1
|
Huang H, Zhang Q, Meng W, Yang C, Jiang Q, Zhang C, He H, Ying G. Grain Boundary-Enriched Wavy Pd Nanowires Intertwined with MXene Nanosheets toward Formic Acid and Methanol Electrooxidation. Inorg Chem 2025; 64:7690-7697. [PMID: 40197043 DOI: 10.1021/acs.inorgchem.5c00707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
The rational design and precise fabrication of nanostructured noble metals with sophisticated morphology and meliorative electronic structures are the key in the development of advanced electrode materials for fuel cell technology. Herein, we present a robust and controllable stereoassembly method to the construction of 1D grain boundary-enriched wavy Pd nanowires intertwined with 2D ultrathin Ti3C2Tx MXene nanosheets (Pd NWs/MX). By taking a series of unique architectural merits including interconnected wavy Pd nanowires, rich grain boundaries, stable 1D/2D heterointerface, direct electronic interaction as well as high electrical conductivity, the resultant Pd NWs/MX heterojunction expresses excellent electrocatalytic activities, strong antitoxic ability, and long lifespan toward both formic acid and methanol oxidation reactions, all of which are significantly superior to those of widely used Pd particle catalysts supported by conventional carbon matrixes.
Collapse
Affiliation(s)
- Huajie Huang
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, China
| | - Qi Zhang
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, China
| | - Wei Meng
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, China
| | - Cuizhen Yang
- Anhui Province Key Laboratory of Efficient Conversion and Solid-State Storage of Hydrogen & Electricity, Anhui University of Technology, Maanshan 243002, China
| | - Quanguo Jiang
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, China
| | - Chi Zhang
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, China
| | - Haiyan He
- College of Materials Science and Engineering, Hohai University, Nanjing 210098, China
| | - Guobing Ying
- School of Materials Science and Engineering, Southeast University, Nanjing 211100, China
| |
Collapse
|
2
|
Zhang Y, Li Z, Jang H, Kim MG, Cho J, Liu S, Liu X, Qin Q. In Situ Grown RuNi Alloy on ZrNiN x as a Bifunctional Electrocatalyst Boosts Industrial Water Splitting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2501586. [PMID: 40052632 DOI: 10.1002/adma.202501586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/15/2025] [Indexed: 04/24/2025]
Abstract
Alkaline water electrolysis represents a pivotal technology for green hydrogen production yet faces critical challenges including limited current density and high energy input. Herein, a heterostructured bimetallic nitrides supported RuNi alloy (RuNi/ZrNiNx) is developed through in situ epitaxial growth under ammonolysis, achieving exceptional bifunctional activity and durability for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER) in 1 m KOH electrolyte. The RuNi/ZrNiNx exhibits a HER current density of -2 A cm-2 at an overpotential of 392.8 mV, maintaining initial overpotential after 1000 h continuous electrolysis at -500 mA cm-2. For OER, it delivers a current density of 2 A cm-2 at 1.822 V versus RHE, and sustains stable operation for 705 h at 500 mA cm-2. Experimental and theoretical studies unveil that the charge redistribution-induced high-valence Zr centers effectively polarize H─O bonds and promote water dissociation, and the electron-deficient interface Ru sites optimize hydrogen desorption kinetics. Dynamic OH spillovers from Zr sites to the adjacent tri-coordinated Ni hollow sites in NiNx promote rapid *OH intermediate desorption and active site regeneration. Notably, the tri-coordinated Ni hollow sites in NiNx proximal to Zr atoms exhibit tailored adsorption strength for oxo-intermediates, enabling a more energetically favorable pathway for O2 production.
Collapse
Affiliation(s)
- Yaojin Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Haeseong Jang
- Department of Advanced Materials Engineering, Chung-Ang University, Anseong-si, Gyeonggi-do, 17546, South Korea
| | - Min Gyu Kim
- Beamline Research Division, Pohang Accelerator Laboratory (PAL), Pohang, 37673, South Korea
| | - Jaephil Cho
- Department of Energy Engineering, School of Energy and Chemical Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 689-798, South Korea
| | - Shangguo Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Xien Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Qing Qin
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
3
|
Borah A, Sumit, Kumari A, Markad VS, Ravindra AV, Rajeshkhanna G. Ni- and Co-Based MOF-Derived Ni xCo 3-xO 4 Materials: As an Efficient Anode for Direct Methanol Fuel Cell Application. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22705-22716. [PMID: 39418500 DOI: 10.1021/acs.langmuir.4c02585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Finding inexpensive and efficient anode materials is crucial for the oxidation of methanol in the direct methanol fuel cell (DMFC), which is the key electrode reaction. Herein, we report metal-organic framework (MOF)-derived Co3O4, NiO, and NixCo3-xO4 (where x = 1.5, 1, and 0.6) materials deposited on nickel foam as efficient anode material for methanol oxidation. Among them, NiCo2O4 exhibited the highest methanol oxidation activity, owing to its lowest charge-transfer resistance (0.097 Ω) and high electrochemically active surface area (1950 cm2), resulting in the lowest onset potential of 0.35 V vs Hg/HgO. The optimized Ni-to-Co ratio and synergistic effect between Ni and Co metals enable NiCo2O4 to achieve the highest mass activity of 151 mA mg-1 and geometric current density of 288 mA cm-2, demonstrating excellent durability over 14 h at 0.6 V. In addition, to optimize methanol concentration, all the electrocatalysts were tested in a range of methanol concentrations, showing 0.5 M methanol as the optimal concentration. This study focuses on optimizing the metal ratio and methanol concentration to achieve the highest catalytic activity. Additionally, this lays the foundation for developing diverse MOF-derived electrocatalysts and advancing DMFCs.
Collapse
Affiliation(s)
- Apurba Borah
- Department of Chemistry, National Institute of Technology Warangal, Hanumakonda 506004, Telangana State, India
| | - Sumit
- Department of Chemistry, National Institute of Technology Warangal, Hanumakonda 506004, Telangana State, India
| | - Anshu Kumari
- Department of Chemistry, National Institute of Technology Warangal, Hanumakonda 506004, Telangana State, India
| | - Vishal Sanjay Markad
- Department of Chemistry, National Institute of Technology Warangal, Hanumakonda 506004, Telangana State, India
| | - A V Ravindra
- Department of Physics and Nanotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu 603203, Tamilnadu, India
| | - Gaddam Rajeshkhanna
- Department of Chemistry, National Institute of Technology Warangal, Hanumakonda 506004, Telangana State, India
| |
Collapse
|
4
|
Huang H, Xiao D, Zhu Z, Zhang C, Yang L, He H, You J, Jiang Q, Xu X, Yamauchi Y. A 2D/2D heterojunction of ultrathin Pd nanosheet/MXene towards highly efficient methanol oxidation reaction: the significance of 2D material nanoarchitectonics. Chem Sci 2023; 14:9854-9862. [PMID: 37736638 PMCID: PMC10510762 DOI: 10.1039/d3sc03735e] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 07/29/2023] [Indexed: 09/23/2023] Open
Abstract
Two-dimensional (2D) Pd nanosheet-based catalysts have recently garnered widespread attention due to their high atom utilization efficiency. However, their catalytic ability and structural stability still require significant enhancement before they can be widely applied. In this study, we presented the rational design and controllable fabrication of a novel 2D/2D heterojunction, which consists of ultrathin Pd nanosheets (NSs) grown on the Ti3C2Tx MXene surface (Pd NSs/MXene). This heterostructure was achieved through a robust and convenient stereo-assembly strategy. The newly developed Pd NSs/MXene heterojunction not only provides numerous exposed active Pd atoms with an optimized electronic structure but also enables an intimate Pd/MXene interfacial interaction, ensuring a stable hybrid configuration. Consequently, the resulting Pd NSs/MXene heterojunction exhibits exceptional methanol oxidation properties. It possesses a large electrochemically active surface area, high mass and specific activities, and a long operating life, which are significantly superior to those of traditional Pd nanoparticle/carbon and Pd nanosheet/carbon catalysts. Theoretical simulations further reveal strong electronic interactions between the Pd nanosheet and MXene, which dramatically enhance the adsorption energy of the Pd component and simultaneously lower its d-band center. As a result, the Pd NSs/MXene heterojunction is less susceptible to CO poisoning. This work introduces a new 2D/2D heterojunction based on MXene and noble metallic materials and holds significance for the development of other novel heterojunctions, particularly within the realm of 2D material nanoarchitectonics.
Collapse
Affiliation(s)
- Huajie Huang
- College of Mechanics and Materials, Hohai University Nanjing 210098 China
| | - Di Xiao
- College of Mechanics and Materials, Hohai University Nanjing 210098 China
| | - Zihan Zhu
- College of Mechanics and Materials, Hohai University Nanjing 210098 China
| | - Chi Zhang
- College of Mechanics and Materials, Hohai University Nanjing 210098 China
| | - Lu Yang
- College of Mechanics and Materials, Hohai University Nanjing 210098 China
| | - Haiyan He
- College of Mechanics and Materials, Hohai University Nanjing 210098 China
| | - Jungmok You
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University 1732 Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 17104 South Korea
| | - Quanguo Jiang
- College of Mechanics and Materials, Hohai University Nanjing 210098 China
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University Zhoushan 316022 China
| | - Yusuke Yamauchi
- Department of Plant & Environmental New Resources, College of Life Sciences, Kyung Hee University 1732 Deogyeong-daero, Giheung-gu Yongin-si Gyeonggi-do 17104 South Korea
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland Brisbane QLD 4072 Australia
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya University Nagoya 464-8601 Japan
| |
Collapse
|
5
|
Li S, Jin H, Wang Y. Recent progress on the synthesis of metal alloy nanowires as electrocatalysts. NANOSCALE 2023; 15:2488-2515. [PMID: 36722933 DOI: 10.1039/d2nr06090f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Benefiting from both one-dimensional (1D) morphology and alloy composition, metal alloy nanowires have been exploited as advanced electrocatalysts in various electrochemical processes. In this review, the synthesis approaches for metal alloy nanowires are classified into two categories: direct syntheses and syntheses based on preformed 1D nanostructures. Ligand systems that are of critical importance to the formation of alloy nanowires are summarized and reviewed, together with the strategies imposed to achieve the co-reduction of different metals. Meanwhile, different scenarios that form alloy nanowires from pre-synthesized 1D nanostructures are compared and contrasted. In addition, the characterization and electrocatalytic applications of metal alloy nanowires are briefly discussed.
Collapse
Affiliation(s)
- Shumin Li
- Institute of Advanced Synthesis (IAS), Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.
| | - Hui Jin
- Institute of Advanced Synthesis (IAS), Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.
| | - Yawen Wang
- Institute of Advanced Synthesis (IAS), Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.
| |
Collapse
|
6
|
Xu B, Zhang Y, Li L, Shao Q, Huang X. Recent progress in low-dimensional palladium-based nanostructures for electrocatalysis and beyond. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214388] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
7
|
Wang H, Li GM, Li B, You JL. An Effective Strategy for Template-Free Electrodeposition of Aluminum Nanowires with Highly Controllable Irregular Morphologies. NANOMATERIALS 2022; 12:nano12091390. [PMID: 35564099 PMCID: PMC9105039 DOI: 10.3390/nano12091390] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/07/2022] [Accepted: 04/09/2022] [Indexed: 02/01/2023]
Abstract
Aluminum nanowires with irregular morphologies were prepared by template-free electrodeposition from a room-temperature chloroaluminate ionic liquid. The effects of the diffusion condition and deposition potential on the morphologies of Al nanowires were investigated. The decrease of diffusion flux leads to the formation of particular segmented morphologies of Al nanowires. A dynamic equilibrium between the electrochemical reaction and the diffusion of Al2Cl7− results in the current fluctuation and the periodical variation of diameters in the Al nanowires growth period. Al nanowires with several kinds of morphologies can be controllably electrodeposited under a restricted diffusion condition, without using a template. Increasing the overpotential shows the similar influence on the morphology of Al nanowires as the decrease in diffusion flux under the restricted diffusion condition. Most of the segmented Al nanowires have a single crystalline structure and grow in the [100] orientation. This work also provides a new strategy for the fabrication of nanowires with highly controllable irregular morphologies.
Collapse
Affiliation(s)
- Heng Wang
- School of Mechanical and Power Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China; (H.W.); (G.-M.L.)
| | - Guo-Min Li
- School of Mechanical and Power Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China; (H.W.); (G.-M.L.)
| | - Bing Li
- School of Mechanical and Power Engineering, East China University of Science and Technology, No.130 Mei Long Road, Shanghai 200237, China; (H.W.); (G.-M.L.)
- Correspondence: (B.L.); (J.-L.Y.)
| | - Jing-Lin You
- State Key Laboratory of Advanced Special Steel, School of Materials Science and Engineering, Shanghai University, Shanghai 200444, China
- Correspondence: (B.L.); (J.-L.Y.)
| |
Collapse
|
8
|
Qiao W, Zha M, Yang Y, Hu G, Feng L. Pd17Se15 alloy on Se sphere with high anti-poisoning ability for alcohol fuel electrooxidation. Chem Commun (Camb) 2022; 58:10651-10654. [DOI: 10.1039/d2cc04200b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Electron-deficient effect of Pd in the Pd17Se15 catalyst effectively weakens the adsorption of CO poisoning species and enhances the electrocatalytic performance of alcohol electrooxidation in an alkaline medium.
Collapse
|
9
|
Recent advances in one-dimensional noble-metal-based catalysts with multiple structures for efficient fuel-cell electrocatalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2021.214244] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
10
|
Shih KY, Wei JJ, Tsai MC. One-Step Microwave-Assisted Synthesis of PtNiCo/rGO Electrocatalysts with High Electrochemical Performance for Direct Methanol Fuel Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2206. [PMID: 34578522 PMCID: PMC8467967 DOI: 10.3390/nano11092206] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 08/19/2021] [Accepted: 08/25/2021] [Indexed: 11/22/2022]
Abstract
Platinum (Pt) is widely used as an activator in direct methanol fuel cells (DMFCs). However, the development of Pt catalyst is hindered due to its high cost and CO poisoning. A multi-metallic catalyst is a promising catalyst for fuel cells. We develop a simple and rapid method to synthesize PtNiCo/rGO nanocomposites (NCs). The PtNiCo/rGO NCs catalyst was obtained by microwave-assisted synthesis of graphene oxide (GO) with Pt, Ni, and Co precursors in ethylene glycol (EG) solution after heating for 20 min. The Pt-Ni-Co nanoparticles showed a narrow particle size distribution and were uniformly dispersed on the reduced graphene oxide without agglomeration. Compared with PtNiCo catalyst, PtNiCo/rGO NCs have superior electrocatalytic properties, including a large electrochemical active surface area (ECSA), the high catalytic activity of methanol, excellent anti-toxic properties, and high electrochemical stability. The ECSA can be up to 87.41 m2/g at a scan rate of 50 mV/s. They also have the lowest oxidation potential of CO. These excellent electrochemical performances are attributed to the uniform dispersion of PtNiCo nanoparticles, good conductivity, stability, and large specific surface area of the rGO carrier. The synthesized PtNiCo/rGO nanoparticles have an average size of 17.03 ± 1.93 nm. We also investigated the effect of catalyst material size on electrocatalytic performance, and the results indicate that PtNiCo/rGO NC catalysts can replace anode catalyst materials in fuel cell applications in the future.
Collapse
Affiliation(s)
- Kun-Yauh Shih
- Department of Applied Chemistry, National Pingtung University, Pingtung County 90003, Taiwan; (J.-J.W.); (M.-C.T.)
| | | | | |
Collapse
|
11
|
Yuan Q, Du Y, Chao L, Xie Q. Preparation of a uniform thin-film Pd-Au electrocatalyst via electroreduction of a palladium hexacyanoferrate(II)-Au electrodeposit for alkaline oxidation of methanol. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
12
|
Xu M, Wang F, Liang X, Shehzad MA, Wu L, Xu T. Poly (5-aminoindole)–modified TiO2NTs nanocomposites supported palladium as an anode catalyst for enhanced electrocatalytic oxidation of methanol. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138562] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
13
|
Kumaravel S, Subramanian M, Karthick K, Sakthivel A, Kundu S, Alwarappan S. DNA-Modified Cobalt Tungsten Oxide Hydroxide Hydrate Nanochains as an Effective Electrocatalyst with Amplified CO Tolerance during Methanol Oxidation. ACS OMEGA 2021; 6:19162-19169. [PMID: 34337254 PMCID: PMC8320070 DOI: 10.1021/acsomega.1c02515] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 06/24/2021] [Indexed: 05/05/2023]
Abstract
Direct methanol fuel cell technology implementation mainly depends on the development of non-platinum catalysts with good CO tolerance. Among the widely studied transition-metal catalysts, cobalt oxide with distinctively higher catalytic efficiency is highly desirable. Here, we have evolved a simple method of synthesizing cobalt tungsten oxide hydroxide hydrate nanowires with DNA (CTOOH/DNA) and without incorporating DNA (CTOOH) by microwave irradiation and subsequently employed them as electrocatalysts for methanol oxidation. Following this, we examined the influence of incorporating DNA into CTOOH by cyclic voltammetry, chronoamperometry, and electrochemical impedance spectroscopy. The enhanced electrochemical surface area of CTOOH offered readily available electroactive sites and resulted in a higher oxidation current at a lower onset potential for methanol oxidation. On the other hand, CTOOH/DNA exhibited improved CO tolerance and it was evident from the chronoamperometric studies. Herein, we noticed only a 2.5 and 1.8% drop at CTOOH- and CTOOH/DNA-modified electrodes, respectively, after 30 min. Overall, from the results, it was evident that the presence of DNA in CTOOH played an important role in the rapid removal of adsorbed intermediates and regenerated active catalyst centers possibly by creating high density surface defects around the nanochains than bare CTOOH.
Collapse
Affiliation(s)
- Sangeetha Kumaravel
- CSIR-Central
Electrochemical Research Institute, Karaikudi, Tamilnadu 630003, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector
19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | | | - Kannimuthu Karthick
- CSIR-Central
Electrochemical Research Institute, Karaikudi, Tamilnadu 630003, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector
19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Arunkumar Sakthivel
- CSIR-Central
Electrochemical Research Institute, Karaikudi, Tamilnadu 630003, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector
19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Subrata Kundu
- CSIR-Central
Electrochemical Research Institute, Karaikudi, Tamilnadu 630003, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector
19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| | - Subbiah Alwarappan
- CSIR-Central
Electrochemical Research Institute, Karaikudi, Tamilnadu 630003, India
- Academy
of Scientific and Innovative Research (AcSIR), CSIR- Human Resource Development Centre, (CSIR-HRDC) Campus, Postal Staff College Area, Sector
19, Kamla Nehru Nagar, Ghaziabad, Uttar Pradesh 201002, India
| |
Collapse
|
14
|
Cao Y, Ge J, Jiang M, Zhang F, Lei X. Acid-Etched Co 3O 4 Nanoparticles on Nickel Foam: The Highly Reactive (311) Facet and Enriched Defects for Boosting Methanol Oxidation Electrocatalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:29491-29499. [PMID: 34152717 DOI: 10.1021/acsami.1c04045] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The confirmation and regulation of active sites are particularly critical for the design of methanol oxidation reaction (MOR) catalysts. Here, an acid etching method for facet control combined with defect construction was utilized to synthesize Co3O4 nanoparticles on nickel foam for preferentially exposing the (311) facet with enriched oxygen vacancies (VO). The acid-leached oxides exhibited superior MOR activity with a mass activity of 710.94 mA mg-1 and an area-specific activity of 3.390 mA cm-2 as a result of (i) abundant active sites for MOR promoted by VO along with the highly active (311) facet being exposed and (ii) phase purification-reduced adsorption energy (Eads) of methanol molecules. Ex situ X-ray photoelectron spectroscopy proved that highly active CoOOH obtained via the activation of plentiful Co2+ effectively improved the MOR. Density functional theory calculations confirmed that the selective exposed (311) facet has the lowest Eads for CH3OH molecules. This work puts forward acid etching as the facet modification and defect engineer for nanostructured non-noble catalysts, which is expected to result in superior electrochemical performance required for advanced alkaline direct methanol fuel cells.
Collapse
Affiliation(s)
- Yanming Cao
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, P. R. China
| | - Jingmin Ge
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, P. R. China
| | - Meihong Jiang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, P. R. China
| | - Fazhi Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, P. R. China
| | - Xiaodong Lei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, P.O. Box 98, Beijing 100029, P. R. China
| |
Collapse
|
15
|
Eichler-Volf A, Alsaadawi Y, Luna FV, Khan QA, Stierle S, Xu C, Heigl M, Fekri Z, Zhou S, Zahn P, Albrecht M, Steinhart M, Erbe A. Sensitivity of PS/CoPd Janus particles to an external magnetic field. RSC Adv 2021; 11:17051-17057. [PMID: 35479683 PMCID: PMC9032904 DOI: 10.1039/d1ra02410h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 04/28/2021] [Indexed: 11/21/2022] Open
Abstract
The dual nature of Janus particles confers fascinating properties such as a response to multiple stimuli. In this communication, we systematically study the sensitivity to a uniform external magnetic field of isolated Janus rod-shaped and spherical particles in water confined to two dimensions. The Janus asymmetry of the particles is given by magnetic [Co(0.28 nm)/Pd(0.90 nm)]8 multilayer films deposited onto monodisperse polystyrene (PS) nanorods and microspheres, respectively. It is shown that the particles dispersed in water respond to weak magnetic field applied in in-plane direction. Here we demonstrate that a precise control of the in-plane particle orientation can be obtained for magnetic field strengths higher than 0.1 mT for microspheres and 0.4 mT for nanorods.
Collapse
Affiliation(s)
- Anna Eichler-Volf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research Bautzner Landstrasse 400 Dresden Germany
| | - Yara Alsaadawi
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research Bautzner Landstrasse 400 Dresden Germany
| | - Fernando Vazquez Luna
- Institute of Chemistry of New Materials, Osnabrueck University Barbarastr. 7 Osnabrueck Germany
| | - Qaiser Ali Khan
- Institute of Chemistry of New Materials, Osnabrueck University Barbarastr. 7 Osnabrueck Germany
| | - Simon Stierle
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research Bautzner Landstrasse 400 Dresden Germany
| | - Chi Xu
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research Bautzner Landstrasse 400 Dresden Germany
| | - Michael Heigl
- Institute of Physics, University of Augsburg Universitaetsstrasse 1 Augsburg Germany
| | - Zahra Fekri
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research Bautzner Landstrasse 400 Dresden Germany
| | - Shengqiang Zhou
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research Bautzner Landstrasse 400 Dresden Germany
| | - Peter Zahn
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research Bautzner Landstrasse 400 Dresden Germany
| | - Manfred Albrecht
- Institute of Physics, University of Augsburg Universitaetsstrasse 1 Augsburg Germany
| | - Martin Steinhart
- Institute of Chemistry of New Materials, Osnabrueck University Barbarastr. 7 Osnabrueck Germany
| | - Artur Erbe
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Ion Beam Physics and Materials Research Bautzner Landstrasse 400 Dresden Germany
| |
Collapse
|
16
|
Qiao W, Yang X, Li M, Feng L. Hollow Pd/Te nanorods for the effective electrooxidation of methanol. NANOSCALE 2021; 13:6884-6889. [PMID: 33885489 DOI: 10.1039/d1nr01005k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Methanol electrooxidation is significant in realizing effective C1 liquid fuel applications. Herein, hollow Pd/Te nanorods were fabricated and evaluated for methanol oxidation, and they were found to exhibit high catalytic efficiency for methanol oxidation in alkaline electrolyte compared to Pd or Pd/C catalysts. The hybrid structure of hexagonal crystal Te and face-centered cubic Pd was formed by microwave assisted Pd nanoparticle deposition over the surface of Te nanorods. Strong electronic effects and facile oxophilic properties were indicated in the Pd/Te system by spectroscopic analysis, which mainly accounts for the high catalytic performance for methanol oxidation. Specifically, they showed a peak current density of 90.1 mA cm-2 for methanol oxidation, around 3.5 times higher than that of commercial Pd/C (26.3 mA cm-2). High catalytic stability was also observed for Pd/Te, with a current retention of 64.3% after 3600 s of chronoamperometric testing, much higher than for Pd catalysts (20.1%). High anti-CO poisoning ability of the Pd/Te catalyst was demonstrated in the CO-stripping voltammetry results, and faster catalytic kinetics were also observed for this catalyst system. The electron-rich state of Pd and high active site exposure are responsible for the high performance of the Pd/Te catalyst in methanol oxidation.
Collapse
Affiliation(s)
- Wei Qiao
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, 225002, China.
| | | | | | | |
Collapse
|
17
|
Yang X, Tong X, Liu X, Li K, Yang N. Methanol electrooxidation on core-shell Ag@Pd catalysts. Electrochem commun 2021. [DOI: 10.1016/j.elecom.2021.106917] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
18
|
Assembling the PdCu/rGO catalysts for methanol oxidation reaction in alkaline media by tuning the electronic structure. Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.136473] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
19
|
Gao F, Zhang Y, Ren F, Song T, Du Y. Tiny Ir doping of sub-one-nanometer PtMn nanowires: highly active and stable catalysts for alcohol electrooxidation. NANOSCALE 2020; 12:12098-12105. [PMID: 32478767 DOI: 10.1039/d0nr02736g] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
One-dimensional (1D) Pt-based nanowires (NWs) materials serve as efficient catalysts for alcohol electrocatalysis. However, precisely tailoring their size towards sub-one-nanometer scale has been verified as an effective method for enhancing electrocatalytic properties, which is rarely studied. In this work, we developed a one-pot simple yet efficient method for synthesizing a kind of sub-one-nanometer tiny Ir-doped PtMn NWs. The prepared PtMnIr NWs have an ultrathin structure with a mean diameter of around only 0.97 nm (about 3-5 atomic thickness), which display large surface areas and promote superficial Pt atom utilization. With the robust tiny Ir incorporation, the composition-optimized Pt74Mn21Ir5 NWs showed enhanced mass activity, which was 1.51 and 1.53 times higher than those of non-Ir-doped Pt79Mn21 NWs for acidic ethanol oxidation reaction (EOR) and methanol oxidation reaction (MOR). Moreover, benefiting from the atom-level ultrathin size and well-tuned ligand effect from Ir to PtMn, the EOR/MOR mass activities of sub-nanometric Pt74Mn21Ir5 NWs were 3.99- and 3.98-fold higher than those of Pt/C catalysts. More importantly, after successive EOR and MOR CV tests, the Ir-doped PtMn NWs still maintained 85.6% and 73.4% of the initial mass activity, which were much better than those of Pt79Mn21 NWs, Pt NWs, and Pt/C catalysts. This work could be extended to engineering other advanced materials with super sub-one-nanometer structure, which is beneficial for largely improving the catalytic performance.
Collapse
Affiliation(s)
- Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Fangfang Ren
- College of Chemical and Environmental Engineering, Yancheng Teachers University, No. 2 Hope Avenue South Road, Yancheng 224007, China.
| | - Tongxin Song
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, PR China.
| |
Collapse
|
20
|
Pan B, Chen F, Kou B, Wang J, Tang Q, Guo L, Wang Q, Li Z, Bian W, Wang J. Unexpectedly high stability and surface reconstruction of PdAuAg nanoparticles for formate oxidation electrocatalysis. NANOSCALE 2020; 12:11659-11671. [PMID: 32436927 DOI: 10.1039/d0nr01358g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
High-performance Pd-based nanocatalysts for alkaline methanol and formate fuel cells have stimulated widespread attention. Hence, a series of ternary Pd-Au-Ag nanoalloys have been synthesized on carbon nanotubes, which demonstrate promising activity and unexpectedly high stability for the formate oxidation reaction (FOR) in alkaline medium. The ternary Pd3Au3Ag1 nanoalloy catalyst showed an initial mass activity of 4.51 A mgPd-1 and a retained mass activity of 1.32 A mgPd-1 after chronoamperometric measurement for 3600 s, which are superior to the best values for all FOR catalysts reported so far. The Pd3Au3Ag1 catalyst also showed a good specific activity of 4.32 mA cm-2 for the methanol oxidation reaction. Furthermore, surface reconstruction of the Pd3Au3Ag1 nanoalloy was observed during FOR, where the activity of Pd3Au3Ag1 catalysts increased up to 33% and the cycling durability retained 55% after cyclic voltammetry with the upper potential of 1.7 V. The FOR enhancement is attributed to the formation of mixed oxidation-state Ag sites and the increase in the Pd surface coverage, and provides a new prospect for the design of ternary nanoalloy electrocatalysts for various fuel oxidation reactions.
Collapse
Affiliation(s)
- Bowei Pan
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China. and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Fuyi Chen
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China. and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Bo Kou
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Junpeng Wang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Quan Tang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China. and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Longfei Guo
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China. and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Qiao Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China. and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Zhen Li
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Weiqi Bian
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jiali Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, China. and School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
21
|
Kumar A, Mohammadi MM, Swihart MT. Synthesis, growth mechanisms, and applications of palladium-based nanowires and other one-dimensional nanostructures. NANOSCALE 2019; 11:19058-19085. [PMID: 31433427 DOI: 10.1039/c9nr05835d] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Palladium-based nanostructures have attracted the attention of researchers due to their useful catalytic properties and unique ability to form hydrides, which finds application in hydrogen storage and hydrogen detection. Palladium-based nanowires have some inherent advantages over other Pd nanomaterials, combining high surface-to-volume ratio with good thermal and electron transport properties, and exposing high-index crystal facets that can have enhanced catalytic activity. Over the past two decades, both synthesis methods and applications of 1D palladium nanostructures have advanced greatly. In this review, we start by discussing different types of 1D palladium nanostructures before moving on to the different synthesis approaches that can produce them. Next, we discuss factors including kinetic vs. thermodynamic control of growth, oxidative etching, and surface passivation that affect palladium nanowire synthesis. We also review efforts to gain insight into growth mechanisms using different characterization tools. We discuss the effects of concentration of capping agents, reducing agents, metal halides, pH, and sacrificial oxidation on the growth of Pd-based nanowires in solution, from shape control, to yield, to aspect ratio. Various applications of palladium and palladium alloy nanowires are then discussed, including electrocatalysis, hydrogen storage, and sensing of hydrogen and other chemicals. We conclude with a summary and some perspectives on future research directions for this category of nanomaterials.
Collapse
Affiliation(s)
- Abhishek Kumar
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Mohammad Moein Mohammadi
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA.
| | - Mark T Swihart
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA. and RENEW Institute, University at Buffalo, The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
22
|
Guan Q, Yang C, Wang S, He L, Kong Z, Chai X, Xin H, Ning P. Reactive Metal–Biopolymer Interactions for Semihydrogenation of Acetylene. ACS Catal 2019. [DOI: 10.1021/acscatal.9b04042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
| | | | - Siwen Wang
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | | | | | - Xinsheng Chai
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China
| | - Hongliang Xin
- Department of Chemical Engineering, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, United States
| | | |
Collapse
|
23
|
Zhang Y, Gao F, Wang C, Shiraishi Y, Du Y. Engineering Spiny PtFePd@PtFe/Pt Core@Multishell Nanowires with Enhanced Performance for Alcohol Electrooxidation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:30880-30886. [PMID: 31368299 DOI: 10.1021/acsami.9b09110] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Engineering robust electrocatalysts is always a key point in direct alcohol fuel cells. Catalysts with a one-dimension (1D) structure are well studied and considered as promising candidates among various catalysts in the past decades; however, the precise regulation on the surface structure of 1D nanomaterials is still a worthy subject. By creatively introducing a trimetallic nanoalloy, core@multishell structure, and 1D nanowire (NW) morphology, we have constructed a kind of novel spiny PtFePd@PtFe/Pt core@multishell 1D NW catalysts with PtFePd as the core and PtFe/Pt as the multishell on the basis of improving catalytic property. The composition-optimized Pt5FePd2 1D NWs display remarkable catalytic properties for ethanol oxidation reaction and methanol oxidation reaction, in which mass activities are 4.965 and 4.038 A mg-1, 4.6 and 5.0 and 4.0 and 9.2-fold higher than Pt/C and Pd/C catalysts. Furthermore, the obtained Pt5FePd2 NWs can also retain favorable stability after durability tests. The unique core@multishell structure, spiny 1D NWs with many steps and kinks, and interior electronic and synergistic effect all contribute to the advanced catalytic performance. The present work has rationally designed the novel 1D PtFePd@PtFe/Pt core@multishell NW catalysts and offered a meaningful guideline for the designing of high-performance electrocatalysts.
Collapse
Affiliation(s)
- Yangping Zhang
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Renai Road , Suzhou 215123 , P.R. China
| | - Fei Gao
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Renai Road , Suzhou 215123 , P.R. China
| | - Caiqin Wang
- College of Science , Nanjing Forestry University , 159 Longpan Road , Nanjing 210037 , P.R. China
| | - Yukihide Shiraishi
- Tokyo University of Science Yamaguchi , Sanyo-Onoda-shi , Yamaguchi 756-0884 , Japan
| | - Yukou Du
- College of Chemistry, Chemical Engineering and Materials Science , Soochow University , 199 Renai Road , Suzhou 215123 , P.R. China
| |
Collapse
|
24
|
Sun R, Xia Z, Qi F, Jing F, Deng R, Wang S, Sun G. Efficient Design for a High-Energy and High-Power Capability Hybrid Electric Power Device with Enhanced Electrochemical Interfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19943-19949. [PMID: 31074955 DOI: 10.1021/acsami.9b01863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Fabrication of novel electrode architectures with tailored electrochemical interfaces (EI) is an effective strategy for enhancing charge and mass transport processes within electrochemical devices. Here, we design and fabricate a well-hybrid electrode based on the coupling of polyaniline (PANI) nanowires and Pt-based electrocatalysts to manufacture a hybrid electric power device (HEPD) combining the advantages of supercapacitors and fuel cells. Because of the boosted charge transfer between PANI nanowires and Pt-based materials via enhanced EIs, the HEPD assembled with hybrid electrodes shows remarkable performance with a peak power density of 222 mW cm-2, a specific power of 3810 W kg-1, and a specific energy of 2100 Wh kg-1, normalized to the mass of membrane electrode assemblies. The in situ Raman spectra and extended electrochemical studies demonstrate the intrinsic mechanism of charge transfer processes within hybrid electrodes, shedding light on the alternative progress of electrochemical energy conversion systems and storage devices.
Collapse
Affiliation(s)
- Ruili Sun
- Division of Fuel Cell & Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Zhangxun Xia
- Division of Fuel Cell & Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China
| | - Fulai Qi
- Institutes of Metal Research , Chinese Academy of Science , Shenyang 110016 , China
| | - Fenning Jing
- Division of Fuel Cell & Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China
| | - Ruoyi Deng
- Division of Fuel Cell & Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Suli Wang
- Division of Fuel Cell & Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China
| | - Gongquan Sun
- Division of Fuel Cell & Battery, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics , Chinese Academy of Sciences , Dalian 116023 , China
| |
Collapse
|
25
|
Yuan G, Wang L, Zhang X, Wang Q. Self-supported Pt nanoflakes-doped amorphous Ni(OH) 2 on Ni foam composite electrode for efficient and stable methanol oxidation. J Colloid Interface Sci 2018; 536:189-195. [PMID: 30366184 DOI: 10.1016/j.jcis.2018.10.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 11/19/2022]
Abstract
Direct methanol fuel cells (DMFCs) are promising power sources for automobiles and portable electronic devices. Its commercialization depends on the anodes with high activity, low Pt content, and especially high stability towards methanol oxidation. Herein, a self-supported Pt nanoflakes and amorphous Ni(OH)2 on nickel foam composite electrode (Pt-doped Ni(OH)2, Pt content: 1.5 wt%) with rich defects was fabricated via a facile and low cost galvanic deposition method. This composite anode exhibits enhanced activity and stability for methanol oxidation in alkaline media, which mainly come from the synergistic effects between Pt nanoflakes and amorphous Ni(OH)2 on Ni foam substrate and defect engineering. During a typical methanol oxidation process over Pt-doped Ni(OH)2: Pt nanoflakes act as the active sites; amorphous Ni(OH)2 promotes the poison removal; Ni foam provides high electric conductivity and large area; defects sites contribute to the enhanced activity and stability. This work suggests that this self-supported and defect-enriched Pt-doped Ni(OH)2 composite catalyst is an alternative to commercial Pt-based electrocatalyst for low temperature DMFCs.
Collapse
Affiliation(s)
- Gang Yuan
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, PR China; Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Li Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, PR China; Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Xiangwen Zhang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, PR China; Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China
| | - Qingfa Wang
- Key Laboratory for Green Chemical Technology of the Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, 92 Weijin Road, Tianjin 300072, PR China; Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), Tianjin University, Tianjin 300072, PR China.
| |
Collapse
|