1
|
Wang H, Lin X, Li X, Lv D, Zhang J, Wei L, Tang J, Lin Y, Wu X, Xu X. Antiswelling, Ultrastretchable, and Ultrastable Hydrogel Sensors for Long-Term Underwater Monitoring. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503067. [PMID: 40400497 DOI: 10.1002/smll.202503067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2025] [Indexed: 05/23/2025]
Abstract
Wearable strain sensors designed for underwater environments and monitoring users' health status and safety are highly desirable. However, constructing antiswelling, stretchable, and stable hydrogel strain sensors for prolonged underwater monitoring is still a great challenge. In this work, conductive hydrogel sensors suitable for comprehensive environmental monitoring are developed by integrating conductive montmorillonite (MMT) into hydrogels. The conductive hydrogels demonstrate exceptional stretchability, elasticity, electrical conductivity, a wide operational range, and high sensing accuracy. Additionally, the sensors exhibit excellent underwater stability, making them suitable for use in underwater communication and alert systems. The conductive hydrogels developed herein present a novel pathway for advancing underwater sensing applications, human-robot interaction, soft robotics, and underwater intelligent devices.
Collapse
Affiliation(s)
- Hao Wang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xingyue Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xin Li
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Dong Lv
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, 999077, China
| | - Jing Zhang
- School of Mathematics and Information Science, Guangzhou University, Guangzhou, 510006, China
| | - Linjie Wei
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Jiahui Tang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yintong Lin
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xu Wu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Xiubin Xu
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| |
Collapse
|
2
|
Enayati M, Liu W, Madry H, Neisiany RE, Cucchiarini M. Functionalized hydrogels as smart gene delivery systems to treat musculoskeletal disorders. Adv Colloid Interface Sci 2024; 331:103232. [PMID: 38889626 DOI: 10.1016/j.cis.2024.103232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 05/10/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Despite critical advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy based on the delivery of therapeutic genetic sequences has strong value to offer effective, durable options to decisively manage such disorders. Furthermore, scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy, allowing for the spatiotemporal delivery of candidate genes to sites of injury. Among the many scaffolds for musculoskeletal research, hydrogels raised increasing attention in addition to other potent systems (solid, hybrid scaffolds) due to their versatility and competence as drug and cell carriers in tissue engineering and wound dressing. Attractive functionalities of hydrogels for musculoskeletal therapy include their injectability, stimuli-responsiveness, self-healing, and nanocomposition that may further allow to upgrade of them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. Such functionalized hydrogels may also be tuned to successfully transfer therapeutic genes in a minimally invasive manner in order to protect their cargos and allow for their long-term effects. In light of such features, this review focuses on functionalized hydrogels and demonstrates their competence for the treatment of musculoskeletal disorders using gene therapy procedures, from gene therapy principles to hydrogel functionalization methods and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are being discussed in the perspective of translation in patients. STATEMENT OF SIGNIFICANCE: Despite advances in regenerative medicine, the generation of definitive, reliable treatments for musculoskeletal diseases remains challenging. Gene therapy has strong value in offering effective, durable options to decisively manage such disorders. Scaffold-mediated gene therapy provides powerful alternatives to overcome hurdles associated with classical gene therapy. Among many scaffolds for musculoskeletal research, hydrogels raised increasing attention. Functionalities including injectability, stimuli-responsiveness, and self-healing, tune them as "intelligently" efficient and mechanically strong platforms, rather than as just inert vehicles. This review introduces functionalized hydrogels for musculoskeletal disorder treatment using gene therapy procedures, from gene therapy principles to functionalized hydrogels and applications of hydrogel-mediated gene therapy for musculoskeletal disorders, while remaining challenges are discussed from the perspective of translation in patients.
Collapse
Affiliation(s)
- Mohammadsaeid Enayati
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Wei Liu
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Henning Madry
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany
| | - Rasoul Esmaeely Neisiany
- Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland; Department of Polymer Engineering, Hakim Sabzevari University, Sabzevar 9617976487, Iran
| | - Magali Cucchiarini
- Center of Experimental Orthopaedics, Saarland University Medical Center, Kirrbergerstr. Bldg 37, 66421 Homburg, Saar, Germany.
| |
Collapse
|
3
|
Araújo CBB, Alves Júnior JDO, Sato MR, Costa KMN, Lima JR, Damasceno BPGDL, de Lima Junior FJB, Andréo BGC, dos Santos VL, Oshiro-Junior JA. The Development and Pre-Clinical Anti-Inflammatory Efficacy of a New Transdermal Ureasil-Polyether Hybrid Matrix Loaded with Flavonoid-Rich Annona muricata Leaf Extract. Pharmaceutics 2024; 16:1097. [PMID: 39204442 PMCID: PMC11359889 DOI: 10.3390/pharmaceutics16081097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/31/2024] [Accepted: 08/13/2024] [Indexed: 09/04/2024] Open
Abstract
This study aimed to develop a novel ureasil-polyether transdermal hybrid matrix (U-PEO) loaded with Annona muricata concentrated extract (AMCE), which exhibits potent anti-inflammatory activity. The extract was obtained by maceration, a method that allowed for the extraction of a high concentration of flavonoids (39.27 mg/g of extract). In vivo tests demonstrated that 10 mg/kg of AMCE inhibited inflammation for 6 h. The physicochemical characterization of U-PEO with AMCE was conducted via a thermogravimetric analysis (TGA), while its surface was recorded using atomic force microscopy (AFM). The in vitro macroscopic swelling and release tests demonstrated the hydrophilic profile of the material and the percentage of AMCE released. The TGA results demonstrated that the system exhibited physical compatibility due to the thermal stability of U-PEO. Additionally, the AFM analysis revealed a rough and porous surface, with a particular emphasis on the system with AMCE. The release resulted in the liberation of 23.72% of AMCE within 24 h. Finally, the preclinical tests demonstrated that U-PEO with AMCE was also capable of effectively inhibiting inflammation for 6 h, a duration comparable to that of a commercial formulation. The results permit the advancement of the study towards the development of a transdermal system, thereby rendering its application in clinical studies feasible.
Collapse
Affiliation(s)
- Camila Beatriz Barros Araújo
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, Paraiba State University, Av. Juvêncio Arruda, S/N, Campina Grande 58429-600, Brazil; (C.B.B.A.); (M.R.S.); (B.P.G.d.L.D.); (V.L.d.S.)
| | - José de Oliveira Alves Júnior
- Department of Pharmacy, Center for Biological and Health Sciences, Paraiba State University, Av. Juvêncio Arruda, S/N, Campina Grande 58429-500, Brazil;
| | - Mariana Rillo Sato
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, Paraiba State University, Av. Juvêncio Arruda, S/N, Campina Grande 58429-600, Brazil; (C.B.B.A.); (M.R.S.); (B.P.G.d.L.D.); (V.L.d.S.)
| | - Kammila Martins Nicolau Costa
- Postgraduate Program in Development and Technological Innovation in Medicines, Federal University of Paraíba, Campus I, Lot. Cidade Universitária, S/N, João Pessoa 58051-900, Brazil;
| | - Jéssica Roberta Lima
- Department of Pharmacy, University of Araraquara (UNIARA), Rua Carlos Gomes, 1338—Centro Araraquara, São Paulo 14801-340, Brazil; (J.R.L.); (B.G.C.A.)
| | - Bolívar Ponciano Goulart de Lima Damasceno
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, Paraiba State University, Av. Juvêncio Arruda, S/N, Campina Grande 58429-600, Brazil; (C.B.B.A.); (M.R.S.); (B.P.G.d.L.D.); (V.L.d.S.)
- Department of Pharmacy, Center for Biological and Health Sciences, Paraiba State University, Av. Juvêncio Arruda, S/N, Campina Grande 58429-500, Brazil;
| | | | - Bruna Galdorfini Chiari Andréo
- Department of Pharmacy, University of Araraquara (UNIARA), Rua Carlos Gomes, 1338—Centro Araraquara, São Paulo 14801-340, Brazil; (J.R.L.); (B.G.C.A.)
| | - Vanda Lucia dos Santos
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, Paraiba State University, Av. Juvêncio Arruda, S/N, Campina Grande 58429-600, Brazil; (C.B.B.A.); (M.R.S.); (B.P.G.d.L.D.); (V.L.d.S.)
- Department of Pharmacy, Center for Biological and Health Sciences, Paraiba State University, Av. Juvêncio Arruda, S/N, Campina Grande 58429-500, Brazil;
| | - João Augusto Oshiro-Junior
- Pharmaceutical Sciences Postgraduate Center for Biological and Health Sciences, Paraiba State University, Av. Juvêncio Arruda, S/N, Campina Grande 58429-600, Brazil; (C.B.B.A.); (M.R.S.); (B.P.G.d.L.D.); (V.L.d.S.)
- Department of Pharmacy, Center for Biological and Health Sciences, Paraiba State University, Av. Juvêncio Arruda, S/N, Campina Grande 58429-500, Brazil;
| |
Collapse
|
4
|
da Fonsêca NF, de Oliveira Alves-Júnior J, de Oliveira GD, Costa KMN, de Melo DF, Rolim Neto PJ, Rodrigues MGF, Oshiro-Junior JA. Modified release of D-glucose incorporated into laponite/ureasil–poly(ethylene oxide) hybrid nanocomposite. JOURNAL OF SOL-GEL SCIENCE AND TECHNOLOGY 2024; 110:705-719. [DOI: 10.1007/s10971-024-06387-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 04/08/2024] [Indexed: 01/06/2025]
|
5
|
Diao SJ, Lin CG, Zhang J, Zhang FD, Chu JF, Song YF. A pseudo-Double-Network Hydrogel Built upon Layered Double Hydroxides with Self-Strengthening Properties. Chemistry 2023:e202303092. [PMID: 38057492 DOI: 10.1002/chem.202303092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 12/08/2023]
Abstract
While great achievements have been made in the development of mechanically robust nanocomposite hydrogels, incorporating multiple interactions on the bases of two demensional inorganic cross-linkers to construct self-strengthening hydrogels has rarely been investigated. To this end, we propose here a new method for the coupling the dynamic covalent bonds and non-covalent interactions within a pseudo double-network system. The pseudo first network, formed through the Schiff Base reation between Tris-modified layered double hydroxides (Tris-LDHs) and oxidized dextran (ODex), is linked to the second network built upon non-covalent interactions between Tris-LDHs and poly(acrylamide-co-2-acrylamido-2-methyl-propanesulfonate) (p-(AM-co-AMPS). The swelling and mechanical properties of the resulting hydrogels have been investigated as a function of the ODex and AMPS contents. The as-prepared hydrogel can swell to 420 times of its original size and retain more than 99.9 wt.% of water. Mechanical tests show that the hydrogel can bear 90 % of compression and is able to be stretched to near 30 times of its original length. Cyclic tensile tests reveal that the hydrogels are capable of self-strengthening after mechanical training. The unique energy dissipation mechanism based on the dynamic covalent and non-covalent interactions is considered to be responsible for the outstanding swelling and mechanical performances.
Collapse
Affiliation(s)
- Shu-Jing Diao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Chang-Gen Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jie Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Fen-Di Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Jin-Feng Chu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yu-Fei Song
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
- School of Chemical Engineering, Qinghai University, Qinghai, 810016, P. R. China
| |
Collapse
|
6
|
Peng X, Li X, Xie B, Lai Y, Sosnik A, Boucetta H, Chen Z, He W. Gout therapeutics and drug delivery. J Control Release 2023; 362:728-754. [PMID: 37690697 DOI: 10.1016/j.jconrel.2023.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 09/02/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Gout is a common inflammatory arthritis caused by persistently elevated uric acid levels. With the improvement of people's living standards, the consumption of processed food and the widespread use of drugs that induce elevated uric acid, gout rates are increasing, seriously affecting the human quality of life, and becoming a burden to health systems worldwide. Since the pathological mechanism of gout has been elucidated, there are relatively effective drug treatments in clinical practice. However, due to (bio)pharmaceutical shortcomings of these drugs, such as poor chemical stability and limited ability to target the pathophysiological pathways, traditional drug treatment strategies show low efficacy and safety. In this scenario, drug delivery systems (DDS) design that overcome these drawbacks is urgently called for. In this review, we initially describe the pathological features, the therapeutic targets, and the drugs currently in clinical use and under investigation to treat gout. We also comprehensively summarize recent research efforts utilizing lipid, polymeric and inorganic carriers to develop advanced DDS for improved gout management and therapy.
Collapse
Affiliation(s)
- Xiuju Peng
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Xiaotong Li
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Bing Xie
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Yaoyao Lai
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Alejandro Sosnik
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Technion City, Haifa 3200003, Israel
| | - Hamza Boucetta
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| | - Wei He
- Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 2111198, PR China; Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, China.
| |
Collapse
|
7
|
Xie W, Chen Y, Yang H. Layered Clay Minerals in Cancer Therapy: Recent Progress and Prospects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300842. [PMID: 37093210 DOI: 10.1002/smll.202300842] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 04/03/2023] [Indexed: 05/03/2023]
Abstract
Cancer is one of the deadliest diseases, and current treatment regimens suffer from limited efficacy, nonspecific toxicity, and chemoresistance. With the advantages of good biocompatibility, large specific surface area, excellent cation exchange capacity, and easy availability, clay minerals have been receiving ever-increasing interests in cancer treatment. They can act as carriers to reduce the toxic side effects of chemotherapeutic drugs, and some of their own properties can kill cancer cells, etc. Compared with other morphologies clays, layered clay minerals (LCM) have attracted more and more attention due to adjustable interlayer spacing, easier ion exchange, and stronger adsorption capacity. In this review, the structure, classification, physicochemical properties, and functionalization methods of LCM are summarized. The state-of-the-art progress of LCM in antitumor therapy is systematically described, with emphasis on the application of montmorillonite, kaolinite, and vermiculite. Furthermore, the property-function relationships of LCM are comprehensively illustrated to reveal the design principles of clay-based antitumor systems. Finally, foreseeable challenges and outlook in this field are discussed.
Collapse
Affiliation(s)
- Weimin Xie
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
| | - Ying Chen
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, China
| | - Huaming Yang
- Hunan Key Laboratory of Mineral Materials and Application, School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, China University of Geosciences, Wuhan, 430074, China
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, China
- Key Laboratory of Functional Geomaterials in China Nonmetallic Minerals Industry, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
8
|
Effect of Organomontmorillonite-Cloisite ® 20A Incorporation on the Structural and Drug Release Properties of Ureasil-PEO Hybrid. Pharmaceutics 2022; 15:pharmaceutics15010033. [PMID: 36678662 PMCID: PMC9866471 DOI: 10.3390/pharmaceutics15010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/16/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
This paper presents the influence of the presence of a modified organoclay, Cloisite® 20A (MMTA) on the structural and drug release properties of ureasil organic-inorganic hybrid. Sol-gel process was used to prepare the hybrid nanocomposites containing sodium diclofenac (DCF) at 5% wt. The effect of the amount of MMTA incorporated into the ureasil hybrid matrix was evaluated and characterized in depth by different techniques such as X-ray diffraction (XRD), small angle X-ray scattering (SAXS), differential scanning calorimetry (DSC), and swelling properties. The influence of MMTA on ureasil nanocomposites release profile was evaluated by in situ UV-vis. The diffraction patterns of the UPEO-MMTA nanocomposites showed a synergistic contribution effect that led to an intensity increase and narrowed the diffraction peaks, evidencing a crystallite PEO growth as a function of the modified nanoclay content. The interactions between polyether chains and the hydrogenated tallow of MMTA led to an easy intercalation process, as observed in UPEO-MMTA nanocomposites containing low (1% wt) or high (20% wt) nanoclay content. The waterway (channels) created in UPEO-MMTA nanocomposites contributed to a free volume increase in the swollen network compared to UPEO without MMTA. The hypothesis of the channels created after intercalation of the PEO phase in the interlayer of MMTA containing organoammonium ions corroborates with the XRD results, swelling studies by SAXS, and release assays. Furthermore, when these clay particles were dispersed in the polymeric matrix by an intercalation process, water uptake improvement was observed, with an increased amount of DCF release. The design of ureasil-MMTA nanocomposites containing modified nanoclay endows them with tunable properties; for example, swelling degree followed by amount of controlled drug release, opening the way for more versatile biomedical applications.
Collapse
|
9
|
Li J, Li Y, Zhong Z, Fu X, Li Z. One-pot self-assembly fabrication of chitosan coated hollow sphere for pH/ glutathione dual responsive drug delivery. Colloids Surf B Biointerfaces 2022; 218:112773. [PMID: 36007312 DOI: 10.1016/j.colsurfb.2022.112773] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/04/2022] [Accepted: 08/10/2022] [Indexed: 11/18/2022]
Abstract
Chitosan-coated poly (methacrylic acid) (PMAA) hollow spheres with 64 ± 3% drug loading capacity and low drug leakage (7 ± 2%, 54 h) were prepared through a novel one-pot two-step self-assembly process. Site-specific doxorubicin (DOX) loading and chitosan coating were achieved by electrostatic interaction to fulfill efficient drug loading and well-controlled drug release behavior. In vitro drug release profile revealed the pH and glutathione (GSH) dual responsive fast triggered drug release behavior, reaching 62 ± 3% during the first 10 h. And completely drug release could be achieved in 54 h. The high drug content and sensitive tumor microenvironment responsibility lead to similar anti-cancer efficiency with free doxorubicin in in vitro MTT assay. This self-assembly guided one-pot two-step fabrication process was proved to be an effective and convenient way to prepare the well-defined multi-layer structure and might be further employed in fabricating high-performance drug delivery systems.
Collapse
Affiliation(s)
- Jiagen Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, China.
| | - Yaqi Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, China
| | - Zhanqiong Zhong
- Chengdu University of Traditional Chinese Medicine, 610075 Chengdu, China
| | - Xiaohong Fu
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, China.
| | - Zhonghui Li
- College of Chemistry and Life Science, Sichuan Provincial Key Laboratory for Structural Optimization and Application of Functional Molecules, Chengdu Normal University, Chengdu, China.
| |
Collapse
|
10
|
Wang X, Hou X, Zou P, Zhang M, Ma L. Development of Cationic Cellulose-Modified Bentonite-Alginate Nanocomposite Gels for Sustained Release of Alachlor. ACS OMEGA 2022; 7:20032-20043. [PMID: 35722019 PMCID: PMC9202269 DOI: 10.1021/acsomega.2c01805] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
The nanocomposite gel prepared from nanoclay and natural polysaccharides showed a good sustained-release property. Herein, a cationic cellulose-modified bentonite-alginate nanocomposite gel was prepared and used to enhance the sustained release of alachlor. The underlying effect and mechanism of the structure of modified bentonite-alginate nanocomposite gels on the release behavior of alachlor were explored by Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), scanning electron microscopy (SEM), and thermogravimetric (TG) analysis. The results showed that the release of alachlor from the nanocomposite gels was dominated by Fickian diffusion and closely related to the adsorption capacity and permeability of the matrix. The cationic cellulose intercalated into the interlayer space of bentonite through an ion exchange reaction, which significantly enhanced the hydrophobicity of bentonite and its interaction with alachlor. The stacking aggregation of bentonite nanoplatelets and permeability of the gel network were decreased through the electrostatic interaction between cationic cellulose and alginate molecular chains, thus remarkably enhancing the sustained-release property of the nanocomposite gel. The release kinetics revealed that the release rate of alachlor from the nanocomposite gel first decreased and then increased as the content of bentonite and modified bentonite gradually increased. Also, the best sustained-release property of the nanocomposite gel was obtained at bentonite and modified bentonite additions of about 10%, under which the release time of 50% alachlor (T 50) from bentonite-alginate and modified bentonite-alginate nanocomposite gels was 4.4 and 5.6 times longer than the release time from pure alginate gels, respectively.
Collapse
|
11
|
Wang X, Hou X, Zou P, Zhang M, Ma L. Facile construction of cationic lignin modified bentonite
–
alginate nanocomposite gel for sustained release of alachlor. J Appl Polym Sci 2022. [DOI: 10.1002/app.52659] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xiaocheng Wang
- School of Chemistry and Chemical Engineering Guangxi University Nanning China
| | - Xiaojun Hou
- School of Chemistry and Chemical Engineering Guangxi University Nanning China
| | - Peiyu Zou
- School of Chemistry and Chemical Engineering Guangxi University Nanning China
| | - Min Zhang
- School of Chemistry and Chemical Engineering Guangxi University Nanning China
| | - Lin Ma
- School of Chemistry and Chemical Engineering Guangxi University Nanning China
| |
Collapse
|
12
|
Cationic starch modified bentonite-alginate nanocomposites for highly controlled diffusion release of pesticides. Int J Biol Macromol 2022; 213:123-133. [DOI: 10.1016/j.ijbiomac.2022.05.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/30/2022] [Accepted: 05/20/2022] [Indexed: 11/21/2022]
|
13
|
Jafari H, Atlasi Z, Mahdavinia GR, Hadifar S, Sabzi M. Magnetic κ-carrageenan/chitosan/montmorillonite nanocomposite hydrogels with controlled sunitinib release. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 124:112042. [PMID: 33947542 DOI: 10.1016/j.msec.2021.112042] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2020] [Revised: 03/01/2021] [Accepted: 03/06/2021] [Indexed: 01/19/2023]
Abstract
This work aimed to design montmorillonite-incorporated pH-responsive and magnetic κ-carrageenan/chitosan hydrogels via a completely green route for controlled release of sunitinib anticancer drug. This was accomplished by ionic cross-linking of two biopolymers, κ-carrageenan and chitosan, in the presence of magnetic montmorillonite (mMMt) nanoplatelets. Interestingly, it was observed that the amount of mMMt affected not only the microstructure of hydrogels, but also the drug loading efficiency of nanocomposite hydrogels was noticeably increased by introducing mMMt (from 69 to 96%). The in vitro sunitinib release experiments showed that a low content of loaded sunitinib was released from all hydrogels in the buffered solution with pH 7.4. In contrast, a relatively sustained release with a high content of drug release was observed in the acidic solution of pH 5.5. During 48 h, the hydrogels nanocomposite containing a high content of mMMt showed cumulative release of 64.0 and 8.6% at pH 5.5 and 7.4, respectively. During two days, while the cumulative release of sunitinib was obtained 84.3% for the magnetic-free hydrogel, the magnetic ones showed 74.4 and 64% with the low and high contents of magnetic MMt, respectively. The developed κ-carrageenan/chitosan hydrogels with a high capacity of drug loading and subsequent pH-sensitive drug release can be considered in prolonged cancer therapy with reduced side effects.
Collapse
Affiliation(s)
- Hessam Jafari
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, 55181-83111 Maragheh, Iran
| | - Ziba Atlasi
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, 55181-83111 Maragheh, Iran
| | - Gholam Reza Mahdavinia
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, 55181-83111 Maragheh, Iran.
| | - Somayeh Hadifar
- Polymer Research Laboratory, Department of Chemistry, Faculty of Science, University of Maragheh, 55181-83111 Maragheh, Iran
| | - Mohammad Sabzi
- Department of Chemical Engineering, Faculty of Engineering, University of Maragheh, 55181-83111 Maragheh, Iran
| |
Collapse
|
14
|
Soleimanpour Moghadam N, Azadmehr A, Hezarkhani A. Extended release of 6-aminopenicillanic acid by silanol group functionalized vermiculite. J DISPER SCI TECHNOL 2021. [DOI: 10.1080/01932691.2020.1850291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
| | - Amirreza Azadmehr
- Department of Mining & Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ardeshir Hezarkhani
- Department of Mining & Metallurgical Engineering, Amirkabir University of Technology, Tehran, Iran
| |
Collapse
|
15
|
Lu G, Wu Y, Zhang Y, Wang K, Gao H, Luo K, Cao Z, Cheng J, Liu C, Zhang L, Qi J. Surface Laser-Marking and Mechanical Properties of Acrylonitrile-Butadiene-Styrene Copolymer Composites with Organically Modified Montmorillonite. ACS OMEGA 2020; 5:19255-19267. [PMID: 32775929 PMCID: PMC7409255 DOI: 10.1021/acsomega.0c02803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 07/14/2020] [Indexed: 05/23/2023]
Abstract
In this study, organically modified montmorillonite (OMMT) was prepared by modifying MMT with a cationic surfactant cetyltrimethylammonium bromide (CTAB). The obtained OMMT of different loading contents (1, 2, 4, 6, and 8 wt %) was melt-blended with poly(acrylonitrile-co-butadiene-co-styrene) (ABS) to prepare a series of ABS/OMMT composites, which were laser marked using a neodymium-doped yttrium aluminum garnet (Nd:YAG) laser beam of 1064 nm under different laser current processes. X-ray diffraction (XRD), color difference spectrometer, optical microscope, water contact angle tests, scanning electron microscope (SEM), and Raman spectroscopy were carried out to characterize the morphology, structure, and properties of the laser-patterned ABS composites. The effects of the addition of OMMT and the laser marking process on the mechanical properties of ABS/OMMT composites were investigated through mechanical property tests. The results show that the obtained ABS/OMMT composites have enhanced laser marking performance, compared to the ABS. When the OMMT content is 2 wt % and the laser current intensity is 9 A, the marking on ABS composites has the highest contrast (ΔE = 36.38) and sharpness, and the quick response (QR) code fabricated can be scanned and identified with a mobile app. SEM and water contact angle tests showed that the holes, narrow cracks, and irregular protrusion are formed on the composite surface after laser marking, resulting in a more hydrophobic surface and an increased water contact angle. Raman spectroscopy and XRD indicate that OMMT can absorb the near-infrared laser energy, undergo photo thermal conversion, and cause the pyrolysis and carbonization of ABS to form black marking, and the crystal structure itself does not change significantly. When the 2 wt % of OMMT is loaded, the tensile strength, elongation at break, and impact strength of ABS/OMMT are increased by 15, 20, and 14%, respectively, compared to ABS. Compared with the unmarked ABS/OMMT, the defects including holes and cracks generated on the surface of the marked one lead to the decreased mechanical property. The desirable combination of high contrast laser marking performance and mechanical properties can be achieved at an OMMT loading content of 2 wt % and a laser current intensity of 9 A. This research work provides a simple, economical, and environmentally friendly method for laser marking of engineering materials such as ABS.
Collapse
Affiliation(s)
- Guangwei Lu
- Jiangsu Key Laboratory
of Environmentally Friendly Polymeric Materials, School of Materials
Science and Engineering, Jiangsu Collaborative Innovation Center of
Photovoltaic Science and Engineering, Changzhou
University, Changzhou 213164, Jiangsu, P.R. China
| | - Yinqiu Wu
- Jiangsu Key Laboratory
of Environmentally Friendly Polymeric Materials, School of Materials
Science and Engineering, Jiangsu Collaborative Innovation Center of
Photovoltaic Science and Engineering, Changzhou
University, Changzhou 213164, Jiangsu, P.R. China
| | - Yang Zhang
- Jiangsu Key Laboratory
of Environmentally Friendly Polymeric Materials, School of Materials
Science and Engineering, Jiangsu Collaborative Innovation Center of
Photovoltaic Science and Engineering, Changzhou
University, Changzhou 213164, Jiangsu, P.R. China
| | - Kailun Wang
- Jiangsu Key Laboratory
of Environmentally Friendly Polymeric Materials, School of Materials
Science and Engineering, Jiangsu Collaborative Innovation Center of
Photovoltaic Science and Engineering, Changzhou
University, Changzhou 213164, Jiangsu, P.R. China
| | - Hongxin Gao
- Jiangsu Key Laboratory
of Environmentally Friendly Polymeric Materials, School of Materials
Science and Engineering, Jiangsu Collaborative Innovation Center of
Photovoltaic Science and Engineering, Changzhou
University, Changzhou 213164, Jiangsu, P.R. China
| | - Keming Luo
- Jiangsu Key Laboratory
of Environmentally Friendly Polymeric Materials, School of Materials
Science and Engineering, Jiangsu Collaborative Innovation Center of
Photovoltaic Science and Engineering, Changzhou
University, Changzhou 213164, Jiangsu, P.R. China
| | - Zheng Cao
- Jiangsu Key Laboratory
of Environmentally Friendly Polymeric Materials, School of Materials
Science and Engineering, Jiangsu Collaborative Innovation Center of
Photovoltaic Science and Engineering, Changzhou
University, Changzhou 213164, Jiangsu, P.R. China
- Key Laboratory of High Performance Fibers
& Products, Ministry of Education, Donghua
University, Shanghai 201620, P. R. China
- Changzhou
University Huaide College, Changzhou 213016, P. R. China
- National Experimental Demonstration Center for Materials Science
and Engineering (Changzhou University), Changzhou 213164, P. R. China
| | - Junfeng Cheng
- Jiangsu Key Laboratory
of Environmentally Friendly Polymeric Materials, School of Materials
Science and Engineering, Jiangsu Collaborative Innovation Center of
Photovoltaic Science and Engineering, Changzhou
University, Changzhou 213164, Jiangsu, P.R. China
| | - Chunlin Liu
- Jiangsu Key Laboratory
of Environmentally Friendly Polymeric Materials, School of Materials
Science and Engineering, Jiangsu Collaborative Innovation Center of
Photovoltaic Science and Engineering, Changzhou
University, Changzhou 213164, Jiangsu, P.R. China
- Changzhou
University Huaide College, Changzhou 213016, P. R. China
| | - Lei Zhang
- Key Laboratory of Optic-electric Sensing
and Analytical Chemistry for Life Science, MOE; College of Chemistry
and Molecular Engineering, Qingdao University
of Science and Technology, No. 53 Zhengzhou Rd, Qingdao 266042, P. R. China
| | - Juan Qi
- Jiangsu Key Laboratory
of Environmentally Friendly Polymeric Materials, School of Materials
Science and Engineering, Jiangsu Collaborative Innovation Center of
Photovoltaic Science and Engineering, Changzhou
University, Changzhou 213164, Jiangsu, P.R. China
- School
of Chemical Engineering, Xuzhou College of Industrial Technology, No.1 Xiangwang Road, Xuzhou 221140, P. R. China
| |
Collapse
|
16
|
Design and preparation of quaternized pectin-Montmorillonite hybrid film for sustained drug release. Int J Biol Macromol 2020; 154:413-420. [DOI: 10.1016/j.ijbiomac.2020.03.140] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/15/2020] [Accepted: 03/15/2020] [Indexed: 12/15/2022]
|
17
|
Zhang H, Shi Y, Xu X, Zhang M, Ma L. Structure Regulation of Bentonite-Alginate Nanocomposites for Controlled Release of Imidacloprid. ACS OMEGA 2020; 5:10068-10076. [PMID: 32391494 PMCID: PMC7203979 DOI: 10.1021/acsomega.0c00610] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2020] [Accepted: 04/13/2020] [Indexed: 05/23/2023]
Abstract
To reveal the structure and release properties of bentonite-alginate nanocomposites, bentonite of different amounts was incorporated into alginate by the sol-gel route. The structure of the composites was characterized by Fourier transform infrared spectroscopy, X-ray diffraction, scanning electron microscopy, and thermogravimetric analysis and related to the swelling property of the matrix and the release of imidacloprid. Bentonite was subject to exfoliation into nanoplatelets and combined into the polymeric network within alginate hydrogel, exhibiting profound effects on the structure features and release properties of the composites. Bentonite was of good compatibility with alginate due to the hydrogen bonding and the electrostatic attraction between them. The polymer chains were found to intercalate into the interlayer gallery of the clay. The high specific area of the nanoplatelets of bentonite benefited the intimate contact with alginate and reduced the permeability of the composites. However, in the composites with clay content of more than 10%, the polymer was insufficient to accommodate the silicate sheets completely. The aggregation of the platelets destroyed the structure integrity of the composites, facilitating the diffusion of the pesticide. The release of imidacloprid was greatly retarded by incorporating into bentonite-alginate composites and dominated by Fickian diffusion depending on the permeability of the matrix. The time taken for 50% of the active ingredient to be released, T 50, first increased and then decreased with increasing clay content in the composites, reaching a maximum around a weight percentage of 10%, at which the T 50 value for imidacloprid release was about 2.5 times that for the release from pure alginate formulation.
Collapse
Affiliation(s)
- Haiyan Zhang
- School of Chemistry
and Chemical
Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Yunsheng Shi
- School of Chemistry
and Chemical
Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Xiafan Xu
- School of Chemistry
and Chemical
Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Min Zhang
- School of Chemistry
and Chemical
Engineering, Guangxi University, Nanning 530004, P. R. China
| | - Lin Ma
- School of Chemistry
and Chemical
Engineering, Guangxi University, Nanning 530004, P. R. China
| |
Collapse
|
18
|
Hao L, Wang W, Shen X, Wang S, Li Q, An F, Wu S. A Fluorescent DNA Hydrogel Aptasensor Based on the Self-Assembly of Rolling Circle Amplification Products for Sensitive Detection of Ochratoxin A. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:369-375. [PMID: 31829586 DOI: 10.1021/acs.jafc.9b06021] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A sensitive fluorescent DNA hydrogel aptasensor based on the self-assembly of rolling circle amplification (RCA) products was developed for ochratoxin A (OTA) detection in beer. A competitive binding mode of aptamer, complementary sequence, and target was integrated into the DNA hydrogel for OTA detection. The OTA aptamer first combined with the primer to form the hybridized product. Then, in the presence of OTA, the aptamer combined with OTA, which released the primer. The released primer hybridized with the padlock probe to form a circular template, and the RCA reaction was initiated by adding ligase, polymerase, and dNTPs. The fluorescent DNA hydrogel was obtained by adding Cy3-dUTP together with dNTPs, and the fluorescence (FL) intensity of the DNA hydrogel was positively correlated with OTA concentration. Under the optimal experimental conditions, the linear range of the relationship varied from 0.05 ng/mL to 100 ng/mL with a detection limit for OTA of 0.01 ng/mL. The fluorescent DNA hydrogel aptasensor showed good specificity and stability in beer samples. Therefore, the fabricated DNA hydrogel aptasensor shows considerable potential applications in detecting OTA for food safety.
Collapse
Affiliation(s)
- Liling Hao
- School of Biotechnology , East China University of Science and Technology , Shanghai 200237 , China
| | - Wei Wang
- School of Biotechnology , East China University of Science and Technology , Shanghai 200237 , China
| | - Xueqing Shen
- School of Biotechnology , East China University of Science and Technology , Shanghai 200237 , China
| | - Shuliu Wang
- School of Biotechnology , East China University of Science and Technology , Shanghai 200237 , China
| | | | - Faliang An
- School of Biotechnology , East China University of Science and Technology , Shanghai 200237 , China
| | | |
Collapse
|
19
|
Liu X, Lu X, Su Y, Kun E, Zhang F. Clay-Polymer Nanocomposites Prepared by Reactive Melt Extrusion for Sustained Drug Release. Pharmaceutics 2020; 12:E51. [PMID: 31936176 PMCID: PMC7022276 DOI: 10.3390/pharmaceutics12010051] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/26/2019] [Accepted: 01/03/2020] [Indexed: 12/21/2022] Open
Abstract
Abstract: Clay-polymer nanocomposites have exhibited a great potential as carriers for controlled release drug delivery. This study aims to prepare exfoliated montmorillonite-Eudragit RS nanocomposites using reactive melt extrusion and investigate the influence of claying loading, clay types (sodium montmorillonite (Cloisite Na) vs. organomodified montmorillonite (Cloisite 20)) on clay-polymer interactions and drug release properties. The clays were used as the filler material at various levels in Eudragit RS and theophylline was used as the active pharmaceutical ingredient. The resulting structure of the nanocomposites was characterized using TEM (transmission electron microscopy) and XRPD (X-ray powder diffraction). The hygroscopicity of the nanocomposites was investigated using DVS (dynamic vapor sorption). The effect of the interfacial interaction between the polymer and clay sheet, the clay loading as well as the clay type on the drug release behavior were further studied by dissolution testing. TEM and XRPD data show that when the clay content is increased from 5% to 15% by weight, the nanocomposite's structure switches from a fully exfoliated state to intercalated structures or partial exfoliation with stacked clay layers. FT-IR (fourier transform infrared spectroscopy) and ssNMR (solid-state NMR) results suggest that Cloisite Na and Cloisite 20 layers exhibit different interaction strengths with polymer networks by creating compacted complex structures. The addition of nanoclay in the formulation could robustly adjust drug release profiles, and the clay concentration and type are important factors that affect the crossing-linking density of the nanocomposites by adjusting the drug release properties. This study indicates that the clay-Eudragit RS nanocomposites provide an improved oral controlled drug delivery system that minimizes the drug dosing frequency, potentially leading to improved patient compliance.
Collapse
Affiliation(s)
- Xu Liu
- College of Pharmacy, the University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA; (X.L.); (Y.S.); (E.K.)
| | - Xingyu Lu
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA;
| | - Yongchao Su
- College of Pharmacy, the University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA; (X.L.); (Y.S.); (E.K.)
- Pharmaceutical Sciences, Merck & Co., Inc., Kenilworth, NJ 07033, USA;
| | - Eucharist Kun
- College of Pharmacy, the University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA; (X.L.); (Y.S.); (E.K.)
| | - Feng Zhang
- College of Pharmacy, the University of Texas at Austin, 2409 University Avenue, A1920, Austin, TX 78712, USA; (X.L.); (Y.S.); (E.K.)
| |
Collapse
|
20
|
Sharifzadeh G, Hezaveh H, Muhamad II, Hashim S, Khairuddin N. Montmorillonite-based polyacrylamide hydrogel rings for controlled vaginal drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 110:110609. [PMID: 32204060 DOI: 10.1016/j.msec.2019.110609] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Revised: 12/18/2019] [Accepted: 12/26/2019] [Indexed: 01/21/2023]
Abstract
Vaginal drug delivery is regarded as a promising route against women-related health issues such as unwanted pregnancies and sexually transmitted infections. However, only a very few studies have been reported on the use of hydrogel rings with low cytotoxicity for vaginal drug delivery applications. Moreover, the effect of nanoparticles on hydrogel vaginal rings has not been clearly evaluated. To overcome these challenges, we hereby developed nanocomposite hydrogel rings based on polyacrylamide-sodium carboxymethyl cellulose-montmorillonite nanoparticles in the ring-shaped aluminum mold for controlled drug delivery. The hydrogel rings were synthesized by using N,N'-methylene bisacrylamide, N,N,N',N'-tetramethyl ethylene diamine, and ammonium persulfate, as a crosslinker, accelerator, and initiator, respectively. The obtained rings were 5.5 cm in diameters and 0.5 cm in rims. Chemical structures of the nanocomposite rings were confirmed by Fourier transform infrared, and Nuclear Magnetic Resonance spectroscopies. Additionally, the swelling ratio of hydrogels was appeared to be adjusted by the introduction of nanoparticles. In vitro release experiment of methylene blue, as a hydrophilic model drug, revealed that the nanocomposite rings could not only reduce burst effect (almost more than twice), but also achieve prolonged release for 15 days in the vaginal fluid simulant which mimic the vaginal conditions at pH of almost 4.2, and a temperature of 37 °C. Importantly, the resultant hydrogel rings with or without various concentrations of montmorillonite showed low cytotoxicity toward human skin fibroblasts. Furthermore, different antibacterial activities against Escherichia coli were observed for various concentrations of montmorillonite in hydrogels. These results suggest the great potential of montmorillonite-based hydrogel rings for vaginal drug delivery.
Collapse
Affiliation(s)
- Ghorbanali Sharifzadeh
- Department of Polymer Engineering, School of Chemical Engineering, 81310, Universiti Teknologi Malaysia, Johor, Malaysia
| | - Hadi Hezaveh
- Manufacturing Flagship, Commonwealth Scientific and Industrial Research Organization (CSIRO), Clayton, Victoria 3169, Australia
| | - Ida Idayu Muhamad
- Food and Biomaterial Engineering Research Group (FoBERG), Bioprocess and Polymer Engineering Department, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru, Malaysia; Biomaterials Cluster, IJN-UTM Cardiovascular Engineering Centre, Block B, V01, Universiti Teknologi Malaysia, Johor Bahru, Malaysia.
| | - Shahrir Hashim
- Department of Bioprocess and Polymer Engineering, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
| | - Nozieana Khairuddin
- Department of Basic Science and Engineering, Faculty of Agriculture and Food Science, Universiti Putra Malaysia, Bintulu Sarawak Campus, P.O. Box 396, Nyabau Road, 97008 Bintulu, Sarawak, Malaysia
| |
Collapse
|
21
|
Manatunga DC, Godakanda VU, de Silva RM, de Silva KMN. Recent developments in the use of organic-inorganic nanohybrids for drug delivery. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 12:e1605. [PMID: 31826328 DOI: 10.1002/wnan.1605] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/05/2019] [Accepted: 11/12/2019] [Indexed: 01/22/2023]
Abstract
Organic-inorganic nanohybrid (OINH) structures providing a versatile platform for drug delivery with improved characteristics are an area which has gained recent attention. Much effort has been taken to develop these structures to provide a viable treatment options for much alarming diseases such as cancer, bone destruction, neurological disorders, and so on. This review focuses on current work carried out in producing different types of hybrid drug carriers identifying their properties, fabrication techniques, and areas where they have been applied. A brief introduction on understating the requirement for blending organic-inorganic components into a nanohybrid drug carrier is followed with an elaboration given about the different types of OINHs developed currently highlighting their properties and applications. Then, different fabrication techniques are discussed given attention to surface functionalization, one-pot synthesis, wrapping, and electrospinning methods. Finally, it is concluded by briefing the challenges that are remaining to be addressed to obtain multipurpose nanohybrid drug carriers with wider applicability. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Danushika C Manatunga
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - V Umayangana Godakanda
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - Rohini M de Silva
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| | - K M Nalin de Silva
- Centre for Advanced Materials and Devices (CAMD), Department of Chemistry, Faculty of Science, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
22
|
Hu T, Mei X, Wang Y, Weng X, Liang R, Wei M. Two-dimensional nanomaterials: fascinating materials in biomedical field. Sci Bull (Beijing) 2019; 64:1707-1727. [PMID: 36659785 DOI: 10.1016/j.scib.2019.09.021] [Citation(s) in RCA: 139] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/22/2019] [Accepted: 09/12/2019] [Indexed: 01/21/2023]
Abstract
Due to their high anisotropy and chemical functions, two-dimensional (2D) nanomaterials have attracted increasing interest and attention from various scientific fields, including functional electronics, catalysis, supercapacitors, batteries and energy materials. In the biomedical field, 2D nanomaterials have made significant contributions to the field of nanomedicine, especially in drug/gene delivery systems, multimodal imaging, biosensing, antimicrobial agents and tissue engineering. 2D nanomaterials such as graphene/graphene oxide (GO)/reduced graphene oxide (rGO), silicate clays, layered double hydroxides (LDHs), transition metal dichalcogenides (TMDs), transition metal oxides (TMOs), black phosphorus (BP), graphitic carbon nitride (g-C3N4), hexagonal boron nitride (h-BN), antimonene (AM), boron nanosheets (B NSs) and tin telluride nanosheets (SnTe NSs) possess excellent physical, chemical, optical and biological properties due to their uniform shapes, high surface-to-volume ratios and surface charge. In this review, we first introduce the properties, structures and synthetic strategies of different configurations of 2D nanomaterials. Recent advances and paradigms of 2D nanomaterials in a variety of biomedical applications, ranging from drug delivery, cancer treatment, bioimaging and tissue engineering to biosensing are discussed afterwards. In the final part, we foresee the development prospects and challenges of 2D nanomaterials after summarizing the research status of ultrathin 2D nanomaterials.
Collapse
Affiliation(s)
- Tingting Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xuan Mei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Yingjie Wang
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China
| | - Xisheng Weng
- Department of Orthopaedics, Peking Union Medical College Hospital, Peking Union Medical College & Chinese Academy of Medical Sciences, Beijing 100730, China.
| | - Ruizheng Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Min Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
23
|
Sun B, Xi Z, Wu F, Song S, Huang X, Chu X, Wang Z, Wang Y, Zhang Q, Meng N, Zhou N, Shen J. Quaternized Chitosan-Coated Montmorillonite Interior Antimicrobial Metal-Antibiotic in Situ Coordination Complexation for Mixed Infections of Wounds. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:15275-15286. [PMID: 31665888 DOI: 10.1021/acs.langmuir.9b02821] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Conventional drug delivery systems for natural clay materials still face critical challenges in their practical application, including multiple bacterial infections, combined infection of bacteria and fungi, and low sterilization efficiency. In this work, we address these challenges using the multifunctional montmorillonite nanosheet-based (MMT-based) drug nanoplatform, which involves the antibiotic 5-fluorocytosine (5-FC), antibacterial metal copper ions, and quaternized chitosan (QCS). Composite material QCS/MMT/5-FCCu can can strongly inhibit Staphylococcus aureus (a typical Gram-positive bacterium), Escherichia coli (a typical Gram-negative bacterium), and Candida albicans (a fungus) because 5-FC coordinates with copper ions in situ and due to the deposition of QCS. The subsequent drug release behavior of 5-FCCu was studied, and the results show an initial high concentration kills microorganisms and long-acting sustained release inhibition. Moreover, in vivo wound experiments and toxicity experiments show the promotion of wound healing and excellent biocompatibility. As a demonstration of the utility of the latter, we have shown that the MMT-based smart platform can be used for the treatment of mixed infections of wounds.
Collapse
Affiliation(s)
- Baohong Sun
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Zhenhua Xi
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Fan Wu
- College of Chemistry and Chemical Engineering , Central South University , Changsha 410083 , China
| | - Saijie Song
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Xinrong Huang
- School of Food Science and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210023 , China
| | - Xiaohong Chu
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Zhixuan Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Yuli Wang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Qicheng Zhang
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Na Meng
- School of Food Science and Pharmaceutical Engineering , Nanjing Normal University , Nanjing 210023 , China
| | - Ninglin Zhou
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| | - Jian Shen
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science , Nanjing Normal University , Nanjing 210023 , China
| |
Collapse
|
24
|
Caravieri BB, de Jesus NAM, de Oliveira LK, Araujo MD, Andrade GP, Molina EF. Ureasil Organic–Inorganic Hybrid as a Potential Carrier for Combined Delivery of Anti-Inflammatory and Anticancer Drugs. ACS APPLIED BIO MATERIALS 2019; 2:1875-1883. [DOI: 10.1021/acsabm.8b00798] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Beatriz B. Caravieri
- Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca, SP, Brazil
| | - Natana A. M. de Jesus
- Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca, SP, Brazil
| | - Lilian K. de Oliveira
- UEMG − Universidade do Estado de Minas Gerais, Unidade de Passos, Av. Juca Stockler 1130, Passos, MG, Brazil
| | - Marina D. Araujo
- Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca, SP, Brazil
| | - Gabriele P. Andrade
- Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca, SP, Brazil
| | - Eduardo F. Molina
- Universidade de Franca, Av. Dr. Armando Salles Oliveira 201, 14404-600 Franca, SP, Brazil
| |
Collapse
|
25
|
Rao J, Gao H, Guan Y, Li WQ, Liu Q. Fabrication of hemicelluloses films with enhanced mechanical properties by graphene oxide for humidity sensing. Carbohydr Polym 2019; 208:513-520. [DOI: 10.1016/j.carbpol.2018.12.099] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 12/30/2018] [Accepted: 12/31/2018] [Indexed: 10/27/2022]
|
26
|
Nath J, Chowdhury A, Ali I, Dolui SK. Development of a gelatin‐
g
‐poly(acrylic acid‐
co
‐acrylamide)–montmorillonite superabsorbent hydrogels for
in vitro
controlled release of vitamin B
12. J Appl Polym Sci 2019. [DOI: 10.1002/app.47596] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
27
|
Palácio G, Pulcinelli SH, Mahiou R, Boyer D, Chadeyron G, Santilli CV. Coupling Photoluminescence and Ionic Conduction Properties Using the Different Coordination Sites of Ureasil-Polyether Hybrid Materials. ACS APPLIED MATERIALS & INTERFACES 2018; 10:37364-37373. [PMID: 30346685 DOI: 10.1021/acsami.8b11149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this article, we demonstrate that each functional group of ureasil organic-inorganic hybrid (OIH) materials can act as a specific coordination site for a given active guest species, hence allowing the possibility of combining different functional properties. To illustrate this concept, the sol-gel process was used to produce diurea cross-linked siloxane-polyethylene oxide (U-PEO) and siloxane-polypropylene oxide (U-PPO) hybrid host frameworks with similar molecular weights (1900 and 2000 g mol-1 for PEO and PPO, respectively), with Li+ and Eu3+ as active guest ions providing ionic conduction and photoluminescence (PL) properties, respectively. Comparison of Fourier transform infrared spectra and small-angle X-ray scattering results for single-doped (using Li+ or Eu3+) and co-doped (using Li+ and Eu3+) U-PEO and U-PPO hosts showed that in every case, there was specific coordination of Eu3+ by the carbonyl group of the urea bridge and of Li+ by ether-type oxygen of the PEO and PPO chains. Optical analyses demonstrated that loading with Li+ did not affect the luminescence properties of the Eu3+-loaded OIH. Although loading with Eu3+ had a small effect on ionic transport, co-doping with Li+ ions ensured macroscopic ion-conduction of the transparent and luminescent hybrid material. The results suggested that the combination of both properties in a transparent elastomeric material could be useful for the development of multifunctional devices. The results suggested that the combination of both properties in a transparent elastomeric material could be useful for the development of multifunctional polyelectrolytes applied in the field of dual luminescent devices such as photoelectrochromic smart windows.
Collapse
Affiliation(s)
- Gustavo Palácio
- Chemistry Institute of the São Paulo State University - UNESP , 14800-060 Araraquara , São Paulo , Brazil
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand , F-63000 Clermont-Ferrand , France
| | - Sandra H Pulcinelli
- Chemistry Institute of the São Paulo State University - UNESP , 14800-060 Araraquara , São Paulo , Brazil
| | - Rachid Mahiou
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand , F-63000 Clermont-Ferrand , France
| | - Damien Boyer
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand , F-63000 Clermont-Ferrand , France
| | - Geneviève Chadeyron
- Université Clermont Auvergne, CNRS, SIGMA Clermont, Institut de Chimie de Clermont-Ferrand , F-63000 Clermont-Ferrand , France
| | - Celso V Santilli
- Chemistry Institute of the São Paulo State University - UNESP , 14800-060 Araraquara , São Paulo , Brazil
| |
Collapse
|