1
|
Liu C, Wang Z, Wang H, Jiang J. Recent advances in porous organic cages for energy applications. Chem Sci 2024:d4sc05309e. [PMID: 39483250 PMCID: PMC11523839 DOI: 10.1039/d4sc05309e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 10/16/2024] [Indexed: 11/03/2024] Open
Abstract
In recent years, the energy and environmental crises have attracted more and more attention. It is very important to develop new materials and technologies for energy storage and conversion. In particular, it is crucial to develop carriers that store energy or promote mass and electron transport. Emerging porous organic cages (POCs) are very suitable for this purpose because they have inherent advantages including structural designability, porosity, multifunction and post-synthetic modification. POC-based materials, such as pristine POCs, POC composites and POC derivatives also exhibit excellent energy-related properties. This latest perspective provides an overview of the progress of POC-based materials in energy storage and conversion applications, including photocatalysis, electrocatalysis (CO2RR, NO3RR, ORR, HER and OER), separation (gas separation and liquid separation), batteries (lithium-sulfur, lithium-ion and perovskite solar batteries) and proton conductivity, highlighting the unique advantages of POC-based materials in various forms. Finally, we summarize the current advances, challenges and further perspectives of POC-based materials in energy applications. This perspective will promote the design and synthesis of next-generation POC-based materials for energy applications.
Collapse
Affiliation(s)
- Chao Liu
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University Baoding 071002 China
| | - Zhixuan Wang
- State Key Laboratory of New Pharmaceutical Preparations and Excipients, College of Chemistry and Materials Science, Hebei University Baoding 071002 China
| | - Hailong Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| | - Jianzhuang Jiang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Science and Application of Functional Molecular and Crystalline Materials, Department of Chemistry, School of Chemistry and Biological Engineering, University of Science and Technology Beijing Beijing 100083 China
| |
Collapse
|
2
|
Wei W, Nan S, Wang H, Xu S, Liu X, He R. Design and preparation of sulfonated polymer membranes for Zn/MnO2 flow batteries with assistance of machine learning. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
3
|
Xu T, Wu B, Li Y, Zhu Y, Sheng F, Ge L, Li X, Xu T. Insight into Ion Transport in Discrete Frameworks of Porous Organic Cage Membranes. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c04160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Tingting Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Bin Wu
- School of Chemistry & Chemical Engineering, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei230601, China
| | - Yifan Li
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Yanran Zhu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Fangmeng Sheng
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Liang Ge
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Xingya Li
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| | - Tongwen Xu
- Anhui Provincial Engineering Laboratory of Functional Membrane Materials and Technology, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei230026, China
| |
Collapse
|
4
|
Rationalizing Structural Hierarchy in the Design of Fuel Cell Electrode and Electrolyte Materials Derived from Metal-Organic Frameworks. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12136659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Metal-organic frameworks (MOFs) are arguably a class of highly tuneable polymer-based materials with wide applicability. The arrangement of chemical components and the bonds they form through specific chemical bond associations are critical determining factors in their functionality. In particular, crystalline porous materials continue to inspire their development and advancement towards sustainable and renewable materials for clean energy conversion and storage. An important area of development is the application of MOFs in proton-exchange membrane fuel cells (PEMFCs) and are attractive for efficient low-temperature energy conversion. The practical implementation of fuel cells, however, is faced by performance challenges. To address some of the technical issues, a more critical consideration of key problems is now driving a conceptualised approach to advance the application of PEMFCs. Central to this idea is the emerging field MOF-based systems, which are currently being adopted and proving to be a more efficient and durable means of creating electrodes and electrolytes for proton−exchange membrane fuel cells. This review proposes to discuss some of the key advancements in the modification of PEMs and electrodes, which primarily use functionally important MOFs. Further, we propose to correlate MOF-based PEMFC design and the deeper correlation with performance by comparing proton conductivities and catalytic activities for selected works.
Collapse
|
5
|
Liu C, Yang W, Wang C, Liu K, Jiang J. Photophysical Behaviors of Shape-persistent Zinc Porphyrin Organic Cage. NEW J CHEM 2022. [DOI: 10.1039/d2nj00734g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A pair chiral metallic porphyrin cages, (R)/(S)-PTC-1(Zn), have been afforded by pure chiral cyclohexanediamine reacting with zinc 5,15-di[3',5'-diformyl-(1,1'-biphenyl)]porphyrin. Both their chiral tubular structures have been demonstrated with single crystal diffraction...
Collapse
|
6
|
Hu D, Zhang J, Liu M. Recent advances in the applications of porous organic cages. Chem Commun (Camb) 2022; 58:11333-11346. [DOI: 10.1039/d2cc03692d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Porous organic cages (POCs) have emerged as a new sub-class of porous materials that stand out by virtue of their tunability, modularity, and processibility. Similar to other porous materials such...
Collapse
|
7
|
The water-mediated proton conductivity of a 1D open framework inorganic-organic hybrid iron phosphate and its composite membranes. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.109032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
8
|
Wang W, Su K, El-Sayed ESM, Yang M, Yuan D. Solvatomorphism Influence of Porous Organic Cage on C 2H 2/CO 2 Separation. ACS APPLIED MATERIALS & INTERFACES 2021; 13:24042-24050. [PMID: 33979139 DOI: 10.1021/acsami.1c04573] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Porous organic molecular (POM) materials can exhibit solvatomorphs via altering their crystallographic packing in the solid state, but investigating real gas mixture separation by porous materials with such a behavior is still very rare. Herein, we report that a lantern-shaped calix[4]resorcinarene-based porous organic cage (POC, namely, CPOC-101) can exhibit eight distinct solid-state solvatomorphs via crystallization in different solvents. This POC solvatomorphism has a significant influence on their gas sorption capacities as well as separation abilities. Specifically, the apparent Brunauer-Emmett-Teller (BET) surface area determined by nitrogen gas sorption at 77 K for CPOC-101α crystallized from toluene/chloroform is up to 406 m2 g-1, which is much higher than the rest of CPOC-101 solvatomorphs with BET values less than 40 m2 g-1. More interestingly, C2H2 and CO2 adsorbed capacities, in addition to the C2H2/CO2 separation ability at room temperature for CPOC-101α, are superior to those of CPOC-101β crystalized from nitrobenzene, the representative of POC solvatomorphs with low BET surface areas. These results indicate the possibility of adjusting gas sorption and separation properties of POC materials by controlling their solvatomorphs.
Collapse
Affiliation(s)
- Wenjing Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
| | - Kongzhao Su
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - El-Sayed M El-Sayed
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
- Chemical Refining Laboratory, Refining Department, Egyptian Petroleum Research Institute, Nasr City 11727, Egypt
| | - Miao Yang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
| | - Daqiang Yuan
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Zhu J, Yuan S, Wang J, Zhang Y, Tian M, Van der Bruggen B. Microporous organic polymer-based membranes for ultrafast molecular separations. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2020.101308] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
10
|
A facile and efficient method to improve the proton conductivity of open-framework metal phosphates under aqueous condition. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
11
|
Escorihuela J, Olvera-Mancilla J, Alexandrova L, del Castillo LF, Compañ V. Recent Progress in the Development of Composite Membranes Based on Polybenzimidazole for High Temperature Proton Exchange Membrane (PEM) Fuel Cell Applications. Polymers (Basel) 2020; 12:E1861. [PMID: 32825111 PMCID: PMC7564738 DOI: 10.3390/polym12091861] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 08/14/2020] [Accepted: 08/17/2020] [Indexed: 12/16/2022] Open
Abstract
The rapid increasing of the population in combination with the emergence of new energy-consuming technologies has risen worldwide total energy consumption towards unprecedent values. Furthermore, fossil fuel reserves are running out very quickly and the polluting greenhouse gases emitted during their utilization need to be reduced. In this scenario, a few alternative energy sources have been proposed and, among these, proton exchange membrane (PEM) fuel cells are promising. Recently, polybenzimidazole-based polymers, featuring high chemical and thermal stability, in combination with fillers that can regulate the proton mobility, have attracted tremendous attention for their roles as PEMs in fuel cells. Recent advances in composite membranes based on polybenzimidazole (PBI) for high temperature PEM fuel cell applications are summarized and highlighted in this review. In addition, the challenges, future trends, and prospects of composite membranes based on PBI for solid electrolytes are also discussed.
Collapse
Affiliation(s)
- Jorge Escorihuela
- Departamento de Química Orgánica, Universitat de València, Av. Vicent Andrés Estellés s/n, Burjassot, 46100 Valencia, Spain
| | - Jessica Olvera-Mancilla
- Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (J.O.-M.); (L.A.); (L.F.d.C.)
| | - Larissa Alexandrova
- Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (J.O.-M.); (L.A.); (L.F.d.C.)
| | - L. Felipe del Castillo
- Departamento de Polímeros, Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México (UNAM), Ciudad Universitaria, Coyoacán, Ciudad de México 04510, Mexico; (J.O.-M.); (L.A.); (L.F.d.C.)
| | - Vicente Compañ
- Departamento de Termodinámica Aplicada (ETSII), Universitat Politècnica de València, Camino de Vera. s/n, 46022 Valencia, Spain
| |
Collapse
|
12
|
Liu Q, Li Z, Wang D, Li Z, Peng X, Liu C, Zheng P. Metal Organic Frameworks Modified Proton Exchange Membranes for Fuel Cells. Front Chem 2020; 8:694. [PMID: 32850683 PMCID: PMC7432281 DOI: 10.3389/fchem.2020.00694] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 07/06/2020] [Indexed: 01/04/2023] Open
Abstract
Proton exchange membrane fuel cells (PEMFCs) have received considerable interest due to their low operating temperature and high energy conversion rate. However, their practical implement suffers from significant performance challenge. In particular, proton exchange membrane (PEM) as the core component of PEMFCs, have shown a strong correlation between its properties (e.g., proton conductivity, dimensional stability) and the performance of fuel cells. Metal-organic frameworks (MOFs) as porous inorganic-organic hybrid materials have attracted extensive attention in gas storage, gas separation and reaction catalysis. Recently, the MOFs-modified PEMs have shown outstanding performance, which have great merit in commercial application. This manuscript presents an overview of the recent progress in the modification of PEMs with MOFs, with a special focus on the modification mechanism of MOFs on the properties of composite membranes. The characteristics of different types of MOFs in modified application were summarized.
Collapse
Affiliation(s)
- Quanyi Liu
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Zekun Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Donghui Wang
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Zhifa Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Xiaoliang Peng
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Chuanbang Liu
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| | - Penglun Zheng
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Guanghan, China
| |
Collapse
|
13
|
Xu X, Shao Z, Shi L, Cheng B, Yin X, Zhuang X, Di Y. Enhancing proton conductivity of proton exchange membrane with SPES nanofibers containing porous organic cage. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4886] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Xianlin Xu
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation MembranesTiangong University Tianjin China
- School of Textile Science and EngineeringTiangong University Tianjin China
| | - Zhufeng Shao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation MembranesTiangong University Tianjin China
- School of Textile Science and EngineeringTiangong University Tianjin China
| | - Lei Shi
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation MembranesTiangong University Tianjin China
- School of Textile Science and EngineeringTiangong University Tianjin China
| | - Bowen Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation MembranesTiangong University Tianjin China
| | - Xuan Yin
- College of Textile EngineeringTaiyuan University of Technology Taiyuan China
| | - Xupin Zhuang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation MembranesTiangong University Tianjin China
- School of Textile Science and EngineeringTiangong University Tianjin China
| | - Youbo Di
- College of Textile EngineeringTaiyuan University of Technology Taiyuan China
| |
Collapse
|
14
|
Kumar B. S, Sana B, Unnikrishnan G, Jana T, Kumar K. S. S. Polybenzimidazole co-polymers: their synthesis, morphology and high temperature fuel cell membrane properties. Polym Chem 2020. [DOI: 10.1039/c9py01403a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polybenzimidazole (PBI) random co-polymers containing alicyclic and aromatic backbones were synthesized using two different dicarboxylic acids (viz., cyclohexane dicarboxylic acid and terephthalic acid) by varying their molar ratios.
Collapse
Affiliation(s)
- Satheesh Kumar B.
- Polymers and Special Chemicals Division
- Vikram Sarabhai Space Centre
- Thiruvananthapuram-22
- India
| | | | | | - Tushar Jana
- School of Chemistry
- University of Hyderabad
- Hyderabad
- India
| | - Santhosh Kumar K. S.
- Polymers and Special Chemicals Division
- Vikram Sarabhai Space Centre
- Thiruvananthapuram-22
- India
| |
Collapse
|
15
|
Zhang KM, He FY, Duan HB, Zhao HR. An Alkali Metal Ion-Exchanged Metal-Phosphate (C 2H 10N 2) xNa 1- x[Mn 2(PO 4) 2] with High Proton Conductivity of 10 -2 S·cm -1. Inorg Chem 2019; 58:6639-6646. [PMID: 31070907 DOI: 10.1021/acs.inorgchem.8b03278] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A two-dimensional layered inorganic-organic hybrid metal hydrogenophosphate (1) was treated with 0.1 M NaOH-ethanol solution, which resulted in a Na+-ion substitution product that exhibits excellent thermal and aqueous stability with 1, as well as much higher proton conductivity (σ = 10-2 S·cm-1) even at low temperature (283 K). This is because Na+ ions in aqueous solution make a more dense and extensive H-bonding network of water molecules, which enables protons to more easily transfer along the network.
Collapse
Affiliation(s)
- Kai-Ming Zhang
- Department of Material Engineering , Nanjing Institute of Technology , Nanjing 211167 , P. R. China.,Jiangsu Key Laboratory of Advanced Structural Materials and Application Technology , 1 Hongjing Road , Nanjing 211167 , P. R. China
| | - Feng-Yun He
- School of Environmental Science , Nanjing Xiaozhuang University , Nanjing 210009 , P. R. China
| | - Hai-Bao Duan
- School of Environmental Science , Nanjing Xiaozhuang University , Nanjing 210009 , P. R. China
| | - Hai-Rong Zhao
- School of Environmental Science , Nanjing Xiaozhuang University , Nanjing 210009 , P. R. China
| |
Collapse
|
16
|
An electrospun hygroscopic and electron-conductive core-shell silica@carbon nanofiber for microporous layer in proton-exchange membrane fuel cell. J Solid State Electrochem 2019. [DOI: 10.1007/s10008-019-04198-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
17
|
Sun ZB, Li YL, Zhang ZH, Li ZF, Xiao B, Li G. A path to improve proton conductivity: from a 3D hydrogen-bonded organic framework to a 3D copper-organic framework. NEW J CHEM 2019. [DOI: 10.1039/c9nj02025j] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The proton conduction in one HOF and related MOF have been investigated and discussed.
Collapse
Affiliation(s)
- Zhi-Bing Sun
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Yi-Lin Li
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control
- Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology
- School of Environmental Science and Engineering
- Nanjing University of Information Science &Technology
- Nanjing 210044
| | - Zhe-Hua Zhang
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Zi-Feng Li
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| | - Bo Xiao
- Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control
- Jiangsu Collaborative Innovation Centre of Atmospheric Environment and Equipment Technology
- School of Environmental Science and Engineering
- Nanjing University of Information Science &Technology
- Nanjing 210044
| | - Gang Li
- College of Chemistry and Molecular Engineering
- Zhengzhou University
- Zhengzhou 450001
- China
| |
Collapse
|