)Alava Technology Park, Albert Einstein 4801510Vitoria-GasteizSpain
| | - Maria C. Morant‐Miñana
- Centre for Cooperative Research on Alternative Energies (CIC energiGUNE)Basque Research and Technology Alliance (BRTA)Alava Technology Park, Albert Einstein 4801510Vitoria-GasteizSpain
| |
Collapse
|
2
|
Silori GK, Thoka S, Ho KC. Morphological Features of SiO 2 Nanofillers Address Poor Stability Issue in Gel Polymer Electrolyte-Based Electrochromic Devices. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37205840 DOI: 10.1021/acsami.3c04685] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Nanofillers' applicability in gel polymer electrolyte (GPE)-based devices skyrocketed in the last decade as soon as their remarkable benefits were realized. However, their applicability in GPE-based electrochromic devices (ECDs) has hardly seen any development due to challenges such as optical inhomogeneity brought by incompetent nanofiller sizes, transmittance drop due to higher filler loading (usually required), and poor methodologies of electrolyte fabrication. To address such issues, herein, we demonstrate a reinforced polymer electrolyte tailored through poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP),1-butyl-3-methylimidazolium tetrafluoroborate (BMIMBF4), and four types of mesoporous SiO2 nanofillers, porous (distinct morphologies) and nonporous, two each. The synthesized electrochromic species 1,1'-bis(4-fluorobenzyl)-4,4'-bipyridine-1,1'-diium tetrafluoroborate (BzV, 0.05 M), counter redox species ferrocene (Fc, 0.05 M), and supporting electrolyte (TBABF4, 0.5 M) were first dissolved in propylene carbonate (PC) and then immobilized in an electrospun PVDF-HFP/BMIMBF4/SiO2 host. We distinctly observed that spherical (SPHS) and hexagonal pore (MCMS) morphologies of fillers endowed higher transmittance change (ΔT) and coloration efficiency (CE) in utilized ECDs; particularly for the MCMS-incorporated ECD (GPE-MCMS/BzV-Fc ECD), ΔT reached ∼62.5% and CE soared to 276.3 cm2/C at 603 nm. The remarkable benefit of filler's hexagonal morphology was also seen in the GPE-MCMS/BzV-Fc ECD, which not only marked an astounding ionic conductivity (σ) of ∼13.5 × 10-3 S cm-1 at 25 °C, thus imitating the solution-type ECD's behavior, but also retained ∼77% of initial ΔT after 5000 switching cycles. The enhancement in ECD's performance resulted from merits brought by filler geometries such as the proliferation of Lewis acid-base interaction sites due to the high surface-to-volume ratio, the creation of percolating tunnels, and the emergence of capillary forces triggering facile ion transportation in the electrolyte matrix.
Collapse
Affiliation(s)
- Gaurav Kumar Silori
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | | | - Kuo-Chuan Ho
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
- Institute of Polymer Science and Engineering, National Taiwan University, Taipei 10617, Taiwan
- Advanced Research Center of Green Materials Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
3
|
Chen J, Rong L, Liu X, Liu J, Yang X, Jiang X. Enhancement of flame retardancy of solid polymer electrolyte based on phosphorus-containing ionic liquid polyurethane membrane for safe lithium batteries. POLYMER 2023. [DOI: 10.1016/j.polymer.2023.125759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
4
|
Wang Q, Zhou L, Li J, Li Z, Wang T. Enhanced Interfacial Affinity of the Supercapacitor Electrode with a Hydrogel Electrolyte by a Preadsorbed Polyzwitterion Layer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:8614-8622. [PMID: 35786970 DOI: 10.1021/acs.langmuir.2c00993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Polymer hydrogel-based solid-state supercapacitors exhibit great potential applications in flexible devices. Nevertheless, the poor electrode-electrolyte interfacial properties restrict their advances. Herein, by taking the well-developed polyvinyl alcohol (PVA)/H2SO4 gel electrolyte and the graphene film electrode as the prototype, a very simple strategy is demonstrated to improve the interfacial affinity between the electrode and the hydrogel electrolyte by a preadsorbed highly hydrophilic polyzwitterion layer of poly(propylsulfonate dimethylammonium propylmethacrylamide) (PPDP) on the electrode surface. Electrochemical measurements confirm that the charge-transfer resistance on the interface is effectively reduced after modification with PPDP. Consequently, the obtained areal capacitance experiences a 3-fold increase compared to the unmodified ones. Results from electrochemical quartz crystal microbalance with dissipation demonstrate that more ions can be reversibly transferred on the modified interface during the change-discharge cycles, suggesting that the accessible surface area on the electrode is also increased. The hydrophilic PVA layer shows a similar function but with a much smaller efficiency. The strategy depicted here is highly universalizable and can be generalized to different electrode/electrolyte systems or other electrochemical energy storage devices.
Collapse
Affiliation(s)
- Qing Wang
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang 330031, P. R. China
| | - Lang Zhou
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang 330031, P. R. China
| | - Jingzhe Li
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang 330031, P. R. China
| | - Zheng Li
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang 330031, P. R. China
| | - Tao Wang
- School of Physics and Materials Science, Jiangxi Key Laboratory for Two-Dimensional Materials, Nanchang University, Nanchang 330031, P. R. China
| |
Collapse
|
5
|
Zhou Z, Tao Z, Zhang L, Zheng X, Xiao X, Liu Z, Li X, Liu G, Zhao P, Zhang P. Scalable Manufacturing of Solid Polymer Electrolytes with Superior Room-Temperature Ionic Conductivity. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32994-33003. [PMID: 35819178 DOI: 10.1021/acsami.2c01416] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A scalable manufacturing protocol is developed to prepare polymer-based solvent-free all-solid flexible energy storage devices based on a two-roll mill and adapted rubber mixing technology. The as-prepared solid polymer electrolytes (SPEs) consisting of commercial poly(methyl methacrylate)-grafted natural rubber (MG30) and lithium bis(trifluoromethanesulfonyl)imide achieve a superior ionic conductivity of 2.7 × 10-3 S cm-1 at 30 °C. The superior ionic conductivity is attributed to the formation of an ionic cluster network in the composite as proved by small-angle X-ray scattering and infrared spectroscopy measurements. Moreover, the as-prepared SPEs show good mechanical stability over a broad temperature range, that is , a storage modulus above 1 × 104 Pa from 30 to 120 °C as indicated by the rheology data. Furthermore, the SPEs were assembled with the carbon black-filled MG30 (i.e., MG30C) electrode into a flexible supercapacitor cell, which had a wide voltage window of 3.5 V, good energy density of 28.4 μW h·cm-2 at 160 °C, and good temperature tolerance up to 160 °C. This scaling-up manufacture strategy shows tremendous potential to the advancing of SPEs in applications of flexible energy storage device.
Collapse
Affiliation(s)
- Zekun Zhou
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zengren Tao
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Linyun Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
- School of Materials Science, Sun Yat-sen University, Guangzhou 510275, China
| | - Xueying Zheng
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xieyi Xiao
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Zhen Liu
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Guangfeng Liu
- National Facility for Protein Science in Shanghai, Zhangjiang Laboratory, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201204, China
| | - Pengfei Zhao
- Agricultural Product Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, P.R. China
| | - Peng Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory for Polymeric Composite and Functional Materials of Ministry of Education, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
6
|
Hydrophilic Carbon Cloth (Chemically Activated) as an Electrode Material For Energy Storage Device. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022. [DOI: 10.1007/s13369-021-05803-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Aziz SB, Dannoun EMA, Brza MA, Sadiq NM, Nofal MM, Karim WO, Al-Saeedi SI, Kadir MFZ. An Investigation into the PVA:MC:NH 4Cl-Based Proton-Conducting Polymer-Blend Electrolytes for Electrochemical Double Layer Capacitor (EDLC) Device Application: The FTIR, Circuit Design and Electrochemical Studies. Molecules 2022; 27:1011. [PMID: 35164273 PMCID: PMC8839426 DOI: 10.3390/molecules27031011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/25/2022] [Accepted: 01/30/2022] [Indexed: 12/17/2022] Open
Abstract
In this report, the preparation of solid polymer electrolytes (SPEs) is performed from polyvinyl alcohol, methyl cellulose (PVA-MC), and ammonium chloride (NH4Cl) using solution casting methodology for its use in electrical double layer capacitors (EDLCs). The characterizations of the prepared electrolyte are conducted using a variety of techniques, including Fourier transform infrared spectroscopy (FTIR), electrical impedance spectroscopy (EIS), cyclic voltammetry (CV), and linear sweep voltammetry (LSV). The interaction between the polymers and NH4Cl salt are assured via FTIR. EIS confirms the possibility of obtaining a reasonably high conductance of the electrolyte of 1.99 × 10-3 S/cm at room temperature. The dielectric response technique is applied to determine the extent of the ion dissociation of the NH4Cl in the PVA-MC-NH4Cl systems. The appearance of a peak in the imaginary part of the modulus study recognizes the contribution of chain dynamics and ion mobility. Transference number measurement (TNM) is specified and is found to be (tion) = 0.933 for the uppermost conducting sample. This verifies that ions are the predominant charge carriers. From the LSV study, 1.4 V are recorded for the relatively high-conducting sample. The CV curve response is far from the rectangular shape. The maximum specific capacitance of 20.6 F/g is recorded at 10 mV/s.
Collapse
Affiliation(s)
- Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq;
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Kurdistan Regional Government, Sulaimani 46001, Iraq
| | - Elham M. A. Dannoun
- Associate Chair of the Department of Mathematics and Science, Woman Campus, Prince Sultan University, Riyadh 11586, Saudi Arabia;
| | - Mohamad A. Brza
- Medical Physics Department, College of Medicals & Applied Science, Charmo University, Chamchamal, Sulaimania 46023, Iraq;
| | - Niyaz M. Sadiq
- Hameed Majid Advanced Polymeric Materials Research Lab., Physics Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq;
| | - Muaffaq M. Nofal
- Department of Mathematics and Science, Prince Sultan University, Riyadh 11586, Saudi Arabia;
| | - Wrya O. Karim
- Chemistry Department, College of Science, University of Sulaimani, Qlyasan Street, Kurdistan Regional Government, Sulaimani 46001, Iraq;
| | - Sameerahl I. Al-Saeedi
- Department of Chemistry, College of Science, Princess Nuourah Bint Abdulrahman University, Riyadh 11586, Saudi Arabia;
| | - Mohd F. Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
8
|
Dong F, Qian Y, Xu X, Shaghaleh H, Guo L, Liu H, Wang S. Preparation and characterization of UV-curable waterborne polyurethane using isobornyl acrylate modified via copolymerization. Polym Degrad Stab 2021. [DOI: 10.1016/j.polymdegradstab.2020.109474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Wang PH, Lin CH, Tseng LH, Wen TC. Superior hydrogel electrolytes in both ionic conductivity and electrochemical window from the immobilized pair ions for carbon-based supercapacitors. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
10
|
Demir B, Chan KY, Searles DJ. Structural Electrolytes Based on Epoxy Resins and Ionic Liquids: A Molecular-Level Investigation. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00824] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Baris Demir
- Centre for Theoretical and Computational Molecular Science, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kit-ying Chan
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawtorn, Melbourne, VIC 3122, Australia
| | - Debra J. Searles
- Centre for Theoretical and Computational Molecular Science, The Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
11
|
B. Aziz S, Hamsan MH, M. Nofal M, Karim WO, Brevik I, Brza MA, Abdulwahid RT, Al-Zangana S, Kadir MFZ. Structural, Impedance and Electrochemical Characteristics of Electrical Double Layer Capacitor Devices Based on Chitosan: Dextran Biopolymer Blend Electrolytes. Polymers (Basel) 2020; 12:E1411. [PMID: 32599794 PMCID: PMC7362077 DOI: 10.3390/polym12061411] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/03/2022] Open
Abstract
This report presents the preparation and characterizations of solid biopolymer blend electrolyte films of chitosan as cationic polysaccharide and anionic dextran (CS: Dextran) doped with ammonium iodide (NH4I) to be utilized as electrolyte and electrode separator in electrical double-layer capacitor (EDLC) devices. FTIR and XRD techniques were used to study the structural behavior of the films. From the FTIR band analysis, shifting and broadening of the bands were observed with increasing salt concentration. The XRD analysis indicates amorphousness of the blended electrolyte samples whereby the peaks underwent broadening. The analysis of the impedance spectra emphasized that incorporation of 40 wt.% of NH4I salt into polymer electrolyte exhibited a relatively high conductivity (5.16 × 10-3 S/cm). The transference number measurement (TNM) confirmed that ion (tion = 0.928) is the main charge carriers in the conduction process. The linear sweep voltammetry (LSV) revealed the extent of durability of the relatively high conducting film which was 1.8 V. The mechanism of charge storage within the fabricated EDLC has been explained to be fully capacitive behavior with no redox peaks appearance in the cyclic voltammogram (CV). From this findings, four important parameters of the EDLC; specific capacitance, equivalent series resistance, energy density and power density were calculated as 67.5 F/g, 160 ohm, 7.59 Wh/kg and 520.8 W/kg, respectively.
Collapse
Affiliation(s)
- Shujahadeen B. Aziz
- Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (M.A.B.); (R.T.A.)
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Kurdistan Regional Government, Iraq
| | - Muhamad H. Hamsan
- Institute for Advanced Studies, University of Malaya, Kuala Lumpur 50603, Malaysia;
| | - Muaffaq M. Nofal
- Department of Mathematics and General Sciences, Prince Sultan University, P.O. Box 66833, Riyadh 11586, Saudi Arabia;
| | - Wrya O. Karim
- Department of Chemistry, College of Education, University of Sulaimani, Old Campus, Sulaimani 46001, Kurdistan Regional Government, Iraq;
| | - Iver Brevik
- Department of Energy and Process Engineering, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Mohamad. A. Brza
- Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (M.A.B.); (R.T.A.)
- Manufacturing and Materials Engineering Department, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur 50603, Gombak, Malaysia
| | - Rebar T. Abdulwahid
- Advanced Polymeric Materials Research Lab., Department of Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Kurdistan Regional Government, Iraq; (M.A.B.); (R.T.A.)
- Department of Physics, College of Education, University of Sulaimani, Old Campus, Sulaimani 46001, Kurdistan Regional Government, Iraq
| | - Shakhawan Al-Zangana
- Department of Physics, College of Education, University of Garmian, Kalar 46021, Iraq;
| | - Mohd F. Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
12
|
Mustafa MS, Ghareeb HO, Aziz SB, Brza MA, Al-Zangana S, Hadi JM, Kadir MFZ. Electrochemical Characteristics of Glycerolized PEO-Based Polymer Electrolytes. MEMBRANES 2020; 10:E116. [PMID: 32517014 PMCID: PMC7344729 DOI: 10.3390/membranes10060116] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 11/17/2022]
Abstract
In this article, poly(ethylene oxide)-based polymer electrolyte films doped with ammonium iodide (NH4I) and plasticized with glycerol were provided by a solution casting method. In the unplasticized system, the maximum ionic conductivity of 3.96 × 10-5 S cm-1 was achieved by the electrolyte comprised of 70 wt. % PEO:30 wt. % NH4I. The conductivity was further enhanced up to (1.77×10-4 S cm-1) for the plasticized system when 10 wt. % glycerol was added to the highest conducting unplasticized one at ambient temperature. The films were characterized by various techniques to evaluate their electrochemical performance. The results of impedance spectroscopy revealed that bulk resistance (Rb) considerably decreased for the highest plasticized polymer electrolyte. The dielectric properties and electric modulus parameters were studied in detail. The LSV analysis verified that the plasticized system can be used in energy storage devices with electrochemical stability up to 1.09 V and the TNM data elucidated that the ions were the main charge carrier. The values of the ion transference number (tion) and electron transfer number (tel) were calculated. The nonappearance of any redox peaks in the cyclic voltammograms indicated that the chemical reaction had not occurred at the electrode/electrolyte interface.
Collapse
Affiliation(s)
- Muhammad S. Mustafa
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (M.S.M.); (H.O.G.)
| | - Hewa O. Ghareeb
- Department of Chemistry, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq; (M.S.M.); (H.O.G.)
| | - Shujahadeen B. Aziz
- Hameed Majid Advanced Polymeric Materials Research Lab, Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq;
- Department of Civil Engineering, College of Engineering, Komar University of Science and Technology, Sulaimani 46001, Iraq
| | - M. A. Brza
- Hameed Majid Advanced Polymeric Materials Research Lab, Physics, College of Science, University of Sulaimani, Qlyasan Street, Sulaimani 46001, Iraq;
- Manufacturing and Materials Engineering Department, Faculty of Engineering, International Islamic University of Malaysia, Kuala Lumpur 50603, Malaysia
| | - Shakhawan Al-Zangana
- Department of Physics, College of Education, University of Garmian, Kalar 46021, Iraq;
| | - Jihad M. Hadi
- Kurdistan Technical Institute, Sulaimani 46001, Iraq;
- College of Engineering, Tishk International University, Sulaimani 46001, Iraq
| | - M. F. Z. Kadir
- Centre for Foundation Studies in Science, University of Malaya, Kuala Lumpur 50603, Malaysia;
| |
Collapse
|
13
|
Moore D, Arcila JA, Saraf RF. Electrochemical Deposition of Polyelectrolytes Is Maximum at the Potential of Zero Charge. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:1864-1870. [PMID: 32073857 DOI: 10.1021/acs.langmuir.9b03734] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Electrochemical deposition of cationic and anionic polyelectrolyte on a Au electrode is studied as a function of applied potential between the electrode and the solution of monovalent electrolyte. The deposition is measured by open circuit potential relative to a pristine electrode in a reference solution (100 mM NaCl). The rate of deposition is measured by a home-built electrochemical-optical method in real time. It was discovered that the polarity of the potential and magnitude of the potential are not the primary reasons to enhance deposition. For example, both the amount and rate of deposition of negatively charged poly(styrenesulfonate) in NaCl are higher when the electrode is at -200 mV than at +200 mV with respect to the solution. The results are explained in terms of the charge state of the electrical double layer that is primarily controlled by supporting (small) ions.
Collapse
|
14
|
Wang JA, Ma CCM, Hu CC. Constructing a high-performance quasi-solid-state asymmetric supercapacitor: NaxMnO2@CNT/WPU-PAAK-Na2SO4/AC-CNT. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2019.135576] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Ahmadi Y, Ahmad S. Recent Progress in the Synthesis and Property Enhancement of Waterborne Polyurethane Nanocomposites: Promising and Versatile Macromolecules for Advanced Applications. POLYM REV 2019. [DOI: 10.1080/15583724.2019.1673403] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Younes Ahmadi
- Department of Chemistry, Materials Research Laboratory, Jamia Millia Islamia, New Delhi, India
| | - Sharif Ahmad
- Department of Chemistry, Materials Research Laboratory, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
16
|
The influence of electrodeposited PPy film morphology on the electrochemical characteristics of Nafion-based energy storage devices. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.02.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
17
|
Na R, Lu N, Zhang S, Huo G, Yang Y, Zhang C, Mu Y, Luo Y, Wang G. Facile synthesis of a high-performance, fire-retardant organic gel polymer electrolyte for flexible solid-state supercapacitors. Electrochim Acta 2018. [DOI: 10.1016/j.electacta.2018.09.074] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|