1
|
Wang B, Lv B, Li H, Zhang J, Ding Y, Zhou J, Bu M, Fan L, Han C. Design of self-assembled micelles based on natural dual-targeting strategies and evaluation of their anti-liver cancer effects as drug delivery systems. NPJ Precis Oncol 2025; 9:82. [PMID: 40119157 PMCID: PMC11928538 DOI: 10.1038/s41698-025-00869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Accepted: 03/09/2025] [Indexed: 03/24/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world and in China, Most patients are already in an advanced stage at the time of diagnosis, and the chance of complete surgical resection is lost, therefore, drug treatment is particularly important. Angelica sinensis polysaccharide (ASP) has natural liver-targeting properties, berberine (BBR) is a lipophilic cation with anticancer activities and mitochondrial-targeting properties, and honokiol (HNK) has mitochondria-dependent anticancer effects against cancer. Therefore, the aim of the present work was to synthesize Angelica sinensis polysaccharide-berberineamphiphilic polymer (ASP-SS-BBR) loaded with HNK to prepare the micelles ASP-BBR-PM@HNK to improve the hepatic targeting ability of the nanoparticles and the mitochondrial targeting ability in HCC cells and to enhance the anti-HCC effect of HNK. The findings of this study demonstrate the successful synthesis of ASP-BBR-PM@HNK, characterized by a particle size of 48.6 ± 1.13 nm. The formulation exhibits commendable stability, a sustained-release profile, and the capability for glutathione (GSH)-responsive release. ASP-BBR-PM@HNK is efficiently internalized by HepG2 cells, exhibiting the highest rate of cell inhibition. Additionally, the use of Gal and Man as receptor blockers confirmed the formulation's superior targeting capabilities, including exceptional mitochondrial targeting. Subsequent in vivo experiments employing BALB/c nude mice as a model further corroborated these experimental outcomes. This research has successfully developed an effective natural dual-targeting system, offering a novel approach for the precise treatment of liver cancer.
Collapse
Affiliation(s)
- Binbin Wang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, PR China
| | - Bai Lv
- College of Pharmacy, Qiqihar Medical University, Qiqihar, PR China
| | - Hao Li
- College of Pharmacy, Qiqihar Medical University, Qiqihar, PR China
| | - Jie Zhang
- College of Pharmacy, Qiqihar Medical University, Qiqihar, PR China
| | - Yaning Ding
- College of Life and Health Sciences, Northeastern University, Shenyang, PR China
| | - Jianwen Zhou
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, PR China
| | - Ming Bu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, PR China
| | - Li Fan
- Research Institute of Medicine and Pharmacy, Qiqihar Medical University, Qiqihar, PR China.
| | - Cuiyan Han
- College of Pharmacy, Qiqihar Medical University, Qiqihar, PR China.
| |
Collapse
|
2
|
Tang L, Yin Y, Cao Y, Liu H, Qing G, Fu C, Li Z, Zhu Y, Shu W, He S, Gao J, Zhang Y, Wang Z, Bu J, Li X, Zhu M, Liang XJ, Wang W. Bioorthogonal Chemistry-Guided Inhalable Nanoprodrug to Circumvent Cisplatin Resistance in Orthotopic Nonsmall Cell Lung Cancer. ACS NANO 2024; 18:32103-32117. [PMID: 39520399 DOI: 10.1021/acsnano.4c10947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Pulmonary delivery of anticancer therapeutics has shown encouraging performance in treating nonsmall cell lung cancer (NSCLC), which is characterized by high aggressiveness and poor prognosis. Cisplatin, a key member of the family of DNA alkylating agents, is extensively employed during NSCLC therapy. However, the development of chemoresistance and the occurrence of side effects severely impede the long-term application of cisplatin-based chemotherapies. Herein, we propose a meaningful strategy to precisely treat cisplatin-resistant NSCLC based on the combination of bioorthogonal chemistry with an inhalation approach. Ethacraplatin (EA-Pt), a platinum prodrug (IV), was synthesized and encapsulated in nitric oxide (NO)-containing micelles to overcome cisplatin chemoresistance. By further modifying bioorthogonal molecules in this nanoplatform (EA-Pt@MDBCO), an improved targeting performance toward pulmonary cancerous regions is achieved after prelabeling with azide via inhalation. Upon entering acidic cancer cells, EA-Pt is swiftly released due to the pH sensitivity of bioorthogonal micelles, which enables its bifunctions to inhibit glutathione S-transferase activity and deplete intracellular glutathione, eventually reversing cisplatin resistance. Moreover, the released NO also improves the overall therapeutic outcome against NSCLC. Consequently, inhalable EA-Pt@MDBCO prelabeled by azide effectively inhibits the progression of cisplatin-resistant orthotopic NSCLC, offering a feasible nanostrategy to expand the treatment options for NSCLC.
Collapse
Affiliation(s)
- Lu Tang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yue Yin
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yuqi Cao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Hening Liu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Guangchao Qing
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, National Center for Nanoscience and Technology of China, Beijing 100049, P. R. China
| | - Cong Fu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Zixuan Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yuanbo Zhu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Weijie Shu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Shun He
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jifan Gao
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Yi Zhang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Zihan Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Jianlan Bu
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Xuejing Li
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| | - Mengliang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, National Center for Nanoscience and Technology of China, Beijing 100049, P. R. China
| | - Xing-Jie Liang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, National Center for Nanoscience and Technology of China, Beijing 100049, P. R. China
| | - Wei Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, School of Pharmacy, China Pharmaceutical University, Nanjing 211198, P. R. China
- NMPA Key Laboratory for Research and Evaluation of Cosmetics, China Pharmaceutical University, Nanjing 211198, P. R. China
| |
Collapse
|
3
|
Wang P, Peng Z, Zhang Y, Zhang X, Chen X, Li F, Chen B, Niu S, Du K, Zhu LM. A chitosan-camouflaged nanomedicine triggered by hierarchically stimuli to release drug for multimodal imaging-guided chemotherapy of breast cancer. Carbohydr Polym 2024; 335:122073. [PMID: 38616095 DOI: 10.1016/j.carbpol.2024.122073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 03/14/2024] [Accepted: 03/16/2024] [Indexed: 04/16/2024]
Abstract
Breast cancer remains one of the most intractable diseases, especially the malignant form of metastasis, with which the cancer cells are hard to track and eliminate. Herein, the common known carbohydrate polymer chitosan (CS) was innovatively used as a shelter for the potent tumor-killing agent. The designed nanoparticles (NPs) not only enhance the solubility of hydrophobic paclitaxel (PTX), but also provide a "hide" effect for cytotoxic PTX in physiological condition. Moreover, coupled with the photothermal (PTT) properties of MoS2, results in a potent chemo/PTT platform. The MoS2@PTX-CS-K237 NPs have a uniform size (135 ± 17 nm), potent photothermal properties (η = 31.5 %), and environment-responsive (low pH, hypoxia) and near infrared (NIR) laser irradiation-triggered PTX release. Through a series of in vitro and in vivo experiments, the MoS2@PTX-CS-K237 showed high affinity and specificity for breast cancer cells, impressive tumor killing capacity, as well as the effective inhibitory effect of metastasis. Benefit from the unique optical properties of MoS2, this multifunctional nanomedicine also exhibited favorable thermal/PA/CT multimodality imaging effect on tumor-bearing mice. The system developed in this work represents the advanced design concept of hierarchical stimulus responsive drug release, and merits further investigation as a potential nanotheranostic platform for clinical translation.
Collapse
Affiliation(s)
- Pei Wang
- Department of Radiation Oncology, Cancer Institute, the First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, PR China
| | - Zhi Peng
- Department of Orthopedic Surgery, the First People's Hospital of Yunnan Province, the Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, PR China
| | - Yanyan Zhang
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Xuejing Zhang
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Xia Chen
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China
| | - Fan Li
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, PR China
| | - Bo Chen
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, PR China
| | - Shiwei Niu
- Yunnan Key Laboratory of Stem Cell and Regenerative Medicine, Science and Technology Achievement Incubation Center, Kunming Medical University, Kunming 650500, PR China.
| | - Kaili Du
- Department of Orthopedics, The First Affiliated Hospital of Kunming Medical University, Kunming 650032, PR China.
| | - Li-Min Zhu
- College of Biological Science and Medical Engineering, Shanghai Engineering Research Center of Nano-Biomaterials and Regenerative Medicine, Donghua University, Shanghai 201620, PR China.
| |
Collapse
|
4
|
Dominiak K, Gostyńska A, Szulc M, Stawny M. The Anticancer Application of Delivery Systems for Honokiol and Magnolol. Cancers (Basel) 2024; 16:2257. [PMID: 38927963 PMCID: PMC11201421 DOI: 10.3390/cancers16122257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
Cancer is a leading cause of death worldwide, and the effectiveness of treatment is consistently not at a satisfactory level. This review thoroughly examines the present knowledge and perspectives of honokiol (HON) in cancer therapeutics. The paper synthesizes critical insights into the molecular mechanisms underlying the observed anticancer effects, emphasizing both in vitro and in vivo studies. The effects of HON application, primarily in the common types of cancers, are presented. Because the therapeutic potential of HON may be limited by its physicochemical properties, appropriate delivery systems are sought to overcome this problem. This review discusses the effect of different nanotechnology-based delivery systems on the efficiency of HON. The data presented show that HON exhibits anticancer effects and can be successfully administered to the site of action. Honokiol exerts its anticancer activity through several mechanisms. Moreover, some authors used the combinations of classical anticancer drugs with HON. Such an approach is very interesting and worth further investigation. Understanding HON's multiple molecular mechanisms would provide valuable insights into how HON might be developed as an effective therapeutic. Therefore, further research is needed to explore its specific applications and optimize its efficacy in diverse cancer types.
Collapse
Affiliation(s)
- Katarzyna Dominiak
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland;
| | - Aleksandra Gostyńska
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland;
| | - Michał Szulc
- Department of Pharmacology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland;
| | - Maciej Stawny
- Department of Pharmaceutical Chemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland;
| |
Collapse
|
5
|
Fei Y, Zhang X, Wang X, Sun Y, He J, Liu X, Song Z, Li L, Qiu L, Qian Z, Zhou S, Liu X, Zhang H, Wang X. Upregulation of tumor suppressor PIAS3 by Honokiol promotes tumor cell apoptosis via selective inhibition of STAT3 tyrosine 705 phosphorylation. J Nat Med 2024; 78:285-295. [PMID: 38082192 DOI: 10.1007/s11418-023-01757-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/15/2023] [Indexed: 02/29/2024]
Abstract
The natural product Honokiol exhibits robust antitumor activity against a range of cancers, and it has also received approval to undergo phase I clinical trial testing. We confrmed that honokiol can promote the apoptotic death of tumor cells through cell experiments. Then siRNA constructs specific for PIAS3, PIAS3 overexpression plasmid and the mutation of the STAT3 Tyr705 residue were used to confirm the mechanism of Honokiol-induced apoptosis. Finally, we confrmed that honokiol can promote PIAS3 upregulation, in turn suppressing STAT3 Tyr705 phosphorylation through the in vivo and in vitro experiments. Honokiol was ultimately found to reduce tumor cell viability by promoting apoptosis through a mechanism dependent on the ability of Honokiol to promote PIAS3 upregulation and the selective inhibition of p-STAT3 (Tyr705) without affecting p-STAT3 (Ser727) or p-STAT1 (Tyr701) levels. PIAS3 knockdown and overexpression in tumor cells altered STAT3 activation and associated DNA binding activity through the control of Tyr705 phosphorylation via PIAS3-STAT3 complex formation, ultimately shaping Honokiol-induced tumor cell apoptosis. Honokiol was also confirmed to significantly prolong the survival of mice bearing xenograft tumors in a PIAS3-dependent fashion. Together, these findings highlight a novel pathway through which Honokiol can promote PIAS3 upregulation, in turn suppressing STAT3 Tyr705 phosphorylation and promoting the apoptotic death of tumor cells.
Collapse
Affiliation(s)
- Yue Fei
- Department of Lymphoma, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, China
| | - Xiaoyan Zhang
- State Key Laboratory of Experimental Hematology and Division of Pediatric Blood Diseases Center, Institute of Hematology and Blood Diseases Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Tianjin, 300060, China
| | - Xiaohui Wang
- Department of Lymphoma, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, China
| | - Yifei Sun
- Department of Lymphoma, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, China
| | - Jin He
- Department of Lymphoma, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, China
| | - Xia Liu
- Department of Lymphoma, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, China
| | - Zheng Song
- Department of Lymphoma, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, China
| | - Lanfang Li
- Department of Lymphoma, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, China
| | - Lihua Qiu
- Department of Lymphoma, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, China
| | - Zhengzi Qian
- Department of Lymphoma, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, China
| | - Shiyong Zhou
- Department of Lymphoma, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, China
| | - Xianming Liu
- Department of Lymphoma, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, China
| | - Huilai Zhang
- Department of Lymphoma, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, China.
| | - Xianhuo Wang
- Department of Lymphoma, National Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, the Sino-US Center for Lymphoma and Leukemia Research, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, China.
| |
Collapse
|
6
|
Yang J, Shang J, Yang L, Wei D, Wang X, Deng Q, Zhong Z, Ye Y, Zhou M. Nanotechnology-Based Drug Delivery Systems for Honokiol: Enhancing Therapeutic Potential and Overcoming Limitations. Int J Nanomedicine 2023; 18:6639-6665. [PMID: 38026538 PMCID: PMC10656744 DOI: 10.2147/ijn.s431409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 10/30/2023] [Indexed: 12/01/2023] Open
Abstract
Honokiol (HNK) is a small-molecule polyphenol that has garnered considerable attention due to its diverse pharmacological properties, including antitumor, anti-inflammatory, anti-bacterial, and anti-obesity effects. However, its clinical application is restricted by challenges such as low solubility, poor bioavailability, and rapid metabolism. To overcome these limitations, researchers have developed a variety of nano-formulations for HNK delivery. These nano-formulations offer advantages such as enhanced solubility, improved bioavailability, extended circulation time, and targeted drug delivery. However, existing reviews of HNK primarily focus on its clinical and pharmacological features, leaving a gap in the comprehensive evaluation of HNK delivery systems based on nanotechnology. This paper aims to bridge this gap by comprehensively reviewing different types of nanomaterials used for HNK delivery over the past 15 years. These materials encompass vesicle delivery systems, nanoparticles, polymer micelles, nanogels, and various other nanocarriers. The paper details various HNK nano-delivery strategies and summarizes their latest applications, development prospects, and future challenges. To compile this review, we conducted an extensive search using keywords such as "honokiol", "nanotechnology", and "drug delivery system" on reputable databases, including PubMed, Scopus, and Web of Science, covering the period from 2008 to 2023. Through this search, we identified and selected approximately 90 articles that met our specific criteria.
Collapse
Affiliation(s)
- Jing Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Jinlu Shang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Liuxuan Yang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Daiqing Wei
- Department of Orthopaedics, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Xia Wang
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Qinmin Deng
- Department of Clinical Pharmacy, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Zhirong Zhong
- Department of Pharmaceutical Sciences, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Yun Ye
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| | - Meiling Zhou
- Department of Pharmacy, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, People’s Republic of China
| |
Collapse
|
7
|
Jin Y, Adams F, Isert L, Baldassi D, Merkel OM. Spermine-Based Poly(β-amino ester)s for siRNA Delivery against Mutated KRAS in Lung Cancer. Mol Pharm 2023; 20:4505-4516. [PMID: 37578116 PMCID: PMC7615020 DOI: 10.1021/acs.molpharmaceut.3c00206] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Polyethylenimine (PEI) is a highly efficient cationic polymer for nucleic acid delivery, and although it is commonly used in preclinical studies, its clinical application is limited because of concerns regarding its cytotoxicity. Poly(β-amino ester)s are a new group of biodegradable and biocompatible cationic polymers that can be used for siRNA delivery. In this study, we synthesized Boc-protected and deprotected poly(β-amino ester)s, P(BSpBAE) and P(SpBAE), respectively, based on spermine and 1,4-butanediol diacrylate to deliver siRNA. The polymers were synthesized by Michael addition in a step-growth polymerization and characterized via 1H NMR spectroscopy and size-exclusion chromatography (SEC). The polymers can encapsulate siRNA as determined by SYBR gold assays. Both polymers and polyplexes were biocompatible in vitro. Furthermore, the cellular uptake of P(BSpBAE) and P(SpBAE) polyplexes was more efficient than for branched PEI (25 kDa) polyplexes at the same N/P ratios. P(BSpBAE) polyplexes achieved 60% eGFP knockdown in vitro, which indicates that the Boc-protection can improve the siRNA delivery and gene silencing efficiency of PBAEs. P(BSpBAE) polyplexes and P(SpBAE) polyplexes showed different cellular uptake mechanisms, and P(BSpBAE) polyplexes demonstrated decreased endosomal entrapment, which could explain why P(BSpBAE) polyplexes more efficiently mediated gene silencing than P(SpBAE) polyplexes. Furthermore, transfection of an siRNA against mutated KRAS in KRAS-mutated lung cancer cells led to around 35% (P(BspBAE)) to 45% (P(SpBAE)) inhibition of KRAS expression and around 33% (P(SpBAE)) to 55% (P(BspBAE)) decreased motility in a migration assay. These results suggest that the newly developed spermine-based poly(β-amino ester)s are promising materials for therapeutic siRNA delivery.
Collapse
Affiliation(s)
- Yao Jin
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Pharmaceutical technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Friederike Adams
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Pharmaceutical technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Lorenz Isert
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Pharmaceutical technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Domizia Baldassi
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Pharmaceutical technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany
| | - Olivia M. Merkel
- Ludwig-Maximilians-University Munich, Department of Pharmacy, Pharmaceutical technology and Biopharmaceutics, Butenandtstr. 5-13, 81377 Munich, Germany
| |
Collapse
|
8
|
Fabrication, characterization, and in vitro evaluation of doxorubicin-coupled chitosan oligosaccharide nanoparticles. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
9
|
Zhong L, Xia Y, He T, Wenjie S, Jinxia A, Lijun Y, Hui G. Polymeric photothermal nanoplatform with the inhibition of aquaporin 3 for anti-metastasis therapy of breast cancer. Acta Biomater 2022; 153:505-517. [PMID: 36115652 DOI: 10.1016/j.actbio.2022.09.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 09/02/2022] [Accepted: 09/09/2022] [Indexed: 12/18/2022]
Abstract
Metastasis, as one of major challenges in the cancer treatment, is responsible for the high mortality of breast cancer. It has been reported that breast cancer cell invasion and metastasis are related to aquaporin 3 (AQP3), which is the transmembrane transport channel for H2O2 molecules. Moreover, there is agreement that preventing the metastasis of breast tumor cells in combination with inhibiting the tumor growth is a promising strategy for cancer chemotherapy. Herein, we constructed a flexible photothermal crosslinked polymeric nanovehicle for the delivery of the AQP3 inhibitor, [AuCl2(phen)]+Cl- (Auphen). The polymeric nanovehicle (pOMPC-Dex) is comprised of three modules: 1) pOEGMA-co-pMEO2MA serves as the temperature-responsive segment; 2) pCyanineMA acts as the near-infrared (NIR) optical absorbing motif for photothermal therapy and is conjugated with pOEGMA-co-pMEO2MA to obtain NIR light stimuli-responsive drug release; and 3) pPBAMA-Dex functions as an acidic tumor microenvironment-responsive unit. Auphen was encapsulated into a nanovehicle (Auphen@pOMPC-Dex) through electrostatic interactions. The designed nanoplatform showed a pH- and NIR light stimuli-responsive drug release profile and exhibited the strong inhibition of intracellular H2O2 uptake by breast cancer cells, which led to the inhibition of breast cancer cell migration and invasion in vitro. In a breast cancer mouse model, Auphen@pOMPC-Dex markedly reduced the number of lung metastases in tumor-bearing mice due to the combined suppression of tumor growth and metastasis. Consequently, the fabricated Auphen@pOMPC-Dex may provide a new strategy for the development of comprehensive oncotherapies. STATEMENT OF SIGNIFICANCE: High mortality due to metastasis-induced breast cancer has been a key issue that needs to be addressed. It has been reported that aquaporin 3 (AQP3), a transmembrane transport channel for H2O2 molecules was found to have an accelerated effect on breast cancer cell migration. Hence, a flexible crosslinked polymeric nanoplatform with the inhibition of AQP3 was designed to inhibit metastasis of breast cancer cells. At the same time, we combined suppression of tumor growth with photothermal therapy to enhance the anticancer therapy effect.
Collapse
Affiliation(s)
- Luo Zhong
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, PR China
| | - Yang Xia
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, PR China
| | - Tan He
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, PR China
| | - Shi Wenjie
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, PR China
| | - An Jinxia
- School of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, PR China.
| | - Yang Lijun
- Key Laboratory of Radiopharmacokinetics for Innovative Drugs, Chinese Academy of Medical Sciences, and Institute of Radiation Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin 300192, PR China.
| | - Gao Hui
- State Key Laboratory of Separation Membranes and Membrane Processes, School of Materials Science and Engineering, Tiangong University, Tianjin, PR China.
| |
Collapse
|
10
|
Zhou L, Wu J, Sun Z, Wang W. Oxidation and Reduction Dual-Responsive Polymeric Prodrug Micelles Co-delivery Precisely Prescribed Paclitaxel and Honokiol for Laryngeal Carcinoma Combination Therapy. Front Pharmacol 2022; 13:934632. [PMID: 35935846 PMCID: PMC9354237 DOI: 10.3389/fphar.2022.934632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022] Open
Abstract
Laryngeal carcinoma is the most common head and neck malignancy globally, and chemotherapy is still the most common treatment for this type of carcinoma. Monotherapy has become powerless because of the lack of drugs in the anticancer agent library, the difficult process of new drug discovery, and the widespread drug resistance. Combination therapy with two agents, in particular Chinese herbal medicines with chemotherapy drugs, is a potential alternative to chemotherapy alone. However, combination therapy faces difficulties in delivering multiple drugs to tumor tissue in a precise ratio. Here, a cocktail polymeric prodrug micelle (PHPPM) was developed using an oxidation and reduction dual-responsive polymeric paclitaxel (PTX) and polymeric honokiol (HK) prodrugs. Both of them were obtained by covalently conjugating the drug to dextran via diselenium bonds. Following optimization and characterization, the PHPPM with the precise mass ratio of PTX and HK was obtained, enabling ratiometric drug loading, synchronized drug release in response to tumor high-level reactive oxygen species and glutathione environment, long blood circulation, and high tumor accumulation. This co-delivery system can effectively inhibit laryngeal carcinoma growth in vitro and in vivo. Codelivery of chemotherapy agents and Chinese herbal medicine with a precise ratio and controlled release of the two drugs at the tumor site provides an effective approach to clinical therapy for other laryngeal carcinomas.
Collapse
|
11
|
Zhang Q, Li D, Guan S, Liu D, Wang J, Xing G, Yue L, Cai D. Tumor-targeted delivery of honokiol via polysialic acid modified zein nanoparticles prevents breast cancer progression and metastasis. Int J Biol Macromol 2022; 203:280-291. [PMID: 35093442 DOI: 10.1016/j.ijbiomac.2022.01.148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 01/13/2022] [Accepted: 01/23/2022] [Indexed: 01/11/2023]
Abstract
In this work, we developed polysialic acid (PSA) modified zein nanoparticles for targeted delivery of honokiol (HNK) to enhance drug delivery efficiency and specific biodistribution at tumor sites. The antisolvent precipitation and electrostatic interaction methods were employed to fabricate the PSA-Zein-HNK nanoparticles, which exhibited mean size of 107.2 ± 10.1 nm and HNK encapsulation efficiency of 79.2 ± 2.3%. The PSA-Zein-HNK maintained a uniform dispersion in serum for 48 h, implying the improved colloid stability of zein nanoparticles via PSA coating. The cellular uptake of PSA-Zein-Cou6 nanoparticles in 4 T1 cells was 2.58-fold higher than non-targeting Zein-Cou6. In addition, the IC50 value at 48 h for PSA-Zein-HNK (4.37 μg/mL) was significantly higher than the Zein-HNK (7.74 μg/mL). Enhanced tumor accumulation of the PSA-Zein-HNK was confirmed in 4 T1 breast cancer-bearing mice by near-infrared fluorescence imaging, resulting in desirable antitumor efficacy and favorable biosafety. Besides, compared with non-targeting zein nanoparticles, the PSA-Zein-HNK achieved a higher tumor growth inhibition rate of 52.3%. In particular, the metastasis of breast cancer to the lung or liver was remarkably suppressed by PSA-Zein-HNK. Together, our results demonstrated that the PSA-Zein-HNK could be a potential tumor-targeted drug delivery strategy for efficient treatment of breast cancer.
Collapse
Affiliation(s)
- Qi Zhang
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Dong Li
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China
| | - Shuang Guan
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China
| | - Dan Liu
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Jing Wang
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Guihua Xing
- College of Pathology, Qiqihar Medical University, Qiqihar, PR China.
| | - Liling Yue
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Defu Cai
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| |
Collapse
|
12
|
Zhou C, Hu X, Liu Q, Wang L, Zhou Y, Jin Y, Ma Y, Liu Y. Stromal Barrier-Dismantled Nanodrill-Like and Cancer Cell-Targeted pH-Responsive Polymeric Micelles for Further Enhancing the Anticancer Efficacy of Doxorubicin. ACS Biomater Sci Eng 2021; 7:5690-5705. [PMID: 34761919 DOI: 10.1021/acsbiomaterials.1c01131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer-associated fibroblasts (CAFs) were believed to establish a tight physical barrier and a dense scaffold for tumor cells to make them maintain immunosuppression and drug resistance, strongly hindering nanoparticles to penetrate into the core of tumor tissues and limiting the performance of tumor cell-targeted nanoparticles. Here, we fabricated the substrate Z-Gly-Pro of fibroblast activation protein α (FAPα) and folic acid-codecorated pH-responsive polymeric micelles (dual ligand-modified PEOz-PLA polymeric micelles, DL-PP-PMs) that possessed nanodrill and tumor cell-targeted functions based on Z-Gly-pro-conjugated poly(2-ethyl-2-oxazoline)-poly(D,l-lactide) (ZGP-PEOz-PLA), folic acid (FA)-conjugated PEOz-PLA (FA-PEOz-PLA), and PEOz-PLA for cancer therapy. The micelles with about 40 nm particle size and a narrow distribution exhibited favorable pH-activated endo/lysosome escape induced by their pH responsibility. In addition, the enhancement of in vitro cellular uptake and cytotoxicity to folate receptors or FAPα-positive cells for doxorubicin (DOX)/DL-PP-PMs compared with DOX/PP-PMs evidenced the dual target ability of DOX/DL-PP-PMs, which was further supported by in vivo biodistribution results. As expected, in the human oral epidermal carcinoma (KB) cells xenograft nude mice model, the remarkable enhancement of antitumor efficacy for DOX/DL-PP-PMs with low toxicity was observed compared with DOX/FA-PP-PMs and DOX/ZGP-PP-PMs. The possible mechanism was elucidated to be the dismantling of the stromal barrier by nanodrill-like DOX/DL-PP-PMs via the deletion of CAFs evidenced by the downregulation of α-SMA and inhibition of their functions proved by the decrease in the microvascular density labeled with CD31 and the reduction in the extracellular matrix detected by the collagen content, thereby promoting tumor penetration and enhancing their uptake by tumor cells. The present research offered an alternative approach integrating anticancer and antifibrosis effects in one delivery system to enhance the delivery efficiency and therapeutic efficacy of anticancer drugs.
Collapse
Affiliation(s)
- Chuhang Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinping Hu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qi Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Leqi Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuanhang Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yao Jin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yining Ma
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
13
|
Bholakant R, Dong B, Zhou X, Huang X, Zhao C, Huang D, Zhong Y, Qian H, Chen W, Feijen J. Multi-functional polymeric micelles for chemotherapy-based combined cancer therapy. J Mater Chem B 2021; 9:8718-8738. [PMID: 34635905 DOI: 10.1039/d1tb01771c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Currently, the therapeutic performance of traditional mono-chemotherapy on cancers remains unsatisfactory because of the tumor heterogeneity and multidrug resistance. In light of intricate tumor structures and distinct tumor microenvironments (TMEs), combinational therapeutic strategies with multiple anticancer drugs from different mechanisms can synergistically optimize the outcomes and concomitantly minimize the adverse effects during the therapy process. Extensive research on polymeric micelles (PMs) for biomedical applications has revealed the growing importance of nanomedicines for cancer therapy in the recent decade. Starting from traditional simple delivery systems, PMs have been extended to multi-faceted therapeutic strategies. Here we review and summarize the most recent advances in combinational therapy based on multifunctional PMs including a combination of multiple anticancer drugs, chemo-gene therapy, chemo-phototherapy and chemo-immunotherapy. The design approaches, action mechanisms and therapeutic applications of these nanodrugs are summarized. In addition, we highlight the opportunities and potential challenges associated with this promising field, which will provide new guidelines for advanced combinational cancer chemotherapy.
Collapse
Affiliation(s)
- Raut Bholakant
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Bin Dong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiang Zhou
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Xin Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Changshun Zhao
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Dechun Huang
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Yinan Zhong
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Hongliang Qian
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Wei Chen
- Department of Pharmaceutical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 210009, China.
| | - Jan Feijen
- Department of Polymer Chemistry and Biomaterials, Faculty of Science and Technology, TECHMED Centre, University of Twente, P. O. Box 217, 7500 AE Enschede, The Netherlands
| |
Collapse
|
14
|
Hu X, Jazani AM, Oh JK. Recent advances in development of imine-based acid-degradable polymeric nanoassemblies for intracellular drug delivery. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Fluorescent turn-on carbon dot-cored pseudo unimolecular prodrug micelles for tumor-specific dual-triggered drug delivery. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
16
|
Li G, Zhao M, Zhao L. Lysine-mediated hydroxyethyl starch-10-hydroxy camptothecin micelles for the treatment of liver cancer. Drug Deliv 2021; 27:519-529. [PMID: 32228107 PMCID: PMC7170360 DOI: 10.1080/10717544.2020.1745329] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Liver cancer is a malignant tumor with extremely high morbidity and mortality. At present, traditional chemotherapy is still the most commonly used therapeutic approach. However, serious side effects lead to the treatment of liver cancer is not ideal. Therefore, it is imperative to develop a new drug delivery system based on nanotechnology and liver cancer microenvironment. In this study, a pH/reduction/α-amylase multi-sensitive hydroxyethyl starch-10-hydroxy camptothecin micelles (HES-10-HCPT-SS-Ly) targeting over-expressed amino acid (AA) transporters on the surface of liver cancer cell by applying lysine were successfully synthesized. The prepared micelles showed regular structure, suitable particle size, and intelligent drug release property. Compared with conventional HES-10-HCPT micelles and 10-HCPT injection, HES-10-HCPT-SS-Ly micelles demonstrated better in vitro anti-proliferative capability toward human liver cancer Hep-G2 cells and greater antitumor efficiency against nude mouse with Hep-G2 tumor. These findings suggest that HES-10-HCPT-SS-Ly micelles may be a promising nanomedicine for treatment of liver cancer.
Collapse
Affiliation(s)
- Guofei Li
- Department of Pharmacy, Shengjing Hospital, China Medical University, Shenyang, China
| | - Mingming Zhao
- Department of Pharmacy, Shengjing Hospital, China Medical University, Shenyang, China
| | - Limei Zhao
- Department of Pharmacy, Shengjing Hospital, China Medical University, Shenyang, China
| |
Collapse
|
17
|
Xu K, Zhang L, Gu Y, Yang H, Du B, Liu H, Li Y. Increased the TMZ concentration in brain by poly(2-ethyl-2-oxazoline) conjugated temozolomide prodrug micelles for glioblastoma treatment. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2020.110232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
18
|
Luo K, Yin S, Zhang R, Yu H, Wang G, Li J. Multifunctional composite nanoparticles based on hyaluronic acid-paclitaxel conjugates for enhanced cancer therapy. Int J Pharm 2020; 589:119870. [DOI: 10.1016/j.ijpharm.2020.119870] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 09/05/2020] [Accepted: 09/06/2020] [Indexed: 12/22/2022]
|
19
|
Montané X, Kowalczyk O, Reig-Vano B, Bajek A, Roszkowski K, Tomczyk R, Pawliszak W, Giamberini M, Mocek-Płóciniak A, Tylkowski B. Current Perspectives of the Applications of Polyphenols and Flavonoids in Cancer Therapy. Molecules 2020; 25:E3342. [PMID: 32717865 PMCID: PMC7435624 DOI: 10.3390/molecules25153342] [Citation(s) in RCA: 65] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 07/17/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
The development of anticancer therapies that involve natural drugs has undergone exponential growth in recent years. Among the natural compounds that produce beneficial effects on human health, polyphenols have shown potential therapeutic applications in cancer due to their protective functions in plants, their use as food additives, and their excellent antioxidant properties. The possibility of combining conventional drugs-which are usually more aggressive than natural compounds-with polyphenols offers very valuable advantages such as the building of more efficient anticancer therapies with less side effects on human health. This review shows a wide range of trials in which polyphenolic compounds play a crucial role as anticancer medicines alone or in combination with other drugs at different stages of cancer: cancer initiation, promotion, and growth or progression. Moreover, the future directions in applications of various polyphenols in cancer therapy are emphasized.
Collapse
Affiliation(s)
- Xavier Montané
- Department of Chemical Engineering, University Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (B.R.-V.); (M.G.)
| | - Oliwia Kowalczyk
- Research and Education Unit for Communication in Healthcare Department of Cardiac Surgery, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Curie Sklodowskiej St. 9, 85-094 Bydgoszcz, Poland;
- Kazimierz Wielki University, Jagiellonska St. 11, 95-067 Bydgoszcz, Poland
| | - Belen Reig-Vano
- Department of Chemical Engineering, University Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (B.R.-V.); (M.G.)
| | - Anna Bajek
- Department of Tissue Engineering Chair of Urology, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, Karlowicza St. 24, 85-092 Bydgoszcz, Poland;
| | - Krzysztof Roszkowski
- Department of Oncology, Nicolaus Copernicus University in Torun, Romanowskiej St. 2, 85-796 Bydgoszcz, Poland;
| | - Remigiusz Tomczyk
- Department of Cardiac Surgery, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Curie Sklodowskiej St. 9, 85-094 Bydgoszcz, Poland; (R.T.); (W.P.)
| | - Wojciech Pawliszak
- Department of Cardiac Surgery, Ludwik Rydygier Collegium Medicum in Bydgoszcz Nicolaus Copernicus University in Torun, M. Curie Sklodowskiej St. 9, 85-094 Bydgoszcz, Poland; (R.T.); (W.P.)
| | - Marta Giamberini
- Department of Chemical Engineering, University Rovira i Virgili, Av. Països Catalans 26, Campus Sescelades, 43007 Tarragona, Spain; (B.R.-V.); (M.G.)
| | - Agnieszka Mocek-Płóciniak
- Department of General and Environmental Microbiology, University of Life Sciences Poznan, ul. Szydłowska 50, 60-656 Poznań, Poland;
| | - Bartosz Tylkowski
- Eurecat, Centre Tecnològic de Catalunya. Chemical Technologies Unit, Marcel·lí Domingo s/n, 43007 Tarragona, Spain
| |
Collapse
|
20
|
Han S, Li X, Zhou C, Hu X, Zhou Y, Jin Y, Liu Q, Wang L, Li X, Liu Y. Further Enhancement in Intestinal Absorption of Paclitaxel by Using Transferrin-Modified Paclitaxel Nanocrystals. ACS APPLIED BIO MATERIALS 2020; 3:4684-4695. [PMID: 35025467 DOI: 10.1021/acsabm.0c00599] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The intestinal epithelium is considered to be a major obstacle to the gastrointestinal administration for water-insoluble drugs. To enhance the intestinal absorption of paclitaxel by improving its solubility and overcoming the intestinal epithelium barrier, transferrin-modified paclitaxel nanocrystals were prepared based on the specific transferrin receptor expressed on the apical membrane of the intestinal epithelium and examined to exhibit a mean size of around 178 nm, a rod-like morphology, a sustained release property, and an enhanced in vitro antitumor effect. The in situ intestinal perfusion study proved that the intestinal absorption of transferrin-modified paclitaxel nanocrystals was remarkably enhanced compared with that of Taxol and unmodified paclitaxel nanocrystals, which was further evidenced by the result of pharmacokinetic study. Their transcytosis pathway and intracellular trafficking track were disclosed using Caco-2 cell monolayers. The transcytosis of transferrin-modified paclitaxel nanocrystals and unmodified paclitaxel nanocrystals was principally mediated by clathrin and lipid rafts. The colocalization of both paclitaxel nanocrystals with the organelles observed under confocal microscopy suggested that the late endosomes, lysosomes, ER, and Golgi apparatus played a part in the transcellular transport of both paclitaxel nanocrystals during their transcytosis. Therefore, the designed transferrin-modified drug nanocrystals might have a great potential in the enhancement of intestinal absorption of water-insoluble drugs.
Collapse
Affiliation(s)
- Shidi Han
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xueping Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Chuhang Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinping Hu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yuanhang Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yao Jin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qi Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Leqi Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Xinru Li
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Yan Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
21
|
Bobde Y, Biswas S, Ghosh B. PEGylated N-(2 hydroxypropyl) methacrylamide-doxorubicin conjugate as pH-responsive polymeric nanoparticles for cancer therapy. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104561] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
22
|
Zhang Q, Wang J, Liu D, Zhu W, Guan S, Fan L, Cai D. Targeted delivery of honokiol by zein/hyaluronic acid core-shell nanoparticles to suppress breast cancer growth and metastasis. Carbohydr Polym 2020; 240:116325. [PMID: 32475585 DOI: 10.1016/j.carbpol.2020.116325] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 04/05/2020] [Accepted: 04/15/2020] [Indexed: 12/11/2022]
Abstract
Based on the antisolvent and electrostatic deposition methods, we fabricated zein/hyaluronic acid core-shell nanoparticles loaded with honokiol (HA-Zein-HNK), which could target delivery and enhance the therapeutic effect of the HNK. The prepared nanoparticles were found to have a mean size of 210.4 nm and negative surface charge. The HA-Zein-HNK nanoparticles exhibited improved antiproliferative and pro-apoptotic activities against 4T1 cells. Of note, the wound healing and transwell assessments indicated that the migration and invasion of 4T1 cells were markedly weakened by HA-Zein-HNK. Mechanistic insights revealed that HA-Zein-HNK downregulated the expressions of Vimentin and upregulated the expressions of E-cadherin. More importantly, an in vivo tissue distribution study demonstrated the excellent tumor target ability of HA-Zein. And these results correspond with the superior therapeutic efficacy of HA-Zein-HNK in 4T1 tumor bearing mice. In conclusion, we believe that HA-Zein nanoparticles may be served as a promising HNK delivery carrier for metastatic breast cancer therapy.
Collapse
Affiliation(s)
- Qi Zhang
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Jing Wang
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Dan Liu
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Wenquan Zhu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, PR China.
| | - Shuang Guan
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Li Fan
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Defu Cai
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| |
Collapse
|
23
|
Wang J, Liu D, Guan S, Zhu W, Fan L, Zhang Q, Cai D. Hyaluronic acid-modified liposomal honokiol nanocarrier: Enhance anti-metastasis and antitumor efficacy against breast cancer. Carbohydr Polym 2020; 235:115981. [PMID: 32122511 DOI: 10.1016/j.carbpol.2020.115981] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 01/22/2020] [Accepted: 02/10/2020] [Indexed: 12/13/2022]
Abstract
In an effort to enhance antitumor and anti-metastasis of breast cancer, honokiol (HNK) was encapsulated into hyaluronic acid (HA) modified cationic liposomes (Lip). The prepared HA-Lip-HNK had a spherical shape with a narrow size distribution. The enhanced antitumor efficacy of HA-Lip-HNK was investigated in 4T1 cells in vitro, wherein flow cytometry and confocal microscopy analysis revealed its HA/CD44-mediated greater cellular internalization. As anticipate, the significant cytotoxicity of the HA-Lip-HNK was also observed in 4T1 tumor spheroids. Furthermore, the superior prevention of tumor metastasis by HA-Lip-HNK was verified by in vitro anti-invasion, wound healing and anti-migration assessments, and in vivo bioluminescence imaging in pulmonary metastasis model. Finally, compared with unmodified liposomes, the HA-Lip-HNK exhibited higher tumor accumulation, and achieved a tumor growth inhibition rate of 59.5 %. As a result, the HA-Lip-HNK may serve as a promising tumor-targeted drug delivery strategy for the efficient therapy of metastatic breast cancer.
Collapse
Affiliation(s)
- Jing Wang
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Dan Liu
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Shuang Guan
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Wenquan Zhu
- College of Pharmacy, Qiqihar Medical University, Qiqihar, PR China.
| | - Li Fan
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Qi Zhang
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| | - Defu Cai
- Institute of Medicine and Drug Research, Qiqihar Medical University, Qiqihar, PR China.
| |
Collapse
|
24
|
Zhou Y, Zhou C, Zou Y, Jin Y, Han S, Liu Q, Hu X, Wang L, Ma Y, Liu Y. Multi pH-sensitive polymer–drug conjugate mixed micelles for efficient co-delivery of doxorubicin and curcumin to synergistically suppress tumor metastasis. Biomater Sci 2020; 8:5029-5046. [DOI: 10.1039/d0bm00840k] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Multi pH-responsive polymer-drug conjugate mixed micelles were fabricated to co-deliver doxorubicin and curcumin for synergistic suppression tumor metastasis via inhibiting the invasion, migration, intravasation and extravasation of tumor cells.
Collapse
|
25
|
|
26
|
Jin Y, Liu Q, Zhou C, Hu X, Wang L, Han S, Zhou Y, Liu Y. Intestinal oligopeptide transporter PepT1-targeted polymeric micelles for further enhancing the oral absorption of water-insoluble agents. NANOSCALE 2019; 11:21433-21448. [PMID: 31681915 DOI: 10.1039/c9nr07029j] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The intestinal epithelium is the main barrier for nanocarriers to orally deliver poorly water-soluble and absorbed agents. To further improve the transmembrane transport efficiency of polymeric micelles, intestinal oligopeptide transporter PepT1-targeted polymeric micelles were fabricated by Gly-Sar-conjugated poly(ethylene glycol)-poly(d,l-lactic acid). The functionalized polymeric micelles with about 40 nm diameter, uniform spherical morphology and favorable cytocompatibility with Caco-2 cells were demonstrated to distinctly enhance the cellular uptake and transmembrane transport of the loaded agents. The results of intestinal absorption strongly evidenced the higher accumulation of the micelles inside the epithelial cells, at the apical and basolateral sides of the epithelium within the villi in mice. Furthermore, the interaction of Gly-Sar decorated polymeric micelles with PepT1 was explored to promote the internalization of the micelles through fluorescence immunoassay, and the PepT1 level on the membrane of Caco-2 cells treated with the micelles appeared to change in a distinctly time-dependent manner. Both clathrin- and caveolae-mediated pathways were involved in the transcellular transport for undecorated polymeric micelles, while the transcellular transport pathway for Gly-Sar decorated ones was changed to be mainly mediated by clathrin and lipid rafts. The colocalization of Gly-Sar decorated micelles with the organelles observed by confocal laser scanning microscopy indicated that late endosomes, lysosomes, endoplasmic reticulum and Golgi apparatus appeared to participate in the intracellular trafficking progression of the micelles. These results suggested that PepT1-targeted polymeric micelles might have a strong potential to greatly promote the oral absorption of poorly water-soluble and absorbed agents.
Collapse
Affiliation(s)
- Yao Jin
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Qi Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Chuhang Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Xinping Hu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Leqi Wang
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Shidi Han
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Yuanhang Zhou
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| | - Yan Liu
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.
| |
Collapse
|
27
|
Loh CY, Chai JY, Tang TF, Wong WF, Sethi G, Shanmugam MK, Chong PP, Looi CY. The E-Cadherin and N-Cadherin Switch in Epithelial-to-Mesenchymal Transition: Signaling, Therapeutic Implications, and Challenges. Cells 2019; 8:E1118. [PMID: 31547193 PMCID: PMC6830116 DOI: 10.3390/cells8101118] [Citation(s) in RCA: 828] [Impact Index Per Article: 138.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 09/16/2019] [Accepted: 09/19/2019] [Indexed: 12/17/2022] Open
Abstract
Epithelial-to-Mesenchymal Transition (EMT) has been shown to be crucial in tumorigenesis where the EMT program enhances metastasis, chemoresistance and tumor stemness. Due to its emerging role as a pivotal driver of tumorigenesis, targeting EMT is of great therapeutic interest in counteracting metastasis and chemoresistance in cancer patients. The hallmark of EMT is the upregulation of N-cadherin followed by the downregulation of E-cadherin, and this process is regulated by a complex network of signaling pathways and transcription factors. In this review, we summarized the recent understanding of the roles of E- and N-cadherins in cancer invasion and metastasis as well as the crosstalk with other signaling pathways involved in EMT. We also highlighted a few natural compounds with potential anti-EMT property and outlined the future directions in the development of novel intervention in human cancer treatments. We have reviewed 287 published papers related to this topic and identified some of the challenges faced in translating the discovery work from bench to bedside.
Collapse
Affiliation(s)
- Chin-Yap Loh
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Jian Yi Chai
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Ting Fang Tang
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Won Fen Wong
- Department of Medical Microbiology, Faculty of Medicine, University of Malaya, Kuala Lumpur 50603, Malaysia.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Muthu Kumaraswamy Shanmugam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore.
| | - Pei Pei Chong
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Chung Yeng Looi
- School of Biosciences, Faculty of Health and Medical Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| |
Collapse
|
28
|
Yan Y, Shi P, Song W, Bi S. Chemiluminescence and Bioluminescence Imaging for Biosensing and Therapy: In Vitro and In Vivo Perspectives. Theranostics 2019; 9:4047-4065. [PMID: 31281531 PMCID: PMC6592176 DOI: 10.7150/thno.33228] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/25/2019] [Indexed: 12/11/2022] Open
Abstract
Chemiluminescence (CL) and bioluminescence (BL) imaging technologies, which require no external light source so as to avoid the photobleaching, background interference and autoluminescence, have become powerful tools in biochemical analysis and biomedical science with the development of advanced imaging equipment. CL imaging technology has been widely applied to high-throughput detection of a variety of analytes because of its high sensitivity, high efficiency and high signal-to-noise ratio (SNR). Using luciferase and fluorescent proteins as reporters, various BL imaging systems have been developed innovatively for real-time monitoring of diverse molecules in vivo based on the reaction between luciferin and the substrate. Meanwhile, the kinetics of protein interactions even in deep tissues has been studied by BL imaging. In this review, we summarize in vitro and in vivo applications of CL and BL imaging for biosensing and therapy. We first focus on in vitro CL imaging from the view of improving the sensitivity. Then, in vivo CL applications in cells and tissues based on different CL systems are demonstrated. Subsequently, the recent in vitro and in vivo applications of BL imaging are summarized. Finally, we provide the insight into the development trends and future perspectives of CL and BL imaging technologies.
Collapse
|
29
|
Venkatesan P, Thirumalaivasan N, Yu HP, Lai PS, Wu SP. Redox Stimuli Delivery Vehicle Based on Transferrin-Capped MSNPs for Targeted Drug Delivery in Cancer Therapy. ACS APPLIED BIO MATERIALS 2019; 2:1623-1633. [PMID: 35026896 DOI: 10.1021/acsabm.9b00036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cancer has become one of the major diseases of human health around the world. Conventional antitumor drugs cannot specifically target cancers and result in serious side effects. To achieve better therapy, innovative functional drug delivery platforms that will aid specific targeting for cancer cells need to be developed. In this study, transferrin (Tf), which can target cancer cells, is covalently anchored onto the surface of MSNPs via disulfide linkage, which is used for glutathione-triggered intracellular drug release in tumor cells. The successful functionalization of redox-responsive MSNPs is confirmed by using BET/BJH, TEM, TGA, NMR, and FT-IR (BET, Brunauer-Emmett-Teller; BJH, Barrett-Joyner-Halenda). In addition, polyethylene glycol (PEG) is further grafted onto the surface of MSNPs to improve the biocompatibility and stability under physiological conditions for longer blood circulation. Our in vitro studies demonstrate that DOX-loaded MSNP-SS-Tf@PEG can selectively be internalized into cancer cells via Tf/Tf receptor interactions, and then, DOX is released in HT-29 and MCF-7 cells triggered by high GSH concentration in tumor cells. Remarkably, in vivo studies demonstrate that DOX-loaded MSNP-SS-Tf@PEG can significantly inhibit tumor growth with minimized side effects through cell apoptosis determined by TUNEL assay, whereas MSNP-SS-Tf@PEG revealed no significant inhibition. In conclusion, DOX-MSNP-SS-Tf@PEG with active targeting moieties and a redox-responsive strategy has been demonstrated as a great effective drug carrier for tumor therapy in vitro and in vivo.
Collapse
Affiliation(s)
- Parthiban Venkatesan
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| | | | - Hsiu-Ping Yu
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung 402, Taiwan
| | - Shu-Pao Wu
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu 300, Taiwan
| |
Collapse
|
30
|
Qu J, Wang R, Peng S, Shi M, Yang ST, Luo JB, Lin J, Zhou QH. Stepwise dual pH and redox-responsive cross-linked polypeptide nanoparticles for enhanced cellular uptake and effective cancer therapy. J Mater Chem B 2019; 7:7129-7140. [DOI: 10.1039/c9tb01773a] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The systemic toxicity, reduced cellular internalization, and uncontrollable intracellular drug release of smart nanoparticles (NPs) still need to be overcome for effective cancer therapy.
Collapse
Affiliation(s)
- Jing Qu
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Rui Wang
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Si Peng
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Mengyao Shi
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Sheng-Tao Yang
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Jian-bin Luo
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| | - Juan Lin
- School of Biomedical Sciences and Technology, Chengdu Medical College, Xindu Road No. 783
- Chengdu
- China
| | - Qing-han Zhou
- College of Chemical and Environment Protection
- Southwest Minzu University
- Chengdu
- China
| |
Collapse
|