1
|
Liu Y, Peng W, Wei T, Yuan Y, Cao X, Ma M, Sun Q, Li M, Xie F. Strong, anti-swelling, and biodegradable seaweed-based straws with surface mineralized CaCO 3 armor. Carbohydr Polym 2024; 341:122347. [PMID: 38876717 DOI: 10.1016/j.carbpol.2024.122347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/16/2024]
Abstract
While the extensive utilization of disposable plastic straws has resulted in significant environmental issues such as microplastics and soil and ocean pollution, the quest for alternative straws for versatile use remains a formidable challenge. Here, drawing inspiration from naturally water-resistant materials such as bones and sea urchins, we have developed seaweed-based straws with significantly improved water resistance and mechanical strength via in-situ mineralization of CaCO3 on their surfaces. Specifically, the COO- groups on the G (α-L-guluronate) blocks of alginate were employed to establish a robust cross-linked network, while the COO- groups on the M (β-D-mannuronate) blocks attracted free Ca2+ through electrostatic forces, thereby promoting CaCO3 nucleation. This effectively prevents COOH groups from hydrating, reducing swelling, and results in the fabrication of nano- to micron-sized CaCO3 particles that reinforce the structure without compromising the cross-linked network. Compared with the control group, the S5% sample (prepared with 5 % Na2CO3 solution) exhibited a 102 % increase in water contact angle, a 35 % decrease in swelling degree, and a 35.5 % and 37.5 % increase in ultimate flexural and tensile stress, respectively. Furthermore, the potential use of these straws as a waste for heavy metal adsorption was investigated, addressing environmental concerns while demonstrating economic feasibility.
Collapse
Affiliation(s)
- Yuanpu Liu
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China; Qingdao Special Food Research Institute, Qingdao 266109, PR China
| | - Wen Peng
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Ting Wei
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China; Qingdao Special Food Research Institute, Qingdao 266109, PR China
| | - Yajie Yuan
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China; Qingdao Special Food Research Institute, Qingdao 266109, PR China
| | - Xianyu Cao
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China; Qingdao Special Food Research Institute, Qingdao 266109, PR China
| | - Meng Ma
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China; Qingdao Special Food Research Institute, Qingdao 266109, PR China
| | - Qingjie Sun
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China; Qingdao Special Food Research Institute, Qingdao 266109, PR China
| | - Man Li
- College of Food Science and Engineering, Qingdao Agricultural University, Qingdao 266109, PR China; Qingdao Special Food Research Institute, Qingdao 266109, PR China.
| | - Fengwei Xie
- Department of Chemical Engineering, University of Bath, Bath BA2 7AY, United Kingdom
| |
Collapse
|
2
|
Jing L, Liu Y, Cui J, Ma J, Yuan D, Wang C. Influence of the Crystal Forms of Calcium Carbonate on the Preparation and Characteristics of Indigo Carmine-Calcium Carbonate Lake. Foods 2024; 13:2607. [PMID: 39200534 PMCID: PMC11354058 DOI: 10.3390/foods13162607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/12/2024] [Accepted: 08/17/2024] [Indexed: 09/02/2024] Open
Abstract
In this study, indigo carmine (IC)-calcium carbonate lakes with different crystalline forms of calcium carbonate were prepared through co-precipitation methods, and the properties of these lakes and their formation mechanisms were investigated. The results showed that amorphous calcium carbonate (ACC) exhibited the smallest particle size and the largest specific surface area, resulting in the highest adsorption efficiency. Vaterite, calcite, and aragonite followed after ACC in decreasing order of adsorption efficiency. Kinetic analysis and isothermal analysis revealed the occurrence of chemisorption and multilayer adsorption during formation of the lakes. The FTIR and Raman spectra suggested participation of sulfonic acid groups in chemisorption. Appearance of IC significantly altered TGA curves by changing weight loss rate before decomposition of calcium carbonate. EDS analysis revealed the adsorption of IC predominantly happened on the surface of calcium carbonate particles rather than the interior.
Collapse
Affiliation(s)
| | | | | | | | - Dongdong Yuan
- Beijing Engineering and Technology Research Center of Food Additives, School of Food and Health, Beijing Technology & Business University, Beijing 100048, China; (L.J.); (Y.L.); (J.C.); (J.M.); (C.W.)
| | | |
Collapse
|
3
|
Arabuli KV, Kopoleva E, Akenoun A, Mikhailova LV, Petrova E, Muslimov AR, Senichkina DA, Tsymbal S, Shakirova AI, Ignatiev AI, Lepik KV, Zyuzin MV. On-chip fabrication of calcium carbonate nanoparticles loaded with various compounds using microfluidic approach. BIOMATERIALS ADVANCES 2024; 161:213904. [PMID: 38805763 DOI: 10.1016/j.bioadv.2024.213904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 05/20/2024] [Indexed: 05/30/2024]
Abstract
Engineered calcium carbonate (CaCO3) particles are extensively used as drug delivery systems due to their availability, biological compatibility, biodegradability, and cost-effective production. The synthesis procedure of CaCO3 particles, however, suffers from poor reproducibility. Furthermore, reducing the size of CaCO3 particles to <100 nm requires the use of additives in the reaction, which increases the total reaction time. Here we propose on-chip synthesis and loading of nanoscaled CaCO3 particles using microfluidics. After the development and fabrication of a microfluidic device, we optimized the synthesis of CaCO3 NPs by varying different parameters such as flow rates in the microfluidic channels, concentration of reagents, and the reaction time. To prove the versatility of the used synthesis route, we performed single and double loading of CaCO3 NPs with various compounds (Doxorubicin, Cy5 or FITC conjugated with BSA, and DNA) using the same microfluidic device. Further, the on-chip loaded CaCO3 NPs were used as carriers to transfer compounds to model cells. We have developed a microfluidic synthesis method that opens up a new pathway for easy on-chip fabrication of functional nanoparticles for clinical use.
Collapse
Affiliation(s)
- Konstantin V Arabuli
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Elena Kopoleva
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Anas Akenoun
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Lidia V Mikhailova
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Elena Petrova
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation
| | - Albert R Muslimov
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, 197022 St. Petersburg, Russian Federation
| | - Dina A Senichkina
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, 197022 St. Petersburg, Russian Federation
| | - Sergey Tsymbal
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, St. Petersburg 197101, Russian Federation
| | - Alena I Shakirova
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, 197022 St. Petersburg, Russian Federation
| | - Alexander I Ignatiev
- Research and Educational Centre of Photonics and Optoinformatics, ITMO University, Saint-Petersburg 199034, Russian Federation
| | - Kirill V Lepik
- RM Gorbacheva Research Institute of Pediatric Oncology, Hematology and Transplantation, Pavlov University, 197022 St. Petersburg, Russian Federation
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, 191002 St. Petersburg, Russian Federation; Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, China.
| |
Collapse
|
4
|
Shang LM, Li SC, Jiang J, Mao LB, Yu SH. Bioinspired High-Magnesium Calcite for Efficiently Reducing Chemical Oxygen Demand in Lake Water. SMALL METHODS 2024; 8:e2300236. [PMID: 37415544 DOI: 10.1002/smtd.202300236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/23/2023] [Indexed: 07/08/2023]
Abstract
Organic matter accumulation in water can cause serious problems such as oxygen depletion and quality deterioration of waters. While calcium carbonate has been used as green and low-cost adsorbent for water treatment, its efficiency in reducing the chemical oxygen demand (COD) of water, which is a measure of organic pollution, is restrained by the limited specific surface area and chemical activity. Herein, inspired by the high-magnesium calcite (HMC) found in biological materials, a feasible method to synthesize fluffy dumbbell-like HMC with large specific surface area is reported. The magnesium inserting increases the chemical activity of the HMC moderately but without lowering its stability too much. Therefore, the crystalline HMC can retain its phase and morphology in aqueous environment for hours, which allows the establishment of adsorption equilibrium between the solution and the adsorbent that retains its initial large specific surface area and improved chemical activity. Consequently, the HMC exhibits notably enhanced capability in reducing the COD of lake water polluted by organics. This work provides a synergistic strategy to rationally design high-performance adsorbents by simultaneously optimizing the surface area and steering the chemical activity.
Collapse
Affiliation(s)
- Li-Mei Shang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Si-Cheng Li
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Jun Jiang
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Li-Bo Mao
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Hong Yu
- Division of Nanomaterials & Chemistry, Hefei National Research Center for Physical Sciences at the Microscale, Department of Chemistry, Institute of Biomimetic Materials & Chemistry, Anhui Engineering Laboratory of Biomimetic Materials, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
5
|
Liu H, Wen Z, Liu Z, Yang Y, Wang H, Xia X, Ye J, Liu Y. Unlocking the potential of amorphous calcium carbonate: A star ascending in the realm of biomedical application. Acta Pharm Sin B 2024; 14:602-622. [PMID: 38322345 PMCID: PMC10840486 DOI: 10.1016/j.apsb.2023.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 02/08/2024] Open
Abstract
Calcium-based biomaterials have been intensively studied in the field of drug delivery owing to their excellent biocompatibility and biodegradability. Calcium-based materials can also deliver contrast agents, which can enhance real-time imaging and exert a Ca2+-interfering therapeutic effect. Based on these characteristics, amorphous calcium carbonate (ACC), as a brunch of calcium-based biomaterials, has the potential to become a widely used biomaterial. Highly functional ACC can be either discovered in natural organisms or obtained by chemical synthesis However, the standalone presence of ACC is unstable in vivo. Additives are required to be used as stabilizers or core-shell structures formed by permeable layers or lipids with modified molecules constructed to maintain the stability of ACC until the ACC carrier reaches its destination. ACC has high chemical instability and can produce biocompatible products when exposed to an acidic condition in vivo, such as Ca2+ with an immune-regulating ability and CO2 with an imaging-enhancing ability. Owing to these characteristics, ACC has been studied for self-sacrificing templates of carrier construction, targeted delivery of oncology drugs, immunomodulation, tumor imaging, tissue engineering, and calcium supplementation. Emphasis in this paper has been placed on the origin, structural features, and multiple applications of ACC. Meanwhile, ACC faces many challenges in clinical translation, and long-term basic research is required to overcome these challenges. We hope that this study will contribute to future innovative research on ACC.
Collapse
Affiliation(s)
- Han Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zhiyang Wen
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zihan Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yanfang Yang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Hongliang Wang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xuejun Xia
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Jun Ye
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Yuling Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- Beijing Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
6
|
Marmo VLM, Ambrósio JAR, Gonçalves EP, Raniero LJ, Beltrame Junior M, Pinto JG, Ferreira-Strixino J, Simioni AR. Vaterite microparticle-loaded methylene blue for photodynamic activity in macrophages infected with Leishmania braziliensis. Photochem Photobiol Sci 2023; 22:1977-1989. [PMID: 37115408 DOI: 10.1007/s43630-023-00426-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/19/2023] [Indexed: 04/29/2023]
Abstract
Calcium carbonate (CaCO3) exhibits a variety of crystalline phases, including the anhydrous crystalline polymorphs calcite, aragonite, and vaterite. Developing porous calcium carbonate microparticles in the vaterite phase for the encapsulation of methylene blue (MB) as a photosensitizer (PS) for use in photodynamic therapy (PDT) was the goal of this investigation. Using an adsorption approach, the PS was integrated into the CaCO3 microparticles. The vaterite microparticles were characterized by scanning electron microscopy (SEM) and steady-state techniques. The trypan blue exclusion method was used to measure the biological activity of macrophages infected with Leishmania braziliensis in vitro. The vaterite microparticles produced are highly porous, non-aggregated, and uniform in size. After encapsulation, the MB-loaded microparticles kept their photophysical characteristics. The carriers that were captured allowed for dye localization inside the cells. The results obtained in this study indicated that the MB-loaded vaterite microparticles show promising photodynamic activity in macrophages infected with Leishmania braziliensis.
Collapse
Affiliation(s)
- Vitor Luca Moura Marmo
- Research and Development Institute-IPD, Vale do Paraíba University-UNIVAP, Av. Shishima Hifumi, 2911, São José Dos Campos, SP, CEP 12244-000, Brazil
| | - Jéssica A R Ambrósio
- Research and Development Institute-IPD, Vale do Paraíba University-UNIVAP, Av. Shishima Hifumi, 2911, São José Dos Campos, SP, CEP 12244-000, Brazil
| | - Erika Peterson Gonçalves
- Research and Development Institute-IPD, Vale do Paraíba University-UNIVAP, Av. Shishima Hifumi, 2911, São José Dos Campos, SP, CEP 12244-000, Brazil
| | - Leandro José Raniero
- Research and Development Institute-IPD, Vale do Paraíba University-UNIVAP, Av. Shishima Hifumi, 2911, São José Dos Campos, SP, CEP 12244-000, Brazil
| | - Milton Beltrame Junior
- Research and Development Institute-IPD, Vale do Paraíba University-UNIVAP, Av. Shishima Hifumi, 2911, São José Dos Campos, SP, CEP 12244-000, Brazil
| | - Juliana G Pinto
- Research and Development Institute-IPD, Vale do Paraíba University-UNIVAP, Av. Shishima Hifumi, 2911, São José Dos Campos, SP, CEP 12244-000, Brazil
| | - Juliana Ferreira-Strixino
- Research and Development Institute-IPD, Vale do Paraíba University-UNIVAP, Av. Shishima Hifumi, 2911, São José Dos Campos, SP, CEP 12244-000, Brazil
| | - Andreza R Simioni
- Research and Development Institute-IPD, Vale do Paraíba University-UNIVAP, Av. Shishima Hifumi, 2911, São José Dos Campos, SP, CEP 12244-000, Brazil.
| |
Collapse
|
7
|
Ren Q, Wang L, Qian W, Chen B, Shuai Q, Yan Y. Flash Nanoprecipitation Fabrication of PEI@Amorphous Calcium Carbonate Hybrid Nanoparticles for siRNA Delivery. Macromol Biosci 2023; 23:e2300085. [PMID: 37087721 DOI: 10.1002/mabi.202300085] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/06/2023] [Indexed: 04/24/2023]
Abstract
RNA interference (RNAi) is a promising approach for disease treatments. But the development of safe and effective delivery carriers remains a major challenge. Organic-inorganic hybrid nanoparticles (NPs), with the integration of functions from distinct materials, show great potential in small interfering RNA (siRNA) delivery. Herein, pH responsive amorphous calcium carbonate NPs (ACC NPs) are prepared using flash nanoprecipitation and hybrid NPs are constructed by coating ACC NPs with polyethyleneimine (PEI) for efficient siRNA delivery. PEI/ACC NPs show robust pH responsiveness and stability as well as effective siRNA loading and protection. Furthermore, siRNA-loaded PEI/ACC NPs demonstrate enhanced cellular uptake and efficient endosomal escape, mediating improved siRNA delivery compared to pure PEI. These findings suggest that PEI/ACC NPs may have great potential in siRNA delivery for RNAi-based therapy.
Collapse
Affiliation(s)
- Qidi Ren
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Lu Wang
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Wenfei Qian
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Baiqiu Chen
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Qi Shuai
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Yunfeng Yan
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, 310014, China
| |
Collapse
|
8
|
Supersaturation and Precipitation Applicated in Drug Delivery Systems: Development Strategies and Evaluation Approaches. Molecules 2023; 28:molecules28052212. [PMID: 36903470 PMCID: PMC10005129 DOI: 10.3390/molecules28052212] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/05/2023] Open
Abstract
Supersaturation is a promising strategy to improve gastrointestinal absorption of poorly water-soluble drugs. Supersaturation is a metastable state and therefore dissolved drugs often quickly precipitate again. Precipitation inhibitors can prolong the metastable state. Supersaturating drug delivery systems (SDDS) are commonly formulated with precipitation inhibitors, hence the supersaturation is effectively prolonged for absorption, leading to improved bioavailability. This review summarizes the theory of and systemic insight into supersaturation, with the emphasis on biopharmaceutical aspects. Supersaturation research has developed from the generation of supersaturation (pH-shift, prodrug and SDDS) and the inhibition of precipitation (the mechanism of precipitation, the character of precipitation inhibitors and screening precipitation inhibitors). Then, the evaluation approaches to SDDS are discussed, including in vitro, in vivo and in silico studies and in vitro-in vivo correlations. In vitro aspects involve biorelevant medium, biomimetic apparatus and characterization instruments; in vivo aspects involve oral absorption, intestinal perfusion and intestinal content aspiration and in silico aspects involve molecular dynamics simulation and pharmacokinetic simulation. More physiological data of in vitro studies should be taken into account to simulate the in vivo environment. The supersaturation theory should be further completed, especially with regard to physiological conditions.
Collapse
|
9
|
Ambrogi V. A New Challenge for the Old Excipient Calcium Carbonate: To Improve the Dissolution Rate of Poorly Soluble Drugs. Pharmaceutics 2023; 15:300. [PMID: 36678929 PMCID: PMC9863708 DOI: 10.3390/pharmaceutics15010300] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/03/2023] [Accepted: 01/12/2023] [Indexed: 01/18/2023] Open
Abstract
Calcium carbonate is an excipient traditionally used in solid dosage forms with several functions such as a diluent, a quick dissolution agent, a buffer and an opacifier. Recently, many other challenges have arisen for calcium carbonate and, among them, the possibility of using it as an excipient for improving the dissolution rate of poorly soluble drugs. As a consequence of their poor solubility in biological fluids, many active ingredients suffer from low and erratic bioavailability when administered by the oral route and thus, many formulation strategies and excipients have been proposed to overcome this problem. Among them, calcium carbonate has been proposed as an excipient for improving dissolution rates. Calcium carbonate has many interesting characteristics, in fact it dissolves quickly in gastric fluid, is inexpensive and is safe. It exists in different polymorphic forms and in porous morphology and recently a porous functionalized calcium carbonate has been proposed as a new excipient. This review is the first overview on the use of calcium carbonate as an excipient for improving drug dissolution rates. The drug loading procedure, the physical characterization of the drug/CaCO3 samples and their dissolution profiles will be described. Moreover, the possible mechanisms of dissolution improvement, such as the presence of the drug in amorphous or polymorphic forms, in small crystals, and the effects of CaCO3 dissolution in acidic medium will be discussed. Different polymorphic forms of calcium carbonate and the presence of porosity and functionalization will be analyzed as well and their effects on dissolution rates will be discussed.
Collapse
Affiliation(s)
- Valeria Ambrogi
- Department of Pharmaceutical Sciences, Via del Liceo 1, 06123 Perugia, Italy
| |
Collapse
|
10
|
Kato H, Nakamura A. Novel Colloidal Dispersing Concept in Aqueous Media for Preparation by Wet-Jet Milling Dispersing Method. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 13:80. [PMID: 36615991 PMCID: PMC9824523 DOI: 10.3390/nano13010080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/19/2022] [Accepted: 12/21/2022] [Indexed: 06/17/2023]
Abstract
Dispersing particles in a liquid phase is significant for producing various functional nano/bio applications. The wet-jet milling method has been gaining attention as an attractive dispersing method in the preparation of soft material suspensions. This is because the main driving force of dispersion by the wet-jet milling method is the shear force, which is weaker than that it is in the ultrasonication dispersing method. In the wet-jet milling method, the pressure of the narrow channel which the liquid is passes through and the number of passes are used as the control parameters for dispersing the particles. However, the values of the pressure depend on the size (diameter and length) of the narrow channel, thus, it is not a commonly used dispersing parameter in dispersing by wet-jet milling to set the dispersing condition by various wet-jet milling instruments. In addition, wet-jet milling users must optimize the dispersing conditions such as the pressure and number of passes in the narrow channel, therefore, a simple prediction/optimization method of the dispersing size by the wet-jet milling method is desired. In this study, we established a novel colloidal dispersing concept, the dispersing energy input based on a calorimetric idea, for particle suspension preparation using the wet-jet milling method. The dispersing energy input by wet-jet milling was quantitatively calculated under various conditions during the dispersing by wet-jet milling, and then, the dispersing size of the particles was easily predicted/optimized. We demonstrated the usability of the concept by preparing aqueous suspensions of calcium carbonate (CaCO3) particles with various surfactants using the wet-jet milling method. Based on the established concept, in a case study on dispersing CaCO3, we found that changes in the micelle sizes of the surfactants played a role in wet-jet milling. The novel idea of the representation of energy input makes it possible to estimate the appropriate condition of the dispersing process by wet-jet milling to control the size of particles.
Collapse
|
11
|
Tan C, Dima C, Huang M, Assadpour E, Wang J, Sun B, Kharazmi MS, Jafari SM. Advanced CaCO3-derived delivery systems for bioactive compounds. Adv Colloid Interface Sci 2022; 309:102791. [DOI: 10.1016/j.cis.2022.102791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/26/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
|
12
|
Niu YQ, Liu JH, Aymonier C, Fermani S, Kralj D, Falini G, Zhou CH. Calcium carbonate: controlled synthesis, surface functionalization, and nanostructured materials. Chem Soc Rev 2022; 51:7883-7943. [PMID: 35993776 DOI: 10.1039/d1cs00519g] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Calcium carbonate (CaCO3) is an important inorganic mineral in biological and geological systems. Traditionally, it is widely used in plastics, papermaking, ink, building materials, textiles, cosmetics, and food. Over the last decade, there has been rapid development in the controlled synthesis and surface modification of CaCO3, the stabilization of amorphous CaCO3 (ACC), and CaCO3-based nanostructured materials. In this review, the controlled synthesis of CaCO3 is first examined, including Ca2+-CO32- systems, solid-liquid-gas carbonation, water-in-oil reverse emulsions, and biomineralization. Advancing insights into the nucleation and crystallization of CaCO3 have led to the development of efficient routes towards the controlled synthesis of CaCO3 with specific sizes, morphologies, and polymorphs. Recently-developed surface modification methods of CaCO3 include organic and inorganic modifications, as well as intensified surface reactions. The resultant CaCO3 can then be further engineered via template-induced biomineralization and layer-by-layer assembly into porous, hollow, or core-shell organic-inorganic nanocomposites. The introduction of CaCO3 into nanostructured materials has led to a significant improvement in the mechanical, optical, magnetic, and catalytic properties of such materials, with the resultant CaCO3-based nanostructured materials showing great potential for use in biomaterials and biomedicine, environmental remediation, and energy production and storage. The influences that the preparation conditions and additives have on ACC preparation and stabilization are also discussed. Studies indicate that ACC can be used to construct environmentally-friendly hybrid films, supramolecular hydrogels, and drug vehicles. Finally, the existing challenges and future directions of the controlled synthesis and functionalization of CaCO3 and its expanding applications are highlighted.
Collapse
Affiliation(s)
- Yu-Qin Niu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Jia-Hui Liu
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| | - Cyril Aymonier
- Univ Bordeaux, ICMCB, Bordeaux INP, UMR 5026, CNRS, F-33600 Pessac, France
| | - Simona Fermani
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy. .,Interdepartmental Centre for Industrial Research Health Sciences & Technologies, University of Bologna, 40064 Bologna, Italy
| | - Damir Kralj
- Laboratory for Precipitation Processes, Ruđer Bošković Institute, P. O. Box 1016, HR-10001 Zagreb, Croatia
| | - Giuseppe Falini
- Department of Chemistry "Giacomo Ciamician", University of Bologna, Via Selmi 2, I-40126 Bologna, Italy.
| | - Chun-Hui Zhou
- Research Group for Advanced Materials & Sustainable Catalysis (AMSC), State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, China. .,Qing Yang Institute for Industrial Minerals, You Hua, Qing Yang, Chi Zhou 242804, China
| |
Collapse
|
13
|
Liu Y, Li S, Chen BP, Chien C, Chan JCC. Porous
Mg‐stabilized
amorphous calcium carbonate as carrier for hydrophobic drugs. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yi‐Ju Liu
- Department of Chemistry National Taiwan University Taipei Taiwan
| | - Shu‐Li Li
- Department of Chemistry National Taiwan University Taipei Taiwan
| | | | - Ching‐Lun Chien
- Department of Chemistry National Taiwan University Taipei Taiwan
| | | |
Collapse
|
14
|
Page K, Stack AG, Chen SA, Wang HW. Nanopore facilitated monohydrocalcitic amorphous calcium carbonate precipitation. Phys Chem Chem Phys 2022; 24:18340-18346. [PMID: 35880670 DOI: 10.1039/d2cp00446a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Predicting the precipitation of solids is important in both natural systems and subsurface energy applications. The factors controlling reaction mechanisms, phase selection and conversion between phases are particularly important. In this contribution the precipitation and growth of an amorphous calcium carbonate species from flowing aqueous solution in a nanoporous controlled pore glass is followed in situ with differential X-ray pair distribution function analysis. It is discovered that the local atomic structure of this phase indicates monohydrocalcite-like pair-pair correlations, yet is functionally amorphous because it lacks long-range structure. The unexpected occurrence of synthetic proto-monohydrocalcite amorphous calcium carbonate, precipitated from a solution undersaturated with respect to published solubilities, suggests that nanopore confinement facilitates formation of an amorphous phase at the expense of more favorable crystalline ones. This result illustrates that confinement and interface effects are physical factors exerting control on mineral nucleation behavior in natural and geological systems.
Collapse
Affiliation(s)
- Katharine Page
- Materials Science and Engineering Department, The University of Tennessee, Knoxville, TN, 38996, USA. .,Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Andrew G Stack
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Si Athena Chen
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| | - Hsiu-Wen Wang
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
15
|
Jiang J, Xu S, Xiao H, Tao C, Chen C, Li Q, Shi R. The synthesis of long-term stable amorphous calcium carbonate in water-free ethylene glycol system without any phase stabilizer. ADV POWDER TECHNOL 2022. [DOI: 10.1016/j.apt.2022.103607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Garvie LAJ, Németh P, Trif L. An exceptionally stable and widespread hydrated amorphous calcium carbonate precipitated by the dog vomit slime mold Fuligo septica (Myxogastria). Sci Rep 2022; 12:3642. [PMID: 35256681 PMCID: PMC8901774 DOI: 10.1038/s41598-022-07648-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 02/15/2022] [Indexed: 11/09/2022] Open
Abstract
Biogenic amorphous calcium carbonate (ACC) is typically metastable and can rapidly transform through aging, dehydration, and/or heating to crystalline calcium carbonate. Gaining insight into its structure and properties is typically hampered by its tendency to crystallize over short time periods once isolated from the host organism, and also by the small quantities that are usually available for study. Here we describe an exceptionally stable hydrated ACC (HACC) precipitated by the cosmopolitan slime mold Fuligo septica (L.) F.H. Wigg. (1780). A single slime mold can precipitate up to a gram of HACC over the course of one night. Powder x-ray diffraction (XRD) patterns, transmission electron microscopy images, infrared absorption spectra, together with the lack of optical birefringence are consistent with an amorphous material. XRD simulations, supported by thermogravimetric and evolved gas analysis data, are consistent with an intimate association of organic matter with ~ 1-nm-sized ACC units that have monohydrocalcite- and calcite-like nano-structural properties. It is postulated that this association imparts the extreme stability of the slime mold HACC by inhibiting loss of H2O and subsequent crystallization. The composition, structure, and thermal behavior of the HACC precipitated by F. septica collected over 8000 km apart and in markedly different environments, suggests a common structure, as well as similar biochemical and biomineralization mechanisms.
Collapse
|
17
|
Farrera-Borjas IA, Tzompantzi F, Sánchez-Cantú M, Barrera-Rodríguez A, Tzompantzi-Flores C, Gómez R, Santolalla-Vargas C. gPhotocatalytic mineralization of phenol by Sn-modified calcites. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
18
|
Águila-Almanza E, Hernández-Cocoletzi H, Rubio-Rosas E, Calleja-González M, Lim HR, Khoo KS, Singh V, Maldonado-Montiel JC, Show PL. Recuperation and characterization of calcium carbonate from residual oyster and clamshells and their incorporation into a residential finish. CHEMOSPHERE 2022; 288:132550. [PMID: 34656622 DOI: 10.1016/j.chemosphere.2021.132550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 09/18/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
The final disposal of waste generated by human activities has been turned into a great challenge; until now, little attention has been paid to organic waste, particularly from the restaurant sector. This work describes the process of obtaining calcium carbonate contained in oyster and clam shells re-collected in seafood restaurants. The IR absorption spectra of all the samples revealed the presence of characteristic bands of the carbonate group located at 872, 712 and 1414 cm-1; the peak at 1081 cm-1 of the clamshells confirms the presence of the aragonite phase. The SEM images allow observing a granular morphology whose agglomerates having a size within the range of 0.5-15 μm in brown shells, and a lower dispersion prevails in the grey species and oyster shells that go from 0.3 to 5.9 μm. All of the shells were found to be composed of carbon (C), oxygen (O2) and calcium (Ca) in different concentrations. The calcium carbonate obtained from clamshells has an orthorhombic crystalline structure, while the oyster carbonate has a rhombohedral structure as the calcium carbonate used in the construction industry; the morphology particles also coincide with each other. The material obtained combined with a mixture composed of resin, cellulose, and granules were used to prepare a paste, which was used as a residential finish.
Collapse
Affiliation(s)
- E Águila-Almanza
- Benemérita Universidad Autónoma de Puebla, Facultad de Ingeniería Química, Av. San Claudio y 18 sur S/N edificio FIQ7 CU San Manuel, C. P. 72570, Puebla, Mexico.
| | - H Hernández-Cocoletzi
- Benemérita Universidad Autónoma de Puebla, Facultad de Ingeniería Química, Av. San Claudio y 18 sur S/N edificio FIQ7 CU San Manuel, C. P. 72570, Puebla, Mexico.
| | - E Rubio-Rosas
- Benemérita Universidad Autónoma de Puebla, Centro Universitario de Vinculación y Transferencia de Tecnología, Prol. 24 sur S/N CU San Manuel, C. P. 72570, Puebla, Mexico.
| | - M Calleja-González
- Benemérita Universidad Autónoma de Puebla, Facultad de Ingeniería Química, Av. San Claudio y 18 sur S/N edificio FIQ7 CU San Manuel, C. P. 72570, Puebla, Mexico.
| | - Hooi Ren Lim
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia.
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia.
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India.
| | - J C Maldonado-Montiel
- Benemérita Universidad Autónoma de Puebla, Facultad de Arquitectura, Boulevard Valsequillo S/N CU San Manuel, C. P. 72570, Puebla, Mexico.
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih, 43500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
19
|
Merle M, Soulié J, Sassoye C, Roblin P, Rey C, Bonhomme C, Combes C. Pyrophosphate-stabilised amorphous calcium carbonate for bone substitution: toward a doping-dependent cluster-based model. CrystEngComm 2022. [DOI: 10.1039/d2ce00936f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Multiscale and multitool advanced characterisation of pyrophosphate-stabilised amorphous calcium carbonates allowed building a cluster-based model paving the way for tunable biomaterials.
Collapse
Affiliation(s)
- Marion Merle
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP – ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, Toulouse, France
| | - Jérémy Soulié
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP – ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, Toulouse, France
| | | | - Pierre Roblin
- LGC, Université de Toulouse, CNRS, 118 Route de Narbonne Bâtiment 2R1, Toulouse, France
| | - Christian Rey
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP – ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, Toulouse, France
| | | | - Christèle Combes
- CIRIMAT, Université de Toulouse, CNRS, Toulouse INP – ENSIACET, 4 Allée Emile Monso, 31030 Toulouse Cedex 4, Toulouse, France
| |
Collapse
|
20
|
Dunstan MT, Donat F, Bork AH, Grey CP, Müller CR. CO 2 Capture at Medium to High Temperature Using Solid Oxide-Based Sorbents: Fundamental Aspects, Mechanistic Insights, and Recent Advances. Chem Rev 2021; 121:12681-12745. [PMID: 34351127 DOI: 10.1021/acs.chemrev.1c00100] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carbon dioxide capture and mitigation form a key part of the technological response to combat climate change and reduce CO2 emissions. Solid materials capable of reversibly absorbing CO2 have been the focus of intense research for the past two decades, with promising stability and low energy costs to implement and operate compared to the more widely used liquid amines. In this review, we explore the fundamental aspects underpinning solid CO2 sorbents based on alkali and alkaline earth metal oxides operating at medium to high temperature: how their structure, chemical composition, and morphology impact their performance and long-term use. Various optimization strategies are outlined to improve upon the most promising materials, and we combine recent advances across disparate scientific disciplines, including materials discovery, synthesis, and in situ characterization, to present a coherent understanding of the mechanisms of CO2 absorption both at surfaces and within solid materials.
Collapse
Affiliation(s)
- Matthew T Dunstan
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Felix Donat
- Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland
| | - Alexander H Bork
- Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland
| | - Clare P Grey
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | - Christoph R Müller
- Laboratory of Energy Science and Engineering, Department of Mechanical and Process Engineering, ETH Zürich, Leonhardstrasse 21, 8092 Zürich, Switzerland
| |
Collapse
|
21
|
Synthesis and Characterization of Gefitinib and Paclitaxel Mono and Dual Drug-Loaded Blood Cockle Shells ( Anadara granosa)-Derived Aragonite CaCO 3 Nanoparticles. NANOMATERIALS 2021; 11:nano11081988. [PMID: 34443820 PMCID: PMC8398682 DOI: 10.3390/nano11081988] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/27/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022]
Abstract
Calcium carbonate has slowly paved its way into the field of nanomaterial research due to its inherent properties: biocompatibility, pH-sensitivity, and slow biodegradability. In our efforts to synthesize calcium carbonate nanoparticles (CSCaCO3NP) from blood cockle shells (Anadara granosa), we developed a simple method to synthesize CSCaCO3NP, and loaded them with gefitinib (GEF) and paclitaxel (PTXL) to produce mono drug-loaded GEF-CSCaCO3NP, PTXL-CSCaCO3NP, and dual drug-loaded GEF-PTXL-CSCaCO3NP without usage of toxic chemicals. Fourier-transform infrared spectroscopy (FTIR) results reveal that the drugs are bound to CSCaCO3NP. Scanning electron microscopy studies reveal that the CSCaCO3NP, GEF-CSCaCO3NP, PTXL-CSCaCO3NP, and GEF-PTXL-CSCaCO3NP are almost spherical nanoparticles, with a diameter of 63.9 ± 22.3, 83.9 ± 28.2, 78.2 ± 26.4, and 87.2 ± 26.7 (nm), respectively. Dynamic light scattering (DLS) and N2 adsorption-desorption experiments revealed that the synthesized nanoparticles are negatively charged and mesoporous, with surface areas ranging from ~8 to 10 (m2/g). Powder X-ray diffraction (PXRD) confirms that the synthesized nanoparticles are aragonite. The CSCaCO3NP show excellent alkalinization property in plasma simulating conditions and greater solubility in a moderately acidic pH medium. The release of drugs from the nanoparticles showed zero order kinetics with a slow and sustained release. Therefore, the physico-chemical characteristics and in vitro findings suggest that the drug loaded CSCaCO3NP represent a promising drug delivery system to deliver GEF and PTXL against breast cancer.
Collapse
|
22
|
Nahi O, Kulak AN, Kress T, Kim YY, Grendal OG, Duer MJ, Cayre OJ, Meldrum FC. Incorporation of nanogels within calcite single crystals for the storage, protection and controlled release of active compounds. Chem Sci 2021; 12:9839-9850. [PMID: 34349958 PMCID: PMC8293999 DOI: 10.1039/d1sc02991f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 06/14/2021] [Indexed: 11/21/2022] Open
Abstract
Nanocarriers have tremendous potential for the encapsulation, storage and delivery of active compounds. However, current formulations often employ open structures that achieve efficient loading of active agents, but that suffer undesired leakage and instability of the payloads over time. Here, a straightforward strategy that overcomes these issues is presented, in which protein nanogels are encapsulated within single crystals of calcite (CaCO3). Demonstrating our approach with bovine serum albumin (BSA) nanogels loaded with (bio)active compounds, including doxorubicin (a chemotherapeutic drug) and lysozyme (an antibacterial enzyme), we show that these nanogels can be occluded within calcite host crystals at levels of up to 45 vol%. Encapsulated within the dense mineral, the active compounds are stable against harsh conditions such as high temperature and pH, and controlled release can be triggered by a simple reduction of the pH. Comparisons with analogous systems - amorphous calcium carbonate, mesoporous vaterite (CaCO3) polycrystals, and calcite crystals containing polymer vesicles - demonstrate the superior encapsulation performance of the nanogel/calcite system. This opens the door to encapsulating a broad range of existing nanocarrier systems within single crystal hosts for the efficient storage, transport and controlled release of various active guest species.
Collapse
Affiliation(s)
- Ouassef Nahi
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Alexander N Kulak
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Thomas Kress
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd. Cambridge CB2 1EW UK
| | - Yi-Yeoun Kim
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Ola G Grendal
- The European Synchrotron Radiation Facility (ESRF) 71 Avenue des Martyrs 38000 Grenoble France
| | - Melinda J Duer
- Yusuf Hamied Department of Chemistry, University of Cambridge Lensfield Rd. Cambridge CB2 1EW UK
| | - Olivier J Cayre
- School of Chemical and Process Engineering, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| | - Fiona C Meldrum
- School of Chemistry, University of Leeds Woodhouse Lane Leeds LS2 9JT UK
| |
Collapse
|
23
|
Nie B, Wang H, Rao C, Zhang Y, Wang H, Lian X, Gao X, Niu B, Li W. Preparation and characterization of sodium alginate/phosphate-stabilized amorphous calcium carbonate nanocarriers and their application in the release of curcumin. NANOTECHNOLOGY 2021; 32:375712. [PMID: 34044371 DOI: 10.1088/1361-6528/ac05ea] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Phosphate-stabilized amorphous calcium carbonate (ACCP) has excellent biocompatibility, bioactivity, and biodegradability, and can be easily synthesized and stored. However, unmodified ACCP, as a controlled drug release carrier, decomposes rapidly in an acidic environment and highly depends on the system's pH value, which can not meet the need for long-term release of active substances, thus limiting its application scope. To realize the specific pH responsiveness of ACCP nanoparticles, we designed and synthesized monodisperse sodium alginate/ACCP (Alginate/ACCP) composite nanoparticles in this paper. After ultrasonic treatment, nanoparticles with an average particle size less than 200 nm could form stable water dispersion that could be dispersed for up to 10 d. Based on the specific pH sensitivity of sodium alginate, the drug-controlled release performance of composite nanoparticles and the therapeutic effect of drug-loaded nanoparticles on A549 cancer cells were studied. The results indicated that under the same pH condition, the curcumin (Cur) release rate of composite nanoparticles gradually decreased with sodium alginate addition. When the dosage of sodium alginate was 1.0 mg ml-1, the cumulative drug release rate of nanoparticles in 40 h was only about 35%. Besides, the drug-loaded nanoparticles showed the excellent killing ability of cancer cells, and the survival rate of cancer cells decreased in a concentration-dependent manner. Therefore, through reasonable optimization design, we can synthesize composite nanoparticles with excellent sustained-release properties to provide a new strategy for cancer cells' long-term treatment.
Collapse
Affiliation(s)
- Bin Nie
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, People's Republic of China
| | - Hong Wang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, People's Republic of China
| | - Chaohui Rao
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, People's Republic of China
| | - Yanwei Zhang
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, People's Republic of China
| | - Huifang Wang
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, People's Republic of China
| | - Xiaojie Lian
- Department of Biomedical Engineering, Research Center for Nano-biomaterials & Regenerative Medicine, College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
- Shanxi Key Laboratory of Material Strength & Structural Impact, Institute of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
| | - Xianghua Gao
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, People's Republic of China
| | - Baolong Niu
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, People's Republic of China
| | - Wenfeng Li
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, People's Republic of China
- Key Laboratory of Interface Science and Engineering in Advanced Materials, Taiyuan University of Technology, Ministry of Education, Taiyuan 030024, People's Republic of China
| |
Collapse
|
24
|
Intragastric amorphous calcium carbonate consumption triggered generation of in situ hydrogel piece for sustained drug release. Int J Pharm 2020; 590:119880. [DOI: 10.1016/j.ijpharm.2020.119880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 12/29/2022]
|
25
|
Milovanovic M, Unruh MT, Brandt V, Tiller JC. Forming amorphous calcium carbonate within hydrogels by enzyme-induced mineralization in the presence of N-(phosphonomethyl)glycine. J Colloid Interface Sci 2020; 579:357-368. [PMID: 32615479 DOI: 10.1016/j.jcis.2020.06.047] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/08/2020] [Accepted: 06/10/2020] [Indexed: 11/19/2022]
Abstract
Amorphous inorganic materials have a great potential in material science. Amorphous calcium carbonate (ACC) is a widely useable system, however, its stabilization often turns out to be difficult and the synthesis is mostly limited to precipitation in solution as nanoparticles. Stable ACC in bulk phases would create new composite materials. Previous work described the enzyme-induced mineralization of hydrogels with crystalline calcium carbonate by entrapping urease into a hydrogel and treating this with an aqueous mineralization solution containing urea und calcium chloride. Here, this method was modified using a variety of crystallization inhibitors attached to the hydrogel matrix or added to the surrounding mineralization solution. It was found that only N-(phosphonomethyl)glycine (PMGly) in solution completely inhibits the crystallization of ACC in the hydrogel matrix. The stability of the homogeneously precipitated ACC could be accounted to the combination of stabilizing effects of the additive and stabilization through confinement. The crystallization could be accelerated at higher temperatures up to 60 °C. Here, a combination of Mg ions and PMGly was required to stabilize ACC in the hydrogel. Variation of these two compounds can be used to control a number of different calcium carbonate morphologies within the hydrogel. While the ACC nanoparticles within the hydrogel are stable over weeks even in water, a calcite layer grows on the surface of the hydrogel, which might be used as self-hardening mechanism of a surface.
Collapse
Affiliation(s)
| | - Marvin T Unruh
- Bergische Universität Wuppertal, Gaußstr. 20, 42119 Wuppertal, Germany.
| | - Volker Brandt
- TU Dortmund, Emil-Figge-Str. 66, 44227 Dortmund, Germany.
| | - Joerg C Tiller
- TU Dortmund, Emil-Figge-Str. 66, 44227 Dortmund, Germany.
| |
Collapse
|
26
|
Kadota K, Ibe T, Sugawara Y, Takano H, Yusof YA, Uchiyama H, Tozuka Y, Yamanaka S. Water-assisted synthesis of mesoporous calcium carbonate with a controlled specific surface area and its potential to ferulic acid release. RSC Adv 2020; 10:28019-28025. [PMID: 35519125 PMCID: PMC9055691 DOI: 10.1039/d0ra05542e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 07/08/2020] [Indexed: 11/21/2022] Open
Abstract
A carbonation process to control the specific surface area of mesoporous calcium carbonate and the dissolution profile of ferulic acid on mesoporous carbonate particles are presented. The effects of water content on the physicochemical properties, specific surface area, pore size, crystallinity, and morphology are evaluated. Mesoporous calcium carbonate particles are synthesised with well-controlled specific surface areas of 38.8 to 234 m2 g−1. Each of the submicron-size secondary particles consists of a primary particle of nano-size. During secondary particle formation, primary particle growth is curbed in the case with less water content. By contrast, growth is promoted via dissolution and recrystallisation in the presence of water. The release rates of ferulic acid are gradually enhanced with increasing specific surface area of the mesoporous calcium carbonate, that reflects crystallinity of ferulic acid. A carbonation process to control the specific surface area of mesoporous calcium carbonate and the dissolution profile of ferulic acid on mesoporous carbonate particles are presented.![]()
Collapse
Affiliation(s)
- Kazunori Kadota
- Department of Formulation Design and Pharmaceutical Technology, Osaka University of Pharmaceutical Sciences 4-20-1 Nasahara Takatsuki Osaka 569-1094 Japan
| | - Toi Ibe
- Division of Applied Sciences, Muroran Institute of Technology Mizumoto-cho 27-1 Muroran 050-8585 Japan
| | - Yuto Sugawara
- Division of Applied Sciences, Muroran Institute of Technology Mizumoto-cho 27-1 Muroran 050-8585 Japan
| | - Hitomi Takano
- Division of Applied Sciences, Muroran Institute of Technology Mizumoto-cho 27-1 Muroran 050-8585 Japan
| | - Yus Aniza Yusof
- Department of Process and Food Engineering, Faculty of Engineering, Universiti Putra Malaysia 43400 Serdang Selangor Malaysia.,Laboratory of Halal Services, Halal Products Research Institute, Universiti Putra Malaysia 43400 Serdang Selangor Malaysia
| | - Hiromasa Uchiyama
- Department of Formulation Design and Pharmaceutical Technology, Osaka University of Pharmaceutical Sciences 4-20-1 Nasahara Takatsuki Osaka 569-1094 Japan
| | - Yuichi Tozuka
- Department of Formulation Design and Pharmaceutical Technology, Osaka University of Pharmaceutical Sciences 4-20-1 Nasahara Takatsuki Osaka 569-1094 Japan
| | - Shinya Yamanaka
- Division of Applied Sciences, Muroran Institute of Technology Mizumoto-cho 27-1 Muroran 050-8585 Japan
| |
Collapse
|
27
|
Study on preparation and crystalline transformation of nano- and micro-CaCO3 by supercritical carbon dioxide. POWDER TECHNOL 2020. [DOI: 10.1016/j.powtec.2020.05.021] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
28
|
Jia C, Wu L, Chen Q, Ke P, De Yoreo JJ, Guan B. Structural evolution of amorphous calcium sulfate nanoparticles into crystalline gypsum phase. CrystEngComm 2020. [DOI: 10.1039/d0ce01173h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Growth and orientation of nanocrystalline domains within fused ACS particles generate monocrystalline gypsum phase.
Collapse
Affiliation(s)
- Caiyun Jia
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou 310058
- China
- Physical Science Division
| | - Luchao Wu
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Qiaoshan Chen
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - Peng Ke
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou 310058
- China
| | - James J. De Yoreo
- Physical Science Division
- Pacific Northwest National Laboratory
- Richland
- USA
- Department of Materials Science and Engineering
| | - Baohong Guan
- College of Environmental and Resource Sciences
- Zhejiang University
- Hangzhou 310058
- China
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education
| |
Collapse
|
29
|
Sun R, Åhlén M, Tai CW, Bajnóczi ÉG, de Kleijne F, Ferraz N, Persson I, Strømme M, Cheung O. Highly Porous Amorphous Calcium Phosphate for Drug Delivery and Bio-Medical Applications. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 10:E20. [PMID: 31861727 PMCID: PMC7022897 DOI: 10.3390/nano10010020] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/21/2022]
Abstract
Amorphous calcium phosphate (ACP) has shown significant effects on the biomineralization and promising applications in bio-medicine. However, the limited stability and porosity of ACP material restrict its practical applications. A storage stable highly porous ACP with Brunauer-Emmett-Teller surface area of over 400 m2/g was synthesized by introducing phosphoric acid to a methanol suspension containing amorphous calcium carbonate nanoparticles. Electron microscopy revealed that the porous ACP was constructed with aggregated ACP nanoparticles with dimensions of several nanometers. Large angle X-ray scattering revealed a short-range atomic order of <20 Å in the ACP nanoparticles. The synthesized ACP demonstrated long-term stability and did not crystallize even after storage for over 14 months in air. The stability of the ACP in water and an α-MEM cell culture medium were also examined. The stability of ACP could be tuned by adjusting its chemical composition. The ACP synthesized in this work was cytocompatible and acted as drug carriers for the bisphosphonate drug alendronate (AL) in vitro. AL-loaded ACP released ~25% of the loaded AL in the first 22 days. These properties make ACP a promising candidate material for potential application in biomedical fields such as drug delivery and bone healing.
Collapse
Affiliation(s)
- Rui Sun
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, SE-751 21 Uppsala, Sweden; (R.S.); (M.Å.); (F.d.K.); (N.F.)
| | - Michelle Åhlén
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, SE-751 21 Uppsala, Sweden; (R.S.); (M.Å.); (F.d.K.); (N.F.)
| | - Cheuk-Wai Tai
- Department of Materials and Environmental Chemistry, Stockholm University, SE-106 91 Stockholm, Sweden;
| | - Éva G. Bajnóczi
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden; (É.G.B.); (I.P.)
| | - Fenne de Kleijne
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, SE-751 21 Uppsala, Sweden; (R.S.); (M.Å.); (F.d.K.); (N.F.)
| | - Natalia Ferraz
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, SE-751 21 Uppsala, Sweden; (R.S.); (M.Å.); (F.d.K.); (N.F.)
| | - Ingmar Persson
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden; (É.G.B.); (I.P.)
| | - Maria Strømme
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, SE-751 21 Uppsala, Sweden; (R.S.); (M.Å.); (F.d.K.); (N.F.)
| | - Ocean Cheung
- Division of Nanotechnology and Functional Materials, Department of Engineering Sciences, Uppsala University, SE-751 21 Uppsala, Sweden; (R.S.); (M.Å.); (F.d.K.); (N.F.)
| |
Collapse
|
30
|
Wang H, Yang H, Zhao L. A Facile Synthesis of Core-Shell SiO 2@Cu-LBMS Nano-Microspheres for Drug Sustained Release Systems. MATERIALS 2019; 12:ma12233978. [PMID: 31801258 PMCID: PMC6926544 DOI: 10.3390/ma12233978] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/26/2019] [Accepted: 11/28/2019] [Indexed: 12/28/2022]
Abstract
A well-dispersed SiO2@Layered hydroxide cupric benzoate (SiO2@Cu-LBMS) with a hierarchical structure have been synthesized by a facile method. The layered hydroxide cupric benzoate with a structure of layered basic metal salt (Cu-LBMS) was directly deposited on the surface of silica spheres without any blinder. The morphology of the SiO2@Cu-LBMS nano-microsphere was observed by SEM, and the reaction conditions was also discussed. In addition, the XRD patterns and FTIR spectra provide consistent evidence to the formation of SiO2@Cu-LBMS nano-microspheres. The release behavior and drug loading capability of SiO2@Cu-LBMS microspheres were also investigated by using ibuprofen, aspirin and salicylic acid as model drugs. The results indicated that the drug loading capability of SiO2@Cu-LBMS nano-microspheres was much larger than layered hydroxide cupric benzoate, and the releasing time was significantly prolonged than layered hydroxide cupric benzoate and their physical mixture.
Collapse
Affiliation(s)
- Hui Wang
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China; (H.W.); (L.Z.)
| | - Haifeng Yang
- College of Physics and Optoelectronics Technology, Medical Micro-nano Materials Research Center, Baoji University of Arts and Sciences, Baoji 721016, China
- Correspondence:
| | - Lifang Zhao
- College of Chemistry and Chemical Engineering, Shaanxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China; (H.W.); (L.Z.)
| |
Collapse
|
31
|
Vall M, Hultberg J, Strømme M, Cheung O. Inorganic carbonate composites as potential high temperature CO2 sorbents with enhanced cycle stability. RSC Adv 2019; 9:20273-20280. [PMID: 35514709 PMCID: PMC9065502 DOI: 10.1039/c9ra02843a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 06/24/2019] [Indexed: 11/21/2022] Open
Abstract
A calcium magnesium carbonate composite (CMC) material containing highly porous amorphous calcium carbonate (HPACC) and mesoporous magnesium carbonate (MMC) was synthesized. CMCs with varying HPACC : MMC mol ratios and high BET surface area (over 490 m2 g−1) were produced. The CMCs retained the morphology shared by HPACC and MMC. All these materials were built up of aggregated nanometer-sized particles. We tested the CO2 uptake properties of the synthesized materials. The CMCs were calcined at 850 °C to obtain the corresponding calcium magnesium oxide composites (CMOs) that contained CaO : MgO at different mol ratios. CMO with CaO : MgO = 3 : 1 (CMO-3) showed comparable CO2 uptake at 650 °C (0.586 g g−1) to CaO sorbents obtained from pure HPACC (0.658 g g−1) and the commercial CaCO3 (0.562 g g−1). Over 23 adsorption–desorption cycles CMOs also showed a lower CO2 uptake capacity loss (35.7%) than CaO from HPACC (51.3%) and commercial CaCO3 (79.7%). Al was introduced to CMO by the addition of Al(NO3)3 in the synthesis of CMC-3 to give ACMO after calcination. The presence of ∼19 mol% of Al(NO3)3 in ACMO-4 significantly enhanced its stability over 23 cycles (capacity loss of 5.2%) when compared with CMO-3 (calcined CMC-3) without adversely affecting the CO2 uptake. After 100 cycles, ACMO-4 still had a CO2 uptake of 0.219 g g−1. Scanning electron microscope images clearly showed that the presence of Mg and Al in CMO hindered the sintering of CaCO3 at high temperatures and therefore, enhanced the cycle stability of the CMO sorbents. We tested the CO2 uptake properties of CMO and ACMO only under ideal laboratory testing environment, but our results indicated that these materials can be further optimized as good CO2 sorbents for various applications. A Ca/Mg/Al oxide composite was synthesised and showed a high CO2 uptake of 0.537 g g−1 at 650 °C with high uptake even after 100 cycles.![]()
Collapse
Affiliation(s)
- Maria Vall
- Nanotechnology and Functional Materials Division
- Department of Engineering Sciences
- The Ångström Laboratory
- Uppsala University
- SE-751 21 Uppsala
| | - Jonas Hultberg
- Nanotechnology and Functional Materials Division
- Department of Engineering Sciences
- The Ångström Laboratory
- Uppsala University
- SE-751 21 Uppsala
| | - Maria Strømme
- Nanotechnology and Functional Materials Division
- Department of Engineering Sciences
- The Ångström Laboratory
- Uppsala University
- SE-751 21 Uppsala
| | - Ocean Cheung
- Nanotechnology and Functional Materials Division
- Department of Engineering Sciences
- The Ångström Laboratory
- Uppsala University
- SE-751 21 Uppsala
| |
Collapse
|