1
|
Miyajima T, Saito S, Okuyama T, Matsushita S, Shimohira T, Matsuba G. Orientation Control of Perfluorosulfonic Acid Films via Addition of 1,2,4-Triazole during Casting. Polymers (Basel) 2024; 16:2533. [PMID: 39274165 PMCID: PMC11397893 DOI: 10.3390/polym16172533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/16/2024] Open
Abstract
Perfluorosulfonic acid (PFSA) polymers are used as electrolyte membranes in polymer electrolyte fuel cells. To investigate the effect on proton conductivity through structural orientation control, we added 1,2,4-triazole to PFSA films during casting to impart anisotropy to the ion-cluster structure of the films. The proton conductivities of the films were found to be high in the film-surface direction and low in the film-thickness direction. Structural analysis using small-angle X-ray scattering suggested that the anisotropy in proton conductivity was due to anisotropy in the ion-cluster structure, which in turn was attributed to the formation of a phase-separated structure via strong bonding between sulfonic acid groups and 1,2,4-triazole during cast film formation and the surface segregation of fluorine. We expect the findings of this study to aid in the fabrication of PFSA films with controlled ion clusters.
Collapse
Affiliation(s)
- Tatsuya Miyajima
- Innovative Technology Research Center, AGC Inc., 1-1 Suehirocho, Turumi-ku, Yokohama 230-0045, Japan
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan
| | - Susumu Saito
- Innovative Technology Research Center, AGC Inc., 1-1 Suehirocho, Turumi-ku, Yokohama 230-0045, Japan
| | - Takumi Okuyama
- Innovative Technology Research Center, AGC Inc., 1-1 Suehirocho, Turumi-ku, Yokohama 230-0045, Japan
| | - Satoshi Matsushita
- Innovative Technology Research Center, AGC Inc., 1-1 Suehirocho, Turumi-ku, Yokohama 230-0045, Japan
| | - Tetsuji Shimohira
- Innovative Technology Research Center, AGC Inc., 1-1 Suehirocho, Turumi-ku, Yokohama 230-0045, Japan
| | - Go Matsuba
- Department of Organic Materials Science, Yamagata University, 4-3-16 Jonan, Yonezawa 992-8510, Japan
| |
Collapse
|
2
|
Lee I, Lee J, Lee D, Kim S, Kim SK, Bae I. Synergistic Molecular Alignment and Dipole Polarization in Stretched Nafion/Poly(vinylidene fluoride) Blend Membranes for High Proton Conduction in PEMFCs. ACS APPLIED MATERIALS & INTERFACES 2024; 16:42164-42175. [PMID: 39096244 DOI: 10.1021/acsami.4c06637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
Abstract
The nanostructure of Nafion and poly(vinylidene fluoride) (PVDF) blend membranes is successfully aligned through a mechanical uniaxial stretching method. The phase-separated morphology of Nafion molecules distinctly forms hydrophilic proton channels with increased connectivity, resulting in enhanced proton conductivity. Additionally, the crystalline phase of PVDF molecules undergoes a successful transformation from the α- to β-phase during membrane stretching, demonstrating an alignment of fluorine and hydrogen atoms with a TTTT(trans) structure. The aligned nanostructure of the blend film, combined with the dipole polarization of the β-phase PVDF, synergistically enhances the proton conduction through the membrane for operating proton-exchange membrane fuel cells (PEMFCs). The controlled structures of the blend membranes are thoroughly investigated using atomic force microscopy and small-angle X-ray scattering. Furthermore, the improved in-plane proton conductivity facilitates increased proton conduction at the interface between the membrane and catalyst layer in the membrane-electrode assembly, ultimately enhancing the power generation of PEMFCs.
Collapse
Affiliation(s)
- Iksu Lee
- Department of Advanced Materials, Hannam University, 1646 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea
| | - Jaekeun Lee
- Department of Chemical Engineering, Hannam University, 1646 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea
| | - Dongjun Lee
- Department of Advanced Materials, Hannam University, 1646 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea
| | - Seungbin Kim
- Department of Advanced Materials, Hannam University, 1646 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea
| | - Seong K Kim
- Department of Chemical Engineering, Hannam University, 1646 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea
| | - Insung Bae
- Department of Advanced Materials, Hannam University, 1646 Yuseong-daero, Yuseong-gu, Daejeon 34054, Korea
| |
Collapse
|
3
|
Meng X, Peng Q, Wen J, Song K, Peng L, Wu T, Cong C, Ye H, Zhou Q. Sulfonated poly(ether ether ketone) membranes for vanadium redox flow battery enabled by the incorporation of ionic liquid‐covalent organic framework complex. J Appl Polym Sci 2023. [DOI: 10.1002/app.53802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Affiliation(s)
- Xiaoyu Meng
- Department of Materials Science and Engineering, College of New Energy and Materials China University of Petroleum‐Beijing Beijing China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities China University of Petroleum‐Beijing Beijing China
| | - Qiwang Peng
- Department of Materials Science and Engineering, College of New Energy and Materials China University of Petroleum‐Beijing Beijing China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities China University of Petroleum‐Beijing Beijing China
| | - Jihong Wen
- Department of Materials Science and Engineering, College of New Energy and Materials China University of Petroleum‐Beijing Beijing China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities China University of Petroleum‐Beijing Beijing China
| | - Kai Song
- Department of Materials Science and Engineering, College of New Energy and Materials China University of Petroleum‐Beijing Beijing China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities China University of Petroleum‐Beijing Beijing China
| | - Luman Peng
- Department of Materials Science and Engineering, College of New Energy and Materials China University of Petroleum‐Beijing Beijing China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities China University of Petroleum‐Beijing Beijing China
| | - Tianyu Wu
- Department of Materials Science and Engineering, College of New Energy and Materials China University of Petroleum‐Beijing Beijing China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities China University of Petroleum‐Beijing Beijing China
| | - Chuanbo Cong
- Department of Materials Science and Engineering, College of New Energy and Materials China University of Petroleum‐Beijing Beijing China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities China University of Petroleum‐Beijing Beijing China
| | - Haimu Ye
- Department of Materials Science and Engineering, College of New Energy and Materials China University of Petroleum‐Beijing Beijing China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities China University of Petroleum‐Beijing Beijing China
| | - Qiong Zhou
- Department of Materials Science and Engineering, College of New Energy and Materials China University of Petroleum‐Beijing Beijing China
- Beijing Key Laboratory of Failure, Corrosion, and Protection of Oil/Gas Facilities China University of Petroleum‐Beijing Beijing China
| |
Collapse
|
4
|
A Chemistry and Microstructure Perspective on Ion‐Conducting Membranes for Redox Flow Batteries. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105619] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
5
|
Dai Q, Zhao Z, Shi M, Deng C, Zhang H, Li X. Ion conductive membranes for flow batteries: Design and ions transport mechanism. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119355] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
6
|
Xiong P, Zhang L, Chen Y, Peng S, Yu G. A Chemistry and Microstructure Perspective on Ion-Conducting Membranes for Redox Flow Batteries. Angew Chem Int Ed Engl 2021; 60:24770-24798. [PMID: 34165884 DOI: 10.1002/anie.202105619] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Indexed: 01/04/2023]
Abstract
Redox flow batteries (RFBs) are among the most promising grid-scale energy storage technologies. However, the development of RFBs with high round-trip efficiency, high rate capability, and long cycle life for practical applications is highly restricted by the lack of appropriate ion-conducting membranes. Promising RFB membranes should separate positive and negative species completely and conduct balancing ions smoothly. Specific systems must meet additional requirements, such as high chemical stability in corrosive electrolytes, good resistance to organic solvents in nonaqueous systems, and excellent mechanical strength and flexibility. These rigorous requirements put high demands on the membrane design, essentially the chemistry and microstructure associated with ion transport channels. In this Review, we summarize the design rationale of recently reported RFB membranes at the molecular level, with an emphasis on new chemistry, novel microstructures, and innovative fabrication strategies. Future challenges and potential research opportunities within this field are also discussed.
Collapse
Affiliation(s)
- Ping Xiong
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Leyuan Zhang
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Yuyue Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Sangshan Peng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineer Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Guihua Yu
- Materials Science and Engineering Program and Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
7
|
High temperature polymer electrolyte membrane achieved by grafting poly(1-vinylimidazole) on polysulfone for fuel cells application. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117395] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Zhang D, Wang Q, Peng S, Yan X, Wu X, He G. An interface-strengthened cross-linked graphene oxide/Nafion212 composite membrane for vanadium flow batteries. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2019.117189] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
9
|
Yang XB, Zhao L, Goh K, Sui XL, Meng LH, Wang ZB. A highly proton-/vanadium-selective perfluorosulfonic acid membrane for vanadium redox flow batteries. NEW J CHEM 2019. [DOI: 10.1039/c9nj01453e] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The polar clusters of Nafion are blocked by the incorporation of the nanohybrid, which contributes to suppress vanadium ions crossover.
Collapse
Affiliation(s)
- Xiao-Bing Yang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Lei Zhao
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Kokswee Goh
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Xu-Lei Sui
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Ling-Hui Meng
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- China
| | - Zhen-Bo Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- China
| |
Collapse
|