1
|
Ren Q, He Y, Sun Y, Zhang S, Dong F. Visualizing the dynamic evolution of light-sensitive Cu 1+/Cu 2+ sites during photocatalytic CO 2 reduction with an advanced in situ EPR spectroscopy. Sci Bull (Beijing) 2025; 70:1097-1106. [PMID: 39956671 DOI: 10.1016/j.scib.2025.01.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/16/2024] [Accepted: 01/22/2025] [Indexed: 02/18/2025]
Abstract
Elucidation of the dynamic evolution of active sites is still a challenge in investigating the catalytic mechanism mainly due to the difficulty in accurately detecting the transient structural changes of active sites under operating conditions. Here, we develop an advanced in situ electron paramagnetic resonance (EPR) spectroscopy, which could sensitively monitor and visualize the dynamic evolution of paramagnetic active sites during photoreduction CO2. In situ results reveal that the photoactivated Cu1+ sites from CuO nanoclusters/TiO2 serve as the authentic active sites in the reaction and exhibit self-regenerative capability. The CO2 molecules can acquire electrons and get activated by the photoactivated Cu1+, leading to the transition of Cu1+ sites into Cu2+ sites. Subsequently, the Cu2+ sites expedite the generation of hydrogen protons through antiferromagnetic coupling with hydroxyl radicals, thereby promoting the production of the final product CH4 via a multi proton-coupled electron transfer (PCET) process. This work reveals and visualizes the dynamic evolution of Cu-based active sites during photocatalytic reactions by combined in situ characterizations, providing new perspectives on the mechanistic understanding of paramagnetic active sites under operation.
Collapse
Affiliation(s)
- Qin Ren
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Ye He
- School of Resources and Environmental, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Yanjuan Sun
- School of Resources and Environmental, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shihan Zhang
- Zhejiang Key Laboratory of Clean Energy Conversion and Utilization, College of Energy and Carbon Neutralization, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Fan Dong
- Research Center for Carbon-Neutral Environmental & Energy Technology, Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China.
| |
Collapse
|
2
|
Wang C, Mouchet SR, Deparis O, Li J, Paineau E, Dragoe D, Remita H, Ghazzal MN. TiO 2 Films with Macroscopic Chiral Nematic-Like Structure Stabilized by Copper Promoting Light-Harvesting Capability for Hydrogen Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2402211. [PMID: 38898765 DOI: 10.1002/smll.202402211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/18/2024] [Indexed: 06/21/2024]
Abstract
Cellulose nanocrystals (CNCs) have inspired the synthesis of various advanced nanomaterials, opening opportunities for different applications. However, a simple and robust approach for transferring the long-range chiral nematic nanostructures into TiO2 photocatalyst is still fancy. Herein, a successful fabrication of freestanding TiO2 films maintaining their macroscopic chiral nematic structures after removing the CNCs biotemplate is reported. It is demonstrated that including copper acetate in the sol avoids the epitaxial growth of the lamellar-like structure of TiO2 and stabilizes the chiral nematic structure instead. The experimental results and optical simulation demonstrate an enhancement at the blue and red edges of the Fabry-Pérot reflectance peak located in the visible range. This enhancement arises from the light scattering effect induced by the formation of the chiral nematic structure. The nanostructured films showed 5.3 times higher performance in the photocatalytic hydrogen generation, compared to lamellar TiO2, and benefited from the presence of copper species for charge carriers' separation. This work is therefore anticipated to provide a simple approach for the design of chiral nematic photocatalysts and also offers insights into the electron transfer mechanisms on TiO2/CuxO with variable oxidation states for photocatalytic hydrogen generation.
Collapse
Affiliation(s)
- Cong Wang
- Université Paris-Saclay, UMR 8000 CNRS, Institut de Chimie Physique, Orsay, 91405, France
| | - Sébastien R Mouchet
- Department of Physics, and Namur Institute of Structured Matter (NISM), University of Namur, Rue de Bruxelles 61, Namur, 5000, Belgium
- School of Physics, University of Exeter, Stocker Road, Exeter, EX4 4QL, UK
| | - Olivier Deparis
- Department of Physics, and Namur Institute of Structured Matter (NISM), University of Namur, Rue de Bruxelles 61, Namur, 5000, Belgium
| | - Jingwei Li
- Université Paris-Saclay, UMR 8000 CNRS, Institut de Chimie Physique, Orsay, 91405, France
- School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China
| | - Erwan Paineau
- Université Paris-Saclay, UMR 8502 CNRS, Laboratoire de Physique du Solide, Orsay, 91405, France
| | - Diana Dragoe
- Université Paris-Saclay, CNRS, Institut de Chimie Moléculaire d'Orsay, Orsay, 91405, France
| | - Hynd Remita
- Université Paris-Saclay, UMR 8000 CNRS, Institut de Chimie Physique, Orsay, 91405, France
| | - Mohamed Nawfal Ghazzal
- Université Paris-Saclay, UMR 8000 CNRS, Institut de Chimie Physique, Orsay, 91405, France
| |
Collapse
|
3
|
Su P, Yan X, Xiao FX. Customizing dumbbell-shaped heterostructured artificial photosystems steering versatile photoredox catalysis. Chem Sci 2024:d4sc04838e. [PMID: 39184290 PMCID: PMC11342132 DOI: 10.1039/d4sc04838e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Benefiting from their excellent light-capturing ability, suitable energy band structure and abundant active sites, transition metal chalcogenides (TMCs) have been attracting widespread attention in heterogeneous photocatalysis. Nonetheless, TMCs still suffer from sluggish charge transfer kinetics, a rapid charge recombination rate and poor stability, rendering the construction of high-performance artificial photosystems challenging. Here, a ternary dumbbell-shaped CdS/MoS2/CuS heterostructure with spatially separated catalytically active sites has been elaborately designed. In such a heterostructured nanoarchitecture, MoS2 clusters, selectively grown on both ends of the CdS nanowires (NWs), act as terminal electron collectors, while CuS nanolayers, coated on the sidewalls of CdS NWs through ion exchange, form a P-N heterojunction with the CdS NW framework, which accelerates the migration of holes from CdS to CuS, effectively suppressing the oxidation of sulfide ions and improving the stability of CdS NWs. The well-defined dumbbell-shaped CdS/MoS2/CuS ternary heterostructure provides a structural basis for spatially precise regulation of the charge migration pathway, where photogenerated electrons and holes directionally migrate to the MoS2 and CuS catalytic sites, respectively, ultimately achieving efficient carrier separation and significantly enhancing photoactivity for both photocatalytic hydrogen generation and selective organic transformation under visible light. Moreover, we have also ascertained that such ion exchange and interface configuration engineering strategies are universal. Our work features a simple yet efficient strategy for smartly designing multi-component heterostructures to precisely modulate spatially vectorial charge separation at the nanoscale for solar-to-hydrogen conversion.
Collapse
Affiliation(s)
- Peng Su
- College of Materials Science and Engineering, Fuzhou University, New Campus Minhou Fujian Province 350108 China
| | - Xian Yan
- College of Materials Science and Engineering, Fuzhou University, New Campus Minhou Fujian Province 350108 China
| | - Fang-Xing Xiao
- College of Materials Science and Engineering, Fuzhou University, New Campus Minhou Fujian Province 350108 China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences Fuzhou Fujian 350002 P. R. China
| |
Collapse
|
4
|
Yan X, Wang K, Xiao FX. Electron Tunneling Fosters Solar-to-Hydrogen Energy Conversion. Inorg Chem 2023; 62:17454-17463. [PMID: 37827854 DOI: 10.1021/acs.inorgchem.3c02857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
Transition-metal chalcogenide quantum dots (TMCs QDs) exhibit emerging potential in the field of solar energy conversion due to large absorption coefficients for light harvesting, quantum size effect, and abundant active sites. However, fine-tuning the photoinduced charge carrier over TMCs QDs to manipulate the directional charge-transfer pathway remains challenging, considering their ultrashort charge lifetime and slow charge-transfer kinetics. To this end, herein, MoSx/PDDA/TMCs QDs heterostructures were exquisitely designed by a simple and green electrostatic self-assembly strategy under ambient conditions, wherein tailor-made negatively charged TMCs QDs stabilized by mercaptoacetic acid (MAA) were precisely self-assembled on the positively charged polydiallyl dimethylammonium chloride (PDDA)-modified MoSx nanoflowers (NFs), forming a well-defined three-dimensional heterostructured nanoarchitecture. As an electron trapping agent, an MoSx NFs cocatalyst benefits the unidirectional electron transfer from TMCs QDs to the ideal active centers on the MoSx NFs surface by tunneling the ultrathin insulating polymer interim layer, thereby boosting the charge separation efficiency and endowing self-assembled MoSx/PDDA/TMCs QDs heterostructures with considerably increased photocatalytic hydrogen evolution activity (1.96 mmol·g-1·h-1) and admirable stability under visible light irradiation. Our work will provide new insights into smart regulation of directional charge transfer over TMCs QDs-based photosystems for solar energy conversion.
Collapse
Affiliation(s)
- Xian Yan
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou 350108, Fujian, China
| | - Kun Wang
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou 350108, Fujian, China
| | - Fang-Xing Xiao
- College of Materials Science and Engineering, Fuzhou University, New Campus, Minhou 350108, Fujian, China
| |
Collapse
|
5
|
Quilez-Molina AI, Barroso-Solares S, Hurtado-García V, Heredia-Guerrero JA, Rodriguez-Mendez ML, Rodríguez-Pérez MÁ, Pinto J. Encapsulation of Copper Nanoparticles in Electrospun Nanofibers for Sustainable Removal of Pesticides. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20385-20397. [PMID: 37061951 PMCID: PMC10141258 DOI: 10.1021/acsami.3c00849] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 04/10/2023] [Indexed: 06/19/2023]
Abstract
The excellent catalytic properties of copper nanoparticles (CuNPs) for the degradation of the highly toxic and recalcitrant chlorpyrifos pesticide are widely known. However, CuNPs generally present low stability caused by their high sensitivity to oxidation, which leads to a change of the catalytic response over time. In the current work, the immobilization of CuNPs into a polycaprolactone (PCL) matrix via electrospinning was demonstrated to be a very effective method to retard air and solvent oxidation and to ensure constant catalytic activity in the long term. CuNPs were successfully anchored into PCL electrospun fibers in the form of Cu2O at different concentrations (from 1.25 wt % to 5 wt % with respect to the PCL), with no signs of loss by leaching out. The PCL mats loaded with 2.5 wt % Cu (PCL-2.5Cu) almost halved the initial concentration of pesticide (40 mg/L) after 96 h. This process was performed in two unprompted and continuous steps that consisted of adsorption, followed by degradation. Interestingly, the degradation process was independent of the light conditions (i.e., not photocatalytic), expanding the application environments (e.g., groundwaters). Moreover, the PCL-2.5Cu composite presents high reusability, retaining the high elimination capability for at least five cycles and eliminating a total of 100 mg/L of chlorpyrifos, without exhibiting any sign of morphological damages.
Collapse
Affiliation(s)
- Ana Isabel Quilez-Molina
- Cellular
Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography,
and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
- BioEcoUVA
Research Institute on Bioeconomy, Calle Dr. Mergelina, Valladolid 47011, Spain
| | - Suset Barroso-Solares
- Cellular
Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography,
and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
- BioEcoUVA
Research Institute on Bioeconomy, Calle Dr. Mergelina, Valladolid 47011, Spain
- Archaeological
and Historical Materials (AHMAT) Research Group, Condensed Matter
Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
| | - Violeta Hurtado-García
- Cellular
Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography,
and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
- Archaeological
and Historical Materials (AHMAT) Research Group, Condensed Matter
Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
| | - José Alejandro Heredia-Guerrero
- Instituto
de Hortofruticultura Subtropical y Mediterránea “La
Mayora”, Universidad de Málaga-Consejo
Superior de Investigaciones Científicas (IHSM, UMA-CSIC), Bulevar Louis Pasteur 49, Málaga 29010, Spain
| | - María Luz Rodriguez-Mendez
- BioEcoUVA
Research Institute on Bioeconomy, Calle Dr. Mergelina, Valladolid 47011, Spain
- Group
UVaSens, Escuela de Ingenierías Industriales, Universidad de Valladolid, Paseo del Cauce, 59, Valladolid 47011, Spain
| | - Miguel Ángel Rodríguez-Pérez
- Cellular
Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography,
and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
- BioEcoUVA
Research Institute on Bioeconomy, Calle Dr. Mergelina, Valladolid 47011, Spain
| | - Javier Pinto
- Cellular
Materials Laboratory (CellMat), Condensed Matter Physics, Crystallography,
and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
- BioEcoUVA
Research Institute on Bioeconomy, Calle Dr. Mergelina, Valladolid 47011, Spain
- Archaeological
and Historical Materials (AHMAT) Research Group, Condensed Matter
Physics, Crystallography, and Mineralogy Department, Faculty of Science, University of Valladolid, Campus Miguel Delibes, Paseo de Belén n° 7, Valladolid 47011, Spain
| |
Collapse
|
6
|
Jakimińska A, Spilarewicz K, Macyk W. Phototransformations of TiO 2/Ag 2O composites and their influence on photocatalytic water splitting accompanied by methanol photoreforming. NANOSCALE ADVANCES 2023; 5:1926-1935. [PMID: 36998646 PMCID: PMC10044581 DOI: 10.1039/d2na00910b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/19/2023] [Indexed: 06/19/2023]
Abstract
This work aimed to revise the mechanism of photocatalytic activity of the TiO2/Ag2O system in photocatalytic water splitting accompanied by methanol photoreforming. The transformation of Ag2O into silver nanoparticles (AgNPs) during photocatalytic water splitting/methanol photoreforming was monitored using XRD, XPS, SEM, UV-vis, and DRS techniques. The impact of AgNPs, grown on TiO2, on its optoelectronic properties was analysed through inter alia spectroelectrochemical measurements. The photoreduced material exhibited a significantly shifted position of the TiO2 conduction band edge. Surface photovoltage measurements revealed the lack of photoinduced exchange of electrons between TiO2 and Ag2O, indicating the absence of an efficient p-n junction. Furthermore, the impact of chemical and structural changes in the photocatalytic system on the production of CO and CO2 from methanol photoreforming was analysed. It was found that fully formed AgNPs exhibit improved efficiency in the production of H2, whereas the Ag2O phototransformation, resulting in the growth of AgNPs, promotes simultaneously ongoing photoreforming of methanol.
Collapse
Affiliation(s)
- Anna Jakimińska
- Faculty of Chemistry, Jagiellonian University ul. Gronostajowa 2 Kraków 30-387 Poland
| | - Kaja Spilarewicz
- Faculty of Chemistry, Jagiellonian University ul. Gronostajowa 2 Kraków 30-387 Poland
| | - Wojciech Macyk
- Faculty of Chemistry, Jagiellonian University ul. Gronostajowa 2 Kraków 30-387 Poland
| |
Collapse
|
7
|
Wang F, Yang S, Lu Q, Liu W, Sun P, Wang Q, Cao W. Colloidal Cu-doped TiO2 nanocrystals containing oxygen vacancies for highly-efficient photocatalytic degradation of benzene and antibacterial. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
8
|
Chiarello GL, Bernareggi M, Selli E. Redox Dynamics of Pt and Cu Nanoparticles on TiO 2 during the Photocatalytic Oxidation of Methanol under Aerobic and Anaerobic Conditions Studied by In Situ Modulated Excitation X-ray Absorption Spectroscopy. ACS Catal 2022. [DOI: 10.1021/acscatal.2c03025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Gian Luca Chiarello
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133Milano, Italy
| | - Massimo Bernareggi
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133Milano, Italy
| | - Elena Selli
- Dipartimento di Chimica, Università degli Studi di Milano, via Golgi 19, I-20133Milano, Italy
| |
Collapse
|
9
|
Khavar AHC, Mahjoub AR, Khazaee Z. MoCu Bimetallic Nanoalloy-Modified Copper Molybdenum Oxide with Strong SPR Properties; a 2D-0D System for Enhanced Degradation of Antibiotics. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
10
|
Cerrato E, Calza P, Cristina Paganini M. Photocatalytic reductive and oxidative ability study of pristine ZnO and CeO2-ZnO heterojunction impregnated with Cu2O. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113775] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
11
|
Jiang X, Fuji M. In-Situ Preparation of Black TiO2/Cu2O/Cu Composites as an Efficient Photocatalyst for Degradation Pollutants and Hydrogen Production. Catal Letters 2022. [DOI: 10.1007/s10562-021-03894-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
12
|
Luo T, Wang Z, Wei X, Huang X, Bai S, Chen J. Surface Enriching Promotes Decomposition of Benzene from Air. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02296b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The low generation rate and short lifetime of reactive oxidation radicals typical like ·OH strictly limit the photocatalytic degradation of benzene in the air. Here, we adopt copper dopant to...
Collapse
|
13
|
Synthesis and Characterization of Manganese-Modified Black TiO 2 Nanoparticles and Their Performance Evaluation for the Photodegradation of Phenolic Compounds from Wastewater. MATERIALS 2021; 14:ma14237422. [PMID: 34885576 PMCID: PMC8658776 DOI: 10.3390/ma14237422] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/25/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022]
Abstract
The release of phenolic-contaminated treated palm oil mill effluent (TPOME) poses a severe threat to human and environmental health. In this work, manganese-modified black TiO2 (Mn-B-TiO2) was produced for the photodegradation of high concentrations of total phenolic compounds from TPOME. A modified glycerol-assisted technique was used to synthesize visible-light-sensitive black TiO2 nanoparticles (NPs), which were then calcined at 300 °C for 60 min for conversion to anatase crystalline phase. The black TiO2 was further modified with manganese by utilizing a wet impregnation technique. Visible light absorption, charge carrier separation, and electron–hole pair recombination suppression were all improved when the band structure of TiO2 was tuned by producing Ti3+ defect states. As a result of the enhanced optical and electrical characteristics of black TiO2 NPs, phenolic compounds were removed from TPOME at a rate of 48.17%, which is 2.6 times higher than P25 (18%). When Mn was added to black TiO2 NPs, the Ti ion in the TiO2 lattice was replaced by Mn, causing a large redshift of the optical absorption edges and enhanced photodegradation of phenolic compounds from TPOME. The photodegradation efficiency of phenolic compounds by Mn-B-TiO2 improved to 60.12% from 48.17% at 0.3 wt% Mn doping concentration. The removal efficiency of phenolic compounds from TPOME diminished when Mn doping exceeded the optimum threshold (0.3 wt%). According to the findings, Mn-modified black TiO2 NPs are the most effective, as they combine the advantages of both black TiO2 and Mn doping.
Collapse
|
14
|
Montini T, Gombac V, Delgado JJ, Venezia AM, Adami G, Fornasiero P. Sustainable photocatalytic synthesis of benzimidazoles. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120289] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
15
|
Liu B, Wang J, Parkin IP, Zhao X. The effect of Cu dopants on electron transfer to O 2 and the connection with acetone photocatalytic oxidations over nano-TiO 2. Phys Chem Chem Phys 2021; 23:8300-8308. [PMID: 33875994 DOI: 10.1039/d1cp00118c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Modifying TiO2 with the Cu element has been shown to be useful for photocatalysis. Although it had been known that Cu species could trap electrons from TiO2, whether they can affect the kinetics of electron transfer and how this can contribute to photocatalysis still remain unknown. In the current research, Cu-TiO2 samples were firstly prepared with a hydrothermal reaction and characterized in detail. It was shown that Cu elements were doped in the TiO2 lattice in +1/0 valence states and have a minor effect on the TiO2 structure. By means of photoconductances, it is shown that the Cu dopants could catalyze the electron transfer from TiO2 to O2 by reducing the apparent activation energy (Eapp) by about 2 times. The photocatalytic experiments conducted at different temperatures showed that the Eapp of the acetone photocatalytic oxidations could be decreased by ∼2 times; this implies that the Cu dopants change the photocatalytic pathway. First-principles computation showed that the surface Cu dopants, along with the compensated oxygen vacancies, can mediate both of the electron and hole transfer. By combining other studies, we proposed that the Cu sites could act as Lewis acid and base pairs that could combine with acetone and O2 molecules under UV light illumination; this allows electron transfer to O2via the Cu sites that then react with acetone. As compared to pure TiO2 surfaces, the different chemical environment of the Cu sites leads to the decrease in the Eapp of photocatalysis.
Collapse
Affiliation(s)
- Baoshun Liu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan City, Hubei province 430070, P. R. China.
| | | | | | | |
Collapse
|
16
|
Puga AV, Barka N, Imizcoz M. Simultaneous H
2
Production and Bleaching via Solar Photoreforming of Model Dye‐polluted Wastewaters on Metal/Titania. ChemCatChem 2020. [DOI: 10.1002/cctc.202001048] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Alberto V. Puga
- Instituto de Tecnología Química Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Avenida de los Naranjos, s/n 46022 Valencia Spain
- Departament d'Enginyeria Química Universitat Rovira i Virgili Avinguda dels Països Catalans, 26 43007 Tarragona Spain
| | - Noureddine Barka
- Research Group in Environmental Sciences and Applied Materials (SEMA) Sultan Moulay Slimane University FP B.P. 145 25000 Khouribga Morocco
| | - Mikel Imizcoz
- Instituto de Tecnología Química Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas Avenida de los Naranjos, s/n 46022 Valencia Spain
- Institute for Advanced Materials and Mathematics (INAMAT2) Universidad Pública de Navarra Edificio Jerónimo de Ayanz Campus de Arrosadia 31006 Pamplona-Iruña Spain
| |
Collapse
|
17
|
Méndez-Medrano MG, Kowalska E, Ohtani B, Bahena Uribe D, Colbeau-Justin C, Rau S, Rodríguez-López JL, Remita H. Heterojunction of CuO nanoclusters with TiO2 for photo-oxidation of organic compounds and for hydrogen production. J Chem Phys 2020; 153:034705. [DOI: 10.1063/5.0015277] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Maria Guadalupe Méndez-Medrano
- Institut de Chimie Physique, UMR 8000 CNRS, Université Paris-Saclay, 91405 Orsay, France
- Advanced Materials Department, IPICYT, 78216 San Luis Potosi, SLP, Mexico
| | - Ewa Kowalska
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Bunsho Ohtani
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Daniel Bahena Uribe
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, l07360 Mexico City, D.F., Mexico
| | | | - Sven Rau
- Institute for Inorganic Chemistry 1, Ulm University, Albert-Einstein-Allee 11, 89081 Ulm, Germany
| | | | - Hynd Remita
- Institut de Chimie Physique, UMR 8000 CNRS, Université Paris-Saclay, 91405 Orsay, France
- CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| |
Collapse
|
18
|
Spanu D, Minguzzi A, Recchia S, Shahvardanfard F, Tomanec O, Zboril R, Schmuki P, Ghigna P, Altomare M. An Operando X-ray Absorption Spectroscopy Study of a NiCu−TiO2 Photocatalyst for H2 Evolution. ACS Catal 2020. [DOI: 10.1021/acscatal.0c01373] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Davide Spanu
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Alessandro Minguzzi
- Dipartimento di Chimica, Università degli Studi di Milano, Via Golgi 19, 20133 Milan, Italy
| | - Sandro Recchia
- Department of Science and High Technology, University of Insubria, Via Valleggio 11, 22100 Como, Italy
| | - Fahimeh Shahvardanfard
- Department of Materials Science and Engineering WW4-LKO, University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany
| | - Ondřej Tomanec
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
| | - Patrik Schmuki
- Department of Materials Science and Engineering WW4-LKO, University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Olomouc, Šlechtitelů 27, 783 71 Olomouc, Czech Republic
- Chemistry Department, Faculty of Science, King Abdulaziz University, 80203 Jeddah, Saudi Arabia Kingdom
| | - Paolo Ghigna
- Dipartimento di Chimica, Università degli Studi di Pavia, Viale Taramelli 13, 27100 Pavia, Italy
| | - Marco Altomare
- Department of Materials Science and Engineering WW4-LKO, University of Erlangen-Nuremberg, Martensstrasse 7, D-91058 Erlangen, Germany
| |
Collapse
|
19
|
Yuan Y, Sheng K, Zeng S, Han X, Sun L, Lončarić I, Zhan W, Sun D. Engineering Cu/TiO2@N-Doped C Interfaces Derived from an Atom-Precise Heterometallic CuII4TiIV5 Cluster for Efficient Photocatalytic Hydrogen Evolution. Inorg Chem 2020; 59:5456-5462. [DOI: 10.1021/acs.inorgchem.0c00084] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Yusheng Yuan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, People’s Republic of China
| | - Kai Sheng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
- School of Aeronautics, Shandong Jiaotong University, Jinan 250037, People’s Republic of China
| | - Suyuan Zeng
- Department of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252059, People’s Republic of China
| | - Xiguang Han
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, People’s Republic of China
| | - Liming Sun
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, People’s Republic of China
| | - Ivor Lončarić
- Division of Theoretical Physics, Ruđer Bošković Institute, Bijenička 54, 10000 Zagreb, Croatia
| | - Wenwen Zhan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, Department of Chemistry, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou 221116, People’s Republic of China
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, People’s Republic of China
| |
Collapse
|
20
|
Solar light driven photocatalytic oxidative degradation of methyl viologen using Mn2+/Mn7+-TiO2 nanocomposites. J Photochem Photobiol A Chem 2020. [DOI: 10.1016/j.jphotochem.2020.112430] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
21
|
Fang Y, Chi X, Li L, Yang J, Liu S, Lu X, Xiao W, Wang L, Luo Z, Yang W, Hu S, Xiong J, Hoang S, Deng H, Liu F, Zhang L, Gao P, Ding J, Guo Y. Elucidating the Nature of the Cu(I) Active Site in CuO/TiO 2 for Excellent Low-Temperature CO Oxidation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:7091-7101. [PMID: 31931575 DOI: 10.1021/acsami.9b18264] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Stabilized Cu+ species have been widely considered as catalytic active sites in composite copper catalysts for catalytic reactions with industrial importance. However, few examples comprehensively explicated the origin of stabilized Cu+ in a low-cost and widely investigated CuO/TiO2 system. In this study, mass producible CuO/TiO2 catalysts with interface-stabilized Cu+ were prepared, which showed excellent low-temperature CO oxidation activity. A thorough characterization and theoretical calculations proved that the strong charge-transfer effect and Ti-O-Cu hybridization in Ti-doped CuO(111) at the CuO/TiO2 interface contributed to the formation and stabilization of Cu+ species. The CO molecule adsorbed on Cu+ and reacted directly with Ti doping-promoted active lattice oxygen via a Mars-van Krevelen mechanism, leading to the enhanced low-temperature activity.
Collapse
Affiliation(s)
- Yarong Fang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Xiao Chi
- Singapore Synchrotron Light Source National University of Singapore , 5 Research Link , 117603 , Singapore
| | - Li Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Ji Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Shoujie Liu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Xingxu Lu
- Department of Chemical, Materials and Biomolecular Engineering, Institute of Materials Science , University of Connecticut , Storrs , Connecticut 06269-3136 , United States
| | - Wen Xiao
- Department of Materials Science and Engineering , National University of Singapore , 117575 , Singapore
| | - Liming Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials & Nanosafety, Institute of High Energy Physics Department of Materials Science and Engineering , Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhu Luo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Weiwei Yang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Siyu Hu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Juxia Xiong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Son Hoang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Hongtao Deng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Fudong Liu
- Department of Civil, Environmental, and Construction Engineering, Catalysis Cluster for Renewable Energy and Chemical Transformations (REACT), NanoScience Technology Center , University of Central Florida , Orlando , Florida 32816 , United States
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| | - Puxian Gao
- Department of Chemical, Materials and Biomolecular Engineering, Institute of Materials Science , University of Connecticut , Storrs , Connecticut 06269-3136 , United States
| | - Jun Ding
- Department of Materials Science and Engineering , National University of Singapore , 117575 , Singapore
| | - Yanbing Guo
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental and Applied Chemistry, College of Chemistry , Central China Normal University , Wuhan 430079 , P. R. China
| |
Collapse
|
22
|
Turkten N, Cinar Z, Tomruk A, Bekbolet M. Copper-doped TiO 2 photocatalysts: application to drinking water by humic matter degradation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:36096-36106. [PMID: 30811021 DOI: 10.1007/s11356-019-04474-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
The aim of this study was to determine the photocatalytic performance of copper-doped TiO2 (Cu-TiO2) specimens on the degradation of dissolved organic matter (DOM) represented by a model humic acid (HA). TiO2 was synthesized by sol-gel method from an alkoxide precursor. Cu-doped TiO2 specimens containing 0.25 wt% and 0.50 wt% Cu were prepared by wet impregnation method using sol-gel synthesized as well as bare TiO2 P-25 and characterized by XRD, SEM, XPS, Raman spectroscopy, UV-DRS, and BET measurements. Their photocatalytic activities were evaluated with regard to degradation kinetics of HA in terms of UV-vis and fluorescence spectroscopic parameters and organic contents. HA fluorescence excitation emission matrix (EEM) contour plots indicated that the solar photocatalytic degradation pathway was TiO2-type specific and Cu dopant content.
Collapse
Affiliation(s)
- Nazli Turkten
- Institute of Environmental Sciences, Bogazici University, Bebek, 34342, Istanbul, Turkey
- Department of Chemistry, Faculty of Science and Arts, Kirsehir Ahi Evran University, 40100, Kirsehir, Turkey
| | - Zekiye Cinar
- Department of Chemistry, Yildiz Technical University, 34220, Istanbul, Turkey
| | - Ayse Tomruk
- Institute of Environmental Sciences, Bogazici University, Bebek, 34342, Istanbul, Turkey
| | - Miray Bekbolet
- Institute of Environmental Sciences, Bogazici University, Bebek, 34342, Istanbul, Turkey.
| |
Collapse
|
23
|
Dramatically Enhanced Photocatalytic Activity of TiO2 Composite Microspheres by Loading Special Copper Nanocrystalline. Catal Letters 2019. [DOI: 10.1007/s10562-019-03046-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
24
|
Assessment of Photocatalytic Hydrogen Production from Biomass or Wastewaters Depending on the Metal Co-Catalyst and Its Deposition Method on TiO2. Catalysts 2019. [DOI: 10.3390/catal9070584] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
A systematic study on the solar photocatalytic hydrogen production (photoreforming) performance of M/TiO2 (M = Au, Ag, Cu or Pt) using glucose as a model substrate, and further extended to lignocellulose hydrolysates and wastewaters, is herein presented. Three metal (M) co-catalyst loading methods were tested. Variation of the type of metal results in significantly dissimilar H2 production rates, albeit the loading method exerts an even greater effect in most cases. Deposition-precipitation (followed by hydrogenation) or photodeposition provided better results than classical impregnation (followed by calcination). Interestingly, copper as a co-catalyst performed satisfactorily as compared to Au, and slightly below Pt, thus representing a realistic inexpensive alternative to noble metals. Hydrolysates of either α-cellulose or rice husks, obtained under mild conditions (short thermal cycles at 160 °C), were rich in saccharides and thus suitable as feedstocks. Nonetheless, the presence of inhibiting byproducts hindered H2 production. A novel photocatalytic UV pre-treatment method was successful to initially remove the most recalcitrant portion of these minor products along with H2 production (17 µmol gcat−1 h−1 on Cu/TiO2). After a short UV step, simulated sunlight photoreforming was orders of magnitude more efficient than without the pre-treatment. Hydrogen production was also directly tested on two different wastewater streams, that is, a municipal influent and samples from operations in a fruit juice producing plant, with remarkable results obtained for the latter (up to 115 µmol gcat−1 h−1 using Au/TiO2).
Collapse
|
25
|
Shwetharani R, Sakar M, Fernando CAN, Binas V, Balakrishna RG. Recent advances and strategies to tailor the energy levels, active sites and electron mobility in titania and its doped/composite analogues for hydrogen evolution in sunlight. Catal Sci Technol 2019. [DOI: 10.1039/c8cy01395k] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogen production through photocatalytic water reduction, a potential path for future renewable and sustainable energy generation.
Collapse
Affiliation(s)
- R. Shwetharani
- Centre for Nano and Material Sciences
- Jain University
- Bangalore-562112
- India
| | - M. Sakar
- Centre for Nano and Material Sciences
- Jain University
- Bangalore-562112
- India
| | - C. A. N. Fernando
- Nano-Technology Research Lab
- Department of Electronics
- Wayamba University of Sri Lanka
- Kuliyapitiya
- Sri Lanka
| | | | | |
Collapse
|
26
|
Imizcoz M, Puga AV. Optimising hydrogen production via solar acetic acid photoreforming on Cu/TiO2. Catal Sci Technol 2019. [DOI: 10.1039/c8cy02349b] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu/TiO2 photocatalysts promoting H2 evolution from acetic acid require exposed Cu(0) surfaces which are reversibly formed by photoreduction.
Collapse
Affiliation(s)
- Mikel Imizcoz
- Instituto de Tecnología Química
- Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas
- 46022 Valencia
- Spain
| | - Alberto V. Puga
- Instituto de Tecnología Química
- Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas
- 46022 Valencia
- Spain
| |
Collapse
|
27
|
Hejazi S, Mohajernia S, Wu Y, Andryskova P, Zoppellaro G, Hwang I, Tomanec O, Zboril R, Schmuki P. Intrinsic Cu nanoparticle decoration of TiO2 nanotubes: A platform for efficient noble metal free photocatalytic H2 production. Electrochem commun 2019. [DOI: 10.1016/j.elecom.2018.11.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|