1
|
Guan G, Shi G, Liu H, Xu J, Zhang Q, Dong Z, Lu C, Wang Y, Lei L, Nan B, Zhang C, Yue R, Du Y, Tian J, Song G. Responsive Magnetic Particle Imaging Tracer: Overcoming "Always-On" Limitation, Eliminating Interference, and Ensuring Safety in Adaptive Therapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409117. [PMID: 39410733 DOI: 10.1002/adma.202409117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/04/2024] [Indexed: 12/06/2024]
Abstract
Magnetic particle imaging (MPI) has emerged as a novel technology utilizing superparamagnetic nanoparticles as tracers, essential for disease diagnosis and treatment guidance in preclinical animal models. Unlike other modalities, MPI provides high sensitivity, deep tissue penetration, and no signal attenuation. However, existing MPI tracers suffer from "always-on" signals, which complicate organ-specific imaging and hinder accuracy. To overcome these challenges, we have developed a responsive MPI tracer using pH-responsive PdFe alloy particles coated with a gatekeeper polymer. This tracer exhibits pH-sensitive Fe release and modulation of the MPI signal, enabling selective imaging with a higher signal-to-noise ratio and intratumoral pH quantification. Notably, this responsive tracer facilitates subtraction-enhanced MPI imaging, effectively eliminating interference from liver uptake and expanding the scope of abdominal imaging. Additionally, the tracer employs a dual-function mechanism for adaptive cancer therapy, combining pH-switchable enzyme-like catalysis with dual-key co-activation of ROS generation, and Pd skeleton that scavenges free radicals to minimize Fe-related toxicity. This advancement promises to significantly expand MPI's applicability in diagnostics and therapeutic monitoring, marking a leap forward in imaging technology.
Collapse
Affiliation(s)
- Guoqiang Guan
- Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Guangyuan Shi
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Science and Technology of China, Hefei, 230026, China
| | - Huiyi Liu
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Juntao Xu
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Qingpeng Zhang
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Zhe Dong
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Chang Lu
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Youjuan Wang
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Lingling Lei
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Bin Nan
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Cheng Zhang
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Renye Yue
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Yang Du
- CAS Key Laboratory of Molecular Imaging, Beijing Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100080, China
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, China
| | - Guosheng Song
- State Key Laboratory for Chemo/ Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| |
Collapse
|
2
|
Guo K, Bao L, Yu Z, Lu X. Carbon encapsulated nanoparticles: materials science and energy applications. Chem Soc Rev 2024; 53:11100-11164. [PMID: 39314168 DOI: 10.1039/d3cs01122d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
The technological implementation of electrochemical energy conversion and storage necessitates the acquisition of high-performance electrocatalysts and electrodes. Carbon encapsulated nanoparticles have emerged as an exciting option owing to their unique advantages that strike a high-level activity-stability balance. Ever-growing attention to this unique type of material is partly attributed to the straightforward rationale of carbonizing ubiquitous organic species under energetic conditions. In addition, on-demand precursors pave the way for not only introducing dopants and surface functional groups into the carbon shell but also generating diverse metal-based nanoparticle cores. By controlling the synthetic parameters, both the carbon shell and the metallic core are facilely engineered in terms of structure, composition, and dimensions. Apart from multiple easy-to-understand superiorities, such as improved agglomeration, corrosion, oxidation, and pulverization resistance and charge conduction, afforded by the carbon encapsulation, potential core-shell synergistic interactions lead to the fine-tuning of the electronic structures of both components. These features collectively contribute to the emerging energy applications of these nanostructures as novel electrocatalysts and electrodes. Thus, a systematic and comprehensive review is urgently needed to summarize recent advancements and stimulate further efforts in this rapidly evolving research field.
Collapse
Affiliation(s)
- Kun Guo
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Lipiao Bao
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zhixin Yu
- Department of Energy and Petroleum Engineering, University of Stavanger, Stavanger 4036, Norway
| | - Xing Lu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
- School of Chemistry and Chemical Engineering, Hainan University, Haikou 570228, China
| |
Collapse
|
3
|
He J, Chen S, Ma Z, Wang M, He Q. Spatial Identification of Mott-Schottky Effect at Electrocatalytic Pd/Metal Oxide Interfaces for the Oxygen Reduction Reaction. ACS NANO 2024; 18:24283-24294. [PMID: 39163576 DOI: 10.1021/acsnano.4c06049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
To elucidate the microstructure and charge transfer behavior at the interface of Pd/metal oxide semiconductor (MOS) catalysts and systematically explore the crucial role of the Mott-Schottky effect in the oxygen reduction reaction (ORR) electrocatalysis process, this study established a testing system for spatially identifying Mott-Schottky effects and electronic properties at Pd/MOS interfaces, leveraging highly sensitive Kelvin probe force microscopy (KPFM). This system enabled visualization and quantification of the surface potential difference and Mott-Schottky barrier height (ΦSBH) at the Pd/MOS heterojunction interfaces. Furthermore, a series of Pd/MOS Mott-Schottky catalysts were constructed based on differences in work functions between Pd and n-type MOS. The abundant oxygen vacancies in these catalysts facilitated the adsorption and activation of oxygen molecules. Notably, the intensity of the built-in electric field in the Pd/MOS Mott-Schottky catalysts was calculated through surface potential and zeta potential analysis, systematically correlating the Mott-Schottky effect at the heterojunction interface of Pd/MOS with ORR activity and kinetics. By comprehensively exploring the correlation between the Mott-Schottky effect and ORR performance in Pd/MOS catalysts using the KPFM testing system, this study provides necessary tools and approaches for a deep understanding of heterogeneous interface charge transfer mechanisms, as well as for optimizing catalyst design and enhancing ORR performance.
Collapse
Affiliation(s)
- Jing He
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Shiyuan Chen
- Zhejiang Province key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Zhuang Ma
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Miao Wang
- Zhejiang Province key Laboratory of Quantum Technology and Device, Department of Physics, Zhejiang University, Hangzhou 310027, China
| | - Qinggang He
- College of Chemical and Biological Engineering, Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, Zhejiang University, Hangzhou, Zhejiang 310027, China
| |
Collapse
|
4
|
Wang J, Ye J, Chen S, Zhang Q. Strain Engineering of Unconventional Crystal-Phase Noble Metal Nanocatalysts. Molecules 2024; 29:1617. [PMID: 38611896 PMCID: PMC11013576 DOI: 10.3390/molecules29071617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/06/2023] [Accepted: 12/12/2023] [Indexed: 04/14/2024] Open
Abstract
The crystal phase, alongside the composition, morphology, architecture, facet, size, and dimensionality, has been recognized as a critical factor influencing the properties of noble metal nanomaterials in various applications. In particular, unconventional crystal phases can potentially enable fascinating properties in noble metal nanomaterials. Recent years have witnessed notable advances in the phase engineering of nanomaterials (PEN). Within the accessible strategies for phase engineering, the effect of strain cannot be ignored because strain can act not only as the driving force of phase transition but also as the origin of the diverse physicochemical properties of the unconventional crystal phase. In this review, we highlight the development of unconventional crystal-phase noble metal nanomaterials within strain engineering. We begin with a short introduction of the unconventional crystal phase and strain effect in noble metal nanomaterials. Next, the correlations of the structure and performance of strain-engineered unconventional crystal-phase noble metal nanomaterials in electrocatalysis are highlighted, as well as the phase transitions of noble metal nanomaterials induced by the strain effect. Lastly, the challenges and opportunities within this rapidly developing field (i.e., the strain engineering of unconventional crystal-phase noble metal nanocatalysts) are discussed.
Collapse
Affiliation(s)
- Jie Wang
- Key Laboratory of Fluid and Power Machinery of Ministry of Education, School of Materials Science and Engineering, Xihua University, Chengdu 610039, China
| | | | | | - Qinyong Zhang
- Key Laboratory of Fluid and Power Machinery of Ministry of Education, School of Materials Science and Engineering, Xihua University, Chengdu 610039, China
| |
Collapse
|
5
|
Ghorui UK, Mondal P, Adhikary B, Mondal A, Sarkar A. Newly designed one‐pot in‐situ synthesis of VS2/rGO nanocomposite to explore its electrochemical behavior towards oxygen electrode reactions. ChemElectroChem 2022. [DOI: 10.1002/celc.202200526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Uday Kumar Ghorui
- IIEST Shibpur: Indian Institute of Engineering Science and Technology Chemistry INDIA
| | - Papri Mondal
- IIEST Shibpur: Indian Institute of Engineering Science and Technology Chemistry INDIA
| | - Bibhutosh Adhikary
- IIEST Shibpur: Indian Institute of Engineering Science and Technology Chemistry INDIA
| | - Anup Mondal
- IIEST Chemistry Botanic Garden 711103 HOWRAH INDIA
| | - Arpita Sarkar
- IIEST Shibpur: Indian Institute of Engineering Science and Technology Chemistry INDIA
| |
Collapse
|
6
|
Cheng W, Sun L, He X, Tian L. Recent advances in fuel cell reaction electrocatalysis based on porous noble metal nanocatalysts. Dalton Trans 2022; 51:7763-7774. [PMID: 35508098 DOI: 10.1039/d2dt00841f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
As the center of fuel cells, electrocatalysts play a crucial role in determining the conversion efficiency from chemical energy to electrical energy. Therefore, the development of advanced electrocatalysts with both high activity and stability is significant but challenging. Active site, mass transport, and charge transfer are three central factors influencing the catalytic performance of electrocatalysts. Endowed with rich available surface active sites, facilitated electron transfer and mass diffusion channels, and highly active components, porous noble metal nanomaterials are widely considered as promising electrocatalysts toward fuel cell-related reactions. The past decade has witnessed great achievements in the design and fabrication of advanced porous noble metal nanocatalysts in the field of electrocatalytic fuel oxidation reaction (FOR) and oxygen reduction reaction (ORR). Herein, the recent research advances regarding porous noble metal nanocatalysts for fuel cell-related reactions are reviewed. In the discussions, the inherent structural features of porous noble metal nanostructures for electrocatalytic reactions, advanced synthetic strategies for the fabrication of porous noble metal nanostructures, and the structure-performance relationships are also provided.
Collapse
Affiliation(s)
- Wenjing Cheng
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China. .,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Limei Sun
- School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| | - Xiaoyan He
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China.
| | - Lin Tian
- University and College Key Lab of Natural Product Chemistry and Application in Xinjiang, School of Chemistry and Environmental Science, Yili Normal University, Yining 835000, China. .,School of Materials and Chemical Engineering, Xuzhou University of Technology, Xuzhou 221018, PR China
| |
Collapse
|
7
|
Zhang Q, Zhang M, Chen T, Li L, Shi S, Jiang R. Unconventional Phase Engineering of Fuel-Cell Electrocatalysts. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116363] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Liang X, Dong F, Tang Z, Wang Q. The Pt/g-C 3N 4-CNS catalyst via in situ synthesis process with excellent performance for methanol electrocatalytic oxidation reaction. NEW J CHEM 2022. [DOI: 10.1039/d1nj05858d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
g-C3N4-CNS prepared by the in situ synthetic method has a larger specific surface area and more anchoring sites for Pt, which promotes the dispersion of Pt and enhances the electrocatalytic performance.
Collapse
Affiliation(s)
- Xiaolong Liang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- College of materials and metallurgical engineering, Inner Mongolia university of science and technology, Baotou 014010, China
| | - Fang Dong
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zhicheng Tang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Qingchun Wang
- College of materials and metallurgical engineering, Inner Mongolia university of science and technology, Baotou 014010, China
| |
Collapse
|
9
|
Xiao F, Wang YC, Wu ZP, Chen G, Yang F, Zhu S, Siddharth K, Kong Z, Lu A, Li JC, Zhong CJ, Zhou ZY, Shao M. Recent Advances in Electrocatalysts for Proton Exchange Membrane Fuel Cells and Alkaline Membrane Fuel Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006292. [PMID: 33749011 DOI: 10.1002/adma.202006292] [Citation(s) in RCA: 166] [Impact Index Per Article: 41.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 12/10/2020] [Indexed: 05/18/2023]
Abstract
The rapid progress of proton exchange membrane fuel cells (PEMFCs) and alkaline exchange membrane fuel cells (AMFCs) has boosted the hydrogen economy concept via diverse energy applications in the past decades. For a holistic understanding of the development status of PEMFCs and AMFCs, recent advancements in electrocatalyst design and catalyst layer optimization, along with cell performance in terms of activity and durability in PEMFCs and AMFCs, are summarized here. The activity, stability, and fuel cell performance of different types of electrocatalysts for both oxygen reduction reaction and hydrogen oxidation reaction are discussed and compared. Research directions on the further development of active, stable, and low-cost electrocatalysts to meet the ultimate commercialization of PEMFCs and AMFCs are also discussed.
Collapse
Affiliation(s)
- Fei Xiao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yu-Cheng Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zhi-Peng Wu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Guangyu Chen
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458, China
| | - Fei Yang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Shangqian Zhu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Kumar Siddharth
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zhijie Kong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Aolin Lu
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Jin-Cheng Li
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458, China
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY, 13902, USA
| | - Zhi-You Zhou
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Minhua Shao
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Fok Ying Tung Research Institute, The Hong Kong University of Science and Technology, Guangzhou, 511458, China
- Energy Institute, and Chinese National Engineering Research Center for Control and Treatment of Heavy Metal Pollution, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- HKUST-Shenzhen Research Institute, No. 9 Yuexing 1st RD, South Area, Hi-tech Park, Nanshan, Shenzhen, 518057, China
| |
Collapse
|
10
|
Lu H, Tournet J, Dastafkan K, Liu Y, Ng YH, Karuturi SK, Zhao C, Yin Z. Noble-Metal-Free Multicomponent Nanointegration for Sustainable Energy Conversion. Chem Rev 2021; 121:10271-10366. [PMID: 34228446 DOI: 10.1021/acs.chemrev.0c01328] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Global energy and environmental crises are among the most pressing challenges facing humankind. To overcome these challenges, recent years have seen an upsurge of interest in the development and production of renewable chemical fuels as alternatives to the nonrenewable and high-polluting fossil fuels. Photocatalysis, photoelectrocatalysis, and electrocatalysis provide promising avenues for sustainable energy conversion. Single- and dual-component catalytic systems based on nanomaterials have been intensively studied for decades, but their intrinsic weaknesses hamper their practical applications. Multicomponent nanomaterial-based systems, consisting of three or more components with at least one component in the nanoscale, have recently emerged. The multiple components are integrated together to create synergistic effects and hence overcome the limitation for outperformance. Such higher-efficiency systems based on nanomaterials will potentially bring an additional benefit in balance-of-system costs if they exclude the use of noble metals, considering the expense and sustainability. It is therefore timely to review the research in this field, providing guidance in the development of noble-metal-free multicomponent nanointegration for sustainable energy conversion. In this work, we first recall the fundamentals of catalysis by nanomaterials, multicomponent nanointegration, and reactor configuration for water splitting, CO2 reduction, and N2 reduction. We then systematically review and discuss recent advances in multicomponent-based photocatalytic, photoelectrochemical, and electrochemical systems based on nanomaterials. On the basis of these systems, we further laterally evaluate different multicomponent integration strategies and highlight their impacts on catalytic activity, performance stability, and product selectivity. Finally, we provide conclusions and future prospects for multicomponent nanointegration. This work offers comprehensive insights into the development of cost-competitive multicomponent nanomaterial-based systems for sustainable energy-conversion technologies and assists researchers working toward addressing the global challenges in energy and the environment.
Collapse
Affiliation(s)
- Haijiao Lu
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Julie Tournet
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Kamran Dastafkan
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Yun Liu
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Yun Hau Ng
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong
| | - Siva Krishna Karuturi
- Department of Electronic Materials Engineering, Research School of Physics, The Australian National University, Canberra, Australian Capital Territory 2601, Australia.,Research School of Electrical, Energy and Materials Engineering, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| | - Chuan Zhao
- School of Chemistry, The University of New South Wales, Sydney, New South Wales 2052, Australia
| | - Zongyou Yin
- Research School of Chemistry, The Australian National University, Canberra, Australian Capital Territory 2601, Australia
| |
Collapse
|
11
|
Su K, Zhang H, Qian S, Li J, Zhu J, Tang Y, Qiu X. Atomic Crystal Facet Engineering of Core-Shell Nanotetrahedrons Restricted under Sub-10 Nanometer Region. ACS NANO 2021; 15:5178-5188. [PMID: 33588529 DOI: 10.1021/acsnano.0c10376] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Simultaneously engineering the size and surface crystal facets of bimetallic core-shell nanocrystals offers an effective route to not only reduce the extravagance of innermost core metal and maximize the utilization efficiency of shell atoms but also strengthen the core-to-shell interaction via ligand and/or strain effects. Herein, we systematically study the architecture transition and crystal facet engineering at the atomic level on the surface of sub-5 nm Pd(111) tetrahedrons (Ths), aimed at embodying how the variations in the local facet and shape of a sub-10 nm core-shell structure affect its surface geometrical properties and electronic structures. Specifically, surface atomic replication is predominant when the shell metal deposits less than five atomic layers, thus forming a series of Pd@M (M = Pt, Ru, and Rh) core-shell Ths enclosed by (111) facets (∼6.8 nm), while over five atomic layers, spontaneous facets tropism of each metal is predominant, where Pt atoms still follow fcc-(111) packing, Ru atoms select hcp-phase stacking, and Rh atoms choose fcc-(100) crystallization, respectively. In particular, Pt atoms take a seamless geometrical transformation from Pd@Pt Ths into Pd@Pt truncated octahedrons (TOhs, ∼7.6 nm). As a proof-of-concept application, such sub-10 nm core-shell architectures with Pt skin show a component-dependent relationship toward oxygen reduction reaction (ORR), where the catalytic activity follows the order of Pd@Pt(111) TOhs (E1/2 = 0.916 V, 1.632 A mgPt-1) > Pd@Pt(111) Ths > Pt black. Meanwhile the Ru skin show a facet-dependent relationship toward acidic hydrogen evolution reaction (HER) where the catalytic activity follows the order of Pd@Ru(111) Ths > Pd@Ru(hcp) Ths > Pd Ths.
Collapse
Affiliation(s)
- Keying Su
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Huaifang Zhang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Shiyun Qian
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiatian Li
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Jiawei Zhu
- Department of Chemical Engineering, School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China
| | - Yawen Tang
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| | - Xiaoyu Qiu
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
12
|
Mondal P, Satra J, Srivastava DN, Bhadu GR, Adhikary B. Pd δ+-Mediated Surface Engineering of AgMnO 4 Nanorods as Advanced Bifunctional Electrocatalysts for Highly Efficient Water Electrolysis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05638] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Papri Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Jit Satra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| | - Divesh N. Srivastava
- Department of Analytical Science, Central Salt and Marine Chemicals Research Institute, Gijubhai, Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Gopala Ram Bhadu
- Department of Analytical Science, Central Salt and Marine Chemicals Research Institute, Gijubhai, Badheka Marg, Bhavnagar 364002, Gujarat, India
| | - Bibhutosh Adhikary
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah 711103, West Bengal, India
| |
Collapse
|
13
|
Yin S, Wang Z, Liu S, Jiao S, Tian W, Xu Y, Li X, Wang L, Wang H. Flexible synthesis of Au@Pd core-shell mesoporous nanoflowers for efficient methanol oxidation. NANOSCALE 2021; 13:3208-3213. [PMID: 33528487 DOI: 10.1039/d0nr08758k] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The design of bimetallic core-shell nanostructures with mesoporous surfaces is considered significant to strengthen the catalytic activity and stability for direct methanol fuel cells. Here, we report a flexible method to synthesize Au@Pd core-shell mesoporous nanoflowers (Au@mPd NFs) with Au core coated with mesoporous Pd nano-petals, in which polymeric micelle-assembled structures are used as templates to induce the formation of mesopores. Benefiting from the electronic and structural effects, Au@mPd NFs show excellent electrocatalytic activity and stability for methanol oxidation reaction in alkaline electrolytes. This study demonstrates a versatile strategy for the fabrication of core-shell mesoporous nanoflowers with adjustable composition.
Collapse
Affiliation(s)
- Shuli Yin
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
| | - Songliang Liu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
| | - Shiqian Jiao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
| | - Wenjing Tian
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, P.R. China.
| |
Collapse
|
14
|
Fu Q, Gan M, Ma L, Wei S, Wu T, Yang Y, Li T, Zhan W, Xie F, Zhong X. One-step fabrication of CuO-doped TiO 2 nanotubes enhanced the catalytic activity of Pt nanoparticles towards the methanol oxidation reaction in acid media. NEW J CHEM 2021. [DOI: 10.1039/d1nj00095k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To meet the requirements for the potential applications of fuel cells, it is of vital importance to search for advanced electrocatalysts toward the methanol oxidation reaction that have both high electrocatalytic activity and great CO resistance.
Collapse
Affiliation(s)
- Qinglan Fu
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Mengyu Gan
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Li Ma
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Shuang Wei
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Taichun Wu
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Yanling Yang
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Tingting Li
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Wang Zhan
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Fei Xie
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| | - Xiujuan Zhong
- College of Chemistry & Chemical Engineering
- Chongqing University
- Chongqing 400044
- P. R. China
| |
Collapse
|
15
|
A stable PdCu@Pd core-shell nanobranches with enhanced activity and methanol-tolerant for oxygen reduction reaction. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
16
|
Jana A, Gregory DH. Microwave-Assisted Synthesis of ZnO-rGO Core-Shell Nanorod Hybrids with Photo- and Electro-Catalytic Activity. Chemistry 2020; 26:6703-6714. [PMID: 32154605 DOI: 10.1002/chem.202000535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Indexed: 01/15/2023]
Abstract
The unique two-dimensional structure and surface chemistry of reduced graphene oxide (rGO) along with its high electrical conductivity can be exploited to modify the electrochemical properties of ZnO nanoparticles (NPs). ZnO-rGO nanohybrids can be engineered in a simple new two-step synthesis, which is both fast and energy-efficient. The resulting hybrid materials show excellent electrocatalytic and photocatalytic activity. The structure and composition of the as-prepared bare ZnO nanorods (NRs) and the ZnO-rGO hybrids have been extensively characterised and the optical properties subsequently studied by UV/Vis spectroscopy and photoluminescence (PL) spectroscopy (including decay lifetime measurements). The photocatalytic degradation of Rhodamine B (RhB) dye is enhanced using the ZnO-rGO hybrids as compared to bare ZnO NRs. Furthermore, potentiometry comparing ZnO and ZnO-rGO electrodes reveals a featureless capacitive background for an Ar-saturated solution whereas for an O2 -saturated solution a well-defined redox peak was observed using both electrodes. The change in reduction potential and significant increase in current density demonstrates that the hybrid core-shell NRs possess remarkable electrocatalytic activity for the oxygen reduction reaction (ORR) as compared to NRs of ZnO alone.
Collapse
Affiliation(s)
- Arpita Jana
- WestCHEM School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| | - Duncan H Gregory
- WestCHEM School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, United Kingdom
| |
Collapse
|
17
|
Palladium-loaded core-shell nanospindle as potential alternative electrocatalyst for oxygen reduction reaction. Electrochim Acta 2019. [DOI: 10.1016/j.electacta.2019.134938] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
18
|
Cai B, Ma Y, Wang S, Yi N, Zheng Y, Qiu X, Tang Y, Bao J. Facile synthesis of PdFe alloy tetrahedrons for boosting electrocatalytic properties towards formic acid oxidation. NANOSCALE 2019; 11:18015-18020. [PMID: 31560002 DOI: 10.1039/c9nr06344g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The controllable synthesis of multi-metal nanocrystals with a tetrahedral shape is significant for constructing high-efficiency electrocatalysts. However, due to the great distinction among the thermodynamic reduction potentials of different metal precursors, it is difficult to achieve tetrahedron-shaped alloy nanocrystals with a uniform {111} crystal surface and low surface energy. Herein, we reported a one-pot hydrothermal synthetic strategy to achieve high-yield PdFe alloy tetrahedrons. The unique structure endowed an impressive surface area-to-volume ratio, well distribution of Pd and Fe sites, and essential electronic effects, due to which they could be employed as formic acid oxidation reaction (FAOR) catalysts. As expected, the PdFe alloy tetrahedrons exhibited 4.8 and 2.4 times higher mass activity (595.8 A g-1) and specific activity (33.4 A m-2) compared to commercial Pd black, respectively; they also showed enhanced electrocatalytic stability and good resistance to CO poisoning. This work demonstrates the potential applications of bimetal Pd-based tetrahedrons as promising anode catalysts in a direct formic acid fuel cell.
Collapse
Affiliation(s)
- Bingfeng Cai
- Jiangsu Key Laboratory of New Power Batteries, Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wang C, Xu H, Gao F, Zhang Y, Song T, Wang C, Shang H, Zhu X, Du Y. High-density surface protuberances endow ternary PtFeSn nanowires with high catalytic performance for efficient alcohol electro-oxidation. NANOSCALE 2019; 11:18176-18182. [PMID: 31556904 DOI: 10.1039/c9nr06343a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Developing cost-effective catalysts with superb activity and stability to alcohol electro-oxidation is a decisive factor towards the progress of direct alcohol fuel cells (DAFCs). Rationally utilizing the architectural and surface microstructural sensitivity of nanocatalysts can significantly increase their electrocatalytic properties. Here, we report an appropriate route that allows the fabrication of ultrafine PtFeSn nanowires (NWs) with tunable compositions. Interestingly, the addition of Sn reconstructed the surface microstructures, making ultrafine 1D NWs rich in a large number of surface protuberances, which may facilitate the oxidation of ethanol and methanol. Impressively, further catalytic studies demonstrate that all the PtFeSn NWs exhibit excellent catalytic capabilities for ethanol oxidation reaction (EOR) and methanol oxidation reaction (MOR), and display composition-related electrocatalytic activity with Pt1Fe0.20Sn0.46 NWs, possessing the highest activity for EOR and MOR. In addition, the trimetallic PtFeSn NWs exhibit significant meliorative durability relative to PtFe NWs and commercial Pt/C. The superb electrocatalytic performance is ascribed to its one-dimensional (1D) structure, atomic-level fine diameter, synergistic effect among Pt, Fe, and Sn components and abundant protuberances on the surface. Thus, this study highlights the significance of accurate structure- and surface-controlled Pt-based NWs for electrocatalysis and provides a universal approach for designing multi-component catalysts.
Collapse
Affiliation(s)
- Cheng Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Mondal S, Raj CR. Electrochemical Dealloying-Assisted Surface-Engineered Pd-Based Bifunctional Electrocatalyst for Formic Acid Oxidation and Oxygen Reduction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:14110-14119. [PMID: 30912919 DOI: 10.1021/acsami.9b00589] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Synthesis of non-Pt bifunctional electrocatalyst for the anodic oxidation of liquid fuel and cathodic reduction of oxygen is of great interest in the development of energy conversion devices. We demonstrate a facile room-temperature synthesis of surface-engineered trimetallic alloy nanoelectrocatalyst based on Co, Cu, and Pd by thermodynamically favorable transmetallation reaction and electrochemical dealloying. The quasi-spherical Co xCu yPd z trimetallic catalysts were synthesized by the thermodynamically favorable reaction of K2PdCl4 with sheetlike Co mCu n bimetallic alloy nanostructure. The surface engineering of Co xCu yPd z was achieved by electrochemical dealloying. The surface-engineered alloy electrocatalyst exhibits excellent bifunctional activity toward formic acid oxidation reaction (FAOR) and oxygen reduction reaction (ORR) at same pH. The elemental composition and lattice strain control the electrocatalytic performance. The elemental composition-dependent compressive strain weakens the adsorption of oxygen-containing species and favors the facile electron transfer for FAOR and ORR. The engineered alloy electrocatalyst of Co0.02Cu13.8Pd86.18 composition is highly durable and delivers high mass-specific activity for ORR and FAOR. It delivers mass-specific activities of 1.50 and 0.202 A/mgPd for FAOR and ORR, respectively, in acidic pH. The overall performance is superior to that of as-synthesized Pd and dealloyed bimetallic Co2.7Pd97.3 and Cu5.61Pd94.39 nanoelectrocatalysts.
Collapse
Affiliation(s)
- Siniya Mondal
- Functional Materials and Electrochemistry Lab, Department of Chemistry , Indian Institute of Technology, Kharagpur , Kharagpur 721302 , India
| | - C Retna Raj
- Functional Materials and Electrochemistry Lab, Department of Chemistry , Indian Institute of Technology, Kharagpur , Kharagpur 721302 , India
| |
Collapse
|
21
|
|
22
|
Xue Q, Bai J, Han C, Chen P, Jiang JX, Chen Y. Au Nanowires@Pd-Polyethylenimine Nanohybrids as Highly Active and Methanol-Tolerant Electrocatalysts toward Oxygen Reduction Reaction in Alkaline Media. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03447] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qi Xue
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, PR China
| | - Juan Bai
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, PR China
| | - Congcong Han
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, PR China
| | - Pei Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, PR China
| | - Jia-Xing Jiang
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, PR China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (Ministry of Education), Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi’an 710062, PR China
| |
Collapse
|
23
|
Deepalakshmi T, Tran DT, Kim NH, Chong KT, Lee JH. Nitrogen-Doped Graphene-Encapsulated Nickel Cobalt Nitride as a Highly Sensitive and Selective Electrode for Glucose and Hydrogen Peroxide Sensing Applications. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35847-35858. [PMID: 30265517 DOI: 10.1021/acsami.8b15069] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
To explore a natural nonenzymatic electrode catalyst for highly sensitive and selective molecular detection for targeting biomolecules is a very challenging task. Metal nitrides have attracted huge interest as promising electrodes for glucose and hydrogen peroxide (H2O2) sensing applications due to their exceptional redox properties, superior electrical conductivity, and superb mechanical strength. However, the deprived electrochemical stability extremely limits the commercialization opportunities. Herein, novel nitrogen-doped graphene-encapsulated nickel cobalt nitride (Ni xCo3- xN/NG) core-shell nanostructures with a controllable molar ratio of Ni/Co are successfully fabricated and employed as highly sensitive and selective electrodes for glucose and H2O2 sensing applications. The highly sensitive and selective properties of the optimized core-shell NiCo2N/NG electrode are because of the high synergistic effect of the NiCo2N core and the NG shell, as evidenced by a superior glucose sensing performance with a short response time of <3 s, a wide linear range from 2.008 μM to 7.15 mM, an excellent sensitivity of 1803 μA mM-1 cm-2, and a low detection limit of 50 nM (S/N = 3). Furthermore, the core-shell NiCo2N/NG electrode shows excellent H2O2 sensing performances with a short response time of ∼3 s, a wide detection range of 200 nM to 3.4985 mM, a high sensitivity of 2848.73 μA mM-1 cm-2, and ultra-low limit detection of 200 nM (S/N = 3). The NiCo2N/NG sensor can also be employed for glucose and H2O2 detection in human blood serum, promising its application toward the determination of glucose and H2O2 in real samples.
Collapse
|
24
|
Maiti K, Balamurugan J, Gautam J, Kim NH, Lee JH. Hierarchical Flowerlike Highly Synergistic Three-Dimensional Iron Tungsten Oxide Nanostructure-Anchored Nitrogen-Doped Graphene as an Efficient and Durable Electrocatalyst for Oxygen Reduction Reaction. ACS APPLIED MATERIALS & INTERFACES 2018; 10:32220-32232. [PMID: 30175582 DOI: 10.1021/acsami.8b11406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
A unique and novel structural morphology with high specific surface area, highly synergistic, remarkable porous conductive networks with outstanding catalytic performance, and durability of oxygen reduction electrocatalyst are typical promising properties in fuel cell application; however, exploring and interpreting this fundamental topic is still a challenging task in the whole world. Herein, we have demonstrated a simple and inexpensive synthesis strategy to design three-dimensional (3D) iron tungsten oxide nanoflower-anchored nitrogen-doped graphene (3D Fe-WO3 NF/NG) hybrid for a highly efficient synergistic catalyst for oxygen reduction reaction (ORR). The construction of flowerlike Fe-WO3 nanostructures, based on synthesis parameters, and their ORR performances are systematically investigated. Although pristine 3D Fe-WO3 NF or reduced graphene oxides show poor catalytic performance and even their hybrid shows unsatisfactory results, impressively, the excellent ORR activity and its outstanding durability are further improved by N doping, especially due to pyridinic and graphitic nitrogen moieties into a graphene sheet. Remarkably, 3D Fe-WO3 NF/NG hybrid nanoarchitecture reveals an outstanding electrocatalytic performance with a remarkable onset potential value (∼0.98 V), a half-wave potential (∼0.85 V) versus relative hydrogen electrode, significant methanol tolerance, and extraordinary durability of ∼95% current retention, even after 15 000 potential cycles, which is superior to a commercial Pt/C. The exclusive porous architecture, excellent electrical conductivity, and the high synergistic interaction between 3D Fe-WO3 NF and NG sheets are the beneficial phenomena for such admirable catalytic performance. Therefore, this finding endows design of a highly efficient and durable nonprecious metal-based electrocatalyst for high-performance ORR in alkaline media.
Collapse
|