1
|
Meng J, Zahran M, Li X. Metal-Organic Framework-Based Nanostructures for Electrochemical Sensing of Sweat Biomarkers. BIOSENSORS 2024; 14:495. [PMID: 39451708 PMCID: PMC11506703 DOI: 10.3390/bios14100495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 10/26/2024]
Abstract
Sweat is considered the most promising candidate to replace conventional blood samples for noninvasive sensing. There are many tools and optical and electrochemical methods that can be used for detecting sweat biomarkers. Electrochemical methods are known for their simplicity and cost-effectiveness. However, they need to be optimized in terms of selectivity and catalytic activity. Therefore, electrode modifiers such as nanostructures and metal-organic frameworks (MOFs) or combinations of them were examined for boosting the performance of the electrochemical sensors. The MOF structures can be prepared by hydrothermal/solvothermal, sonochemical, microwave synthesis, mechanochemical, and electrochemical methods. Additionally, MOF nanostructures can be prepared by controlling the synthesis conditions or mixing bulk MOFs with nanoparticles (NPs). In this review, we spotlight the previously examined MOF-based nanostructures as well as promising ones for the electrochemical determination of sweat biomarkers. The presence of NPs strongly improves the electrical conductivity of MOF structures, which are known for their poor conductivity. Specifically, Cu-MOF and Co-MOF nanostructures were used for detecting sweat biomarkers with the lowest detection limits. Different electrochemical methods, such as amperometric, voltammetric, and photoelectrochemical, were used for monitoring the signal of sweat biomarkers. Overall, these materials are brilliant electrode modifiers for the determination of sweat biomarkers.
Collapse
Affiliation(s)
- Jing Meng
- School of Civil Engineering, Nantong Institute of Technology, Nantong 226002, China
| | - Moustafa Zahran
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| | - Xiaolin Li
- Institute of Intelligent Manufacturing Technology, Shenzhen Polytechnic University, Shenzhen 518055, China
| |
Collapse
|
2
|
Hussain I, Kewate OJ, Hanan A, Bibi F, Javed MS, Rosaiah P, Ahmad M, Chen X, Shaheen I, Hanif MB, Bhatti AH, Assiri MA, Zoubi WA, Zhang K. V-MXenes for Energy Storage/Conversion Applications. CHEMSUSCHEM 2024; 17:e202400283. [PMID: 38470130 DOI: 10.1002/cssc.202400283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 03/07/2024] [Accepted: 03/11/2024] [Indexed: 03/13/2024]
Abstract
MXenes, a two-dimensional (2D) material, exhibit excellent optical, electrical, chemical, mechanical, and electrochemical properties. Titanium-based MXene (Ti-MXene) has been extensively studied and serves as the foundation for 2D MXenes. However, other transition metals possess the potential to offer excellent properties in various applications. This comprehensive review aims to provide an overview of the properties, challenges, key findings, and applications of less-explored vanadium-based MXenes (V-MXenes) and their composites. The current trends in V-MXene and their composites for energy storage and conversion applications have been thoroughly summarized. Overall, this review offers valuable insights, identifies potential opportunities, and provides key suggestions for future advancements in the MXenes and energy storage/conversion applications.
Collapse
Affiliation(s)
- Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong
| | - Onkar Jaywant Kewate
- School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, India
| | - Abdul Hanan
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor, 47500, Malaysia
| | - Faiza Bibi
- Sunway Centre for Electrochemical Energy and Sustainable Technology (SCEEST), School of Engineering and Technology, Sunway University, Selangor, 47500, Malaysia
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - P Rosaiah
- Department of Physics, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, 602 105, India
| | - Muhammad Ahmad
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong
| | - Xi Chen
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong
| | - Irum Shaheen
- Sabanci University, SUNUM Nanotechnology Research and Application Center, Tuzla, 34956, Istanbul, Turkey
| | - Muhammad Bilal Hanif
- Department of Inorganic Chemistry, Faculty of Natural Sciences, Comenius University Bratislava, Ilkovicova 6, 842 15, Bratislava, Slovakia
| | - Ali Hassan Bhatti
- University of Science and Technology, 217 Gajeong-ro Yuseong-gu, Daejeon, 34113, South Korea
| | - Mohammed Ali Assiri
- Research Center for Advanced Materials Science (RCAMS), Chemistry Department, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Wail Al Zoubi
- Materials Electrochemistry Laboratory, School of Materials Science and Engineering, Yeungnam University, Gyeongsan, 38541, Republic of Korea
| | - Kaili Zhang
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong
| |
Collapse
|
3
|
Liu W, Huang Y, Ji C, Grimes CA, Liang Z, Hu H, Kang Q, Yan HL, Cai QY, Zhou YG. Eu 3+-Doped Anionic Zinc-Based Organic Framework Ratio Fluorescence Sensing Platform: Supersensitive Visual Identification of Prescription Drugs. ACS Sens 2024; 9:759-769. [PMID: 38306386 DOI: 10.1021/acssensors.3c02069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
Advanced techniques for both environmental and biological prescription drug monitoring are of ongoing interest. In this work, a fluorescent sensor based on an Eu3+-doped anionic zinc-based metal-organic framework (Eu3+@Zn-MOF) was constructed for rapid visual analysis of the prescription drug molecule demecycline (DEM), achieving both high sensitivity and selectivity. The ligand 2-amino-[1,1'-biphenyl]-4,4'-dicarboxylic acid (bpdc-NH2) not only provides stable cyan fluorescence (467 nm) for the framework through intramolecular charge transfer of bpdc-NH2 infinitesimal disturbanced by Zn2+ but also chelates Eu3+, resulting in red (617 nm) fluorescence. Through the synergy of photoinduced electron transfer and the antenna effect, a bidirectional response to DEM is achieved, enabling concentration quantification. The Eu3+@Zn-MOF platform exhibits a wide linear range (0.25-2.5 μM) to DEM and a detection limit (LOD) of 10.9 nM. Further, we integrated the DEM sensing platform into a paper-based system and utilized a smartphone for the visual detection of DEM in water samples and milk products, demonstrating the potential for large-scale, low-cost utilization of the technology.
Collapse
Affiliation(s)
- Wensheng Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yao Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Chenhui Ji
- Department of Chemistry, Baotou Teachers College, Baotou 014030, China
| | - Craig A Grimes
- Flux Photon Corporation, Alpharetta, Georgia 30005, United States
| | - Zerong Liang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Hairong Hu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qing Kang
- School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Hai-Long Yan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Qing-Yun Cai
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yi-Ge Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
4
|
Li P, Peng Y, Cai J, Bai Y, Li Q, Pang H. Recent Advances in Metal-Organic Frameworks (MOFs) and Their Composites for Non-Enzymatic Electrochemical Glucose Sensors. Bioengineering (Basel) 2023; 10:733. [PMID: 37370664 DOI: 10.3390/bioengineering10060733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/07/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
In recent years, with pressing needs such as diabetes management, the detection of glucose in various substrates has attracted unprecedented interest from researchers in academia and industry. As a relatively new glucose sensor, non-enzymatic target detection has the characteristics of high sensitivity, good stability and simple manufacturing process. However, it is urgent to explore novel materials with low cost, high stability and excellent performance to modify electrodes. Metal-organic frameworks (MOFs) and their composites have the advantages of large surface area, high porosity and high catalytic efficiency, which can be utilized as excellent materials for electrode modification of non-enzymatic electrochemical glucose sensors. However, MOFs and their composites still face various challenges and difficulties that limit their further commercialization. This review introduces the applications and the challenges of MOFs and their composites in non-enzymatic electrochemical glucose sensors. Finally, an outlook on the development of MOFs and their composites is also presented.
Collapse
Affiliation(s)
- Panpan Li
- Guangling College, Yangzhou University, Yangzhou 225009, China
| | - Yi Peng
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Jinpeng Cai
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| | - Yang Bai
- School of Pharmacy, Changzhou University, Changzhou 213164, China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210008, China
| | - Qing Li
- Guangling College, Yangzhou University, Yangzhou 225009, China
| | - Huan Pang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
5
|
Khalil IE, Fonseca J, Reithofer MR, Eder T, Chin JM. Tackling orientation of metal-organic frameworks (MOFs): The quest to enhance MOF performance. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
6
|
Jannath KA, Karim MM, Saputra HA, Seo K, Kim KB, Shim Y. A review on the recent advancements in nanomaterials for
nonenzymatic
lactate sensing. B KOREAN CHEM SOC 2023. [DOI: 10.1002/bkcs.12678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Khatun A. Jannath
- Department of Chemistry Pusan National University Busan Republic of Korea
| | - Md Mobarok Karim
- Department of Chemistry Pusan National University Busan Republic of Korea
| | - Heru Agung Saputra
- Department of Chemistry Pusan National University Busan Republic of Korea
| | - Kyeong‐Deok Seo
- Department of Chemistry Pusan National University Busan Republic of Korea
| | - Kwang Bok Kim
- Digital Health Care R&D Department Korea Institute of Industrial Technology (KITECH) Cheonan Republic of Korea
| | - Yoon‐Bo Shim
- Department of Chemistry Pusan National University Busan Republic of Korea
| |
Collapse
|
7
|
Ma T, Zhang J, Zhang L, Zhang Q, Xu X, Xiong Y, Ying Y, Fu Y. Recent advances in determination applications of emerging films based on nanomaterials. Adv Colloid Interface Sci 2023; 311:102828. [PMID: 36587470 DOI: 10.1016/j.cis.2022.102828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/12/2022] [Accepted: 12/22/2022] [Indexed: 12/28/2022]
Abstract
Sensitive and facile detection of analytes is crucial in various fields such as agriculture production, food safety, clinical diagnosis and therapy, and environmental monitoring. However, the synergy of complicated sample pretreatment and detection is an urgent challenge. By integrating the inherent porosity, processability and flexibility of films and the diversified merits of nanomaterials, nanomaterial-based films have evolved as preferred candidates to meet the above challenge. Recent years have witnessed the flourishment of films-based detection technologies due to their unique porous structures and integrated physical/chemical merits, which favors the separation/collection and detection of analytes in a rapid, efficient and facile way. In particular, films based on nanomaterials consisting of 0D metal-organic framework particles, 1D nanofibers and carbon nanotubes, and 2D graphene and analogs have drawn increasing attention due to incorporating new properties from nanomaterials. This paper summarizes the progress of the fabrication of emerging films based on nanomaterials and their detection applications in recent five years, focusing on typical electrochemical and optical methods. Some new interesting applications, such as point-of-care testing, wearable devices and detection chips, are proposed and emphasized. This review will provide insights into the integration and processability of films based on nanomaterials, thus stimulate further contributions towards films based on nanomaterials for high-performance analytical-chemistry-related applications.
Collapse
Affiliation(s)
- Tongtong Ma
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Jie Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Lin Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Qi Zhang
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Xiahong Xu
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| | - Yonghua Xiong
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China
| | - Yingchun Fu
- College of Biosystems Engineering and Food Science, Key Laboratory of Intelligent Equipment and Robotics for Agriculture of Zhejiang Province, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Li Q, Sun Y, Li G, Yang X, Zuo X. Enhancing Interfacial and Electromagnetic Interference Shielding Properties of Carbon Fiber Composites via the Hierarchical Assembly of the MWNT/MOF Interphase. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14277-14289. [PMID: 36351284 DOI: 10.1021/acs.langmuir.2c02344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A metal-organic framework (MOF) based on a conjugated organic ligand and a transition-metal ion was designed and used to construct a novel multiwalled carbon nanotube (MWNT)/MOF interphase via hierarchical assembly on the carbon fiber (CF) surface and was compared to various interphases established by MWNT and MOF. An intertwined MWNT and MOF "jujube core" was randomly dispersed on MWNT@CF and MOF@CF surfaces, while interpenetrating structures with the MWNT network and MOF jujube core were simultaneously observed on MWNT/MOF@CF due to coordination bonds and π-π conjugation effects, which were derived from the MWNT template with carboxyl groups and sp2-hybridized domains as well as the secondary growth of MOF to promote self-assembly and the connection of MOF. The transverse fiber bundle test (TFBT) strength and interfacial shear strength (IFSS) of the MWNT/MOF@CF composite were 36.9, 6.1, and 20.8%, 16.3% higher than those of MWNT@CF and MOF@CF composites, which were attributed to the smoothed modulus transition of the stiffening interphase formed by the MWNT/MOF hybrid structure as "armor" to effectively buffer the stress transfer between a carbon fiber and the resin matrix. Compared to MWNT@CF and MOF@CF composites, MWNT/MOF@CF composites had the highest EMI shielding effectiveness, which was attributed to the combined effects of multiple reflections, conductive loss, and interface polarization from the interpenetrating MWNT/MOF hybrid structures, which realized the integration of the structure and function of the carbon fiber composites.
Collapse
Affiliation(s)
- Qingzhong Li
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Yuhang Sun
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Gang Li
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing100029, P. R. China
| | - Xiaobiao Zuo
- Aerospace Research Institute of Materials and Processing Technology, Beijing100076, P. R. China
| |
Collapse
|
9
|
Ahmadijokani F, Molavi H, Tajahmadi S, Rezakazemi M, Amini M, Kamkar M, Rojas OJ, Arjmand M. Coordination chemistry of metal–organic frameworks: Detection, adsorption, and photodegradation of tetracycline antibiotics and beyond. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214562] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
ZHOU J, MEN D, ZHANG XE. Progress in wearable sweat sensors and their applications. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2021.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
11
|
Sohrabi H, Javanbakht S, Oroojalian F, Rouhani F, Shaabani A, Majidi MR, Hashemzaei M, Hanifehpour Y, Mokhtarzadeh A, Morsali A. Nanoscale Metal-Organic Frameworks: Recent developments in synthesis, modifications and bioimaging applications. CHEMOSPHERE 2021; 281:130717. [PMID: 34020194 DOI: 10.1016/j.chemosphere.2021.130717] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/24/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Porous Metal-Organic Frameworks (MOFs) have emerged as eye-catching materials in recent years. They are widely used in numerous fields of chemistry thanks to their desirable properties. MOFs have a key role in the development of bioimaging platforms that are hopefully expected to effectually pave the way for accurate and selective detection and diagnosis of abnormalities. Recently, many types of MOFs have been employed for detection of RNA, DNA, enzyme activity and small-biomolecules, as well as for magnetic resonance imaging (MRI) and computed tomography (CT), which are valuable methods for clinical analysis. The optimal performance of the MOF in the bio-imaging field depends on the core structure, synthesis method and modifications processes. In this review, we have attempted to present crucial parameters for designing and achieving an efficient MOF as bioimaging platforms, and provide a roadmap for researchers in this field. Moreover, the influence of modifications/fractionalizations on MOFs performance has been thoroughly discussed and challenging problems have been extensively addressed. Consideration is mainly focused on the principal concepts and applications that have been achieved to modify and synthesize advanced MOFs for future applications.
Collapse
Affiliation(s)
- Hessamaddin Sohrabi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Siamak Javanbakht
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Fatemeh Oroojalian
- Department of Advanced Sciences and Technologies in Medicine, School of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Farzaneh Rouhani
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran
| | - Ahmad Shaabani
- Faculty of Chemistry, Shahid Beheshti University, G.C., P.O. Box 19396-4716, Tehran, Iran
| | - Mir Reza Majidi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol. Iran
| | - Younes Hanifehpour
- Department of Chemistry, Sayyed Jamaleddin Asadabadi University, Asadabad, Iran
| | - Ahad Mokhtarzadeh
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, P.O. Box 14115-175, Tehran, Iran.
| |
Collapse
|
12
|
Olorunyomi JF, Geh ST, Caruso RA, Doherty CM. Metal-organic frameworks for chemical sensing devices. MATERIALS HORIZONS 2021; 8:2387-2419. [PMID: 34870296 DOI: 10.1039/d1mh00609f] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Metal-organic frameworks (MOFs) are exceptionally large surface area materials with organized porous cages that have been investigated for nearly three decades. Due to the flexibility in their design and predisposition toward functionalization, they have shown promise in many areas of application, including chemical sensing. Consequently, they are identified as advanced materials with potential for deployment in analytical devices for chemical and biochemical sensing applications, where high sensitivity is desirable, for example, in environmental monitoring and to advance personal diagnostics. To keep abreast of new research, which signposts the future directions in the development of MOF-based chemical sensors, this review examines studies since 2015 that focus on the applications of MOF films and devices in chemical sensing. Various examples that use MOF films in solid-state sensing applications were drawn from recent studies based on electronic, electrochemical, electromechanical and optical sensing methods. These examples underscore the readiness of MOFs to be integrated in optical and electronic analytical devices. Also, preliminary demonstrations of future sensors are indicated in the performances of MOF-based wearables and smartphone sensors. This review will inspire collaborative efforts between scientists and engineers working within the field of MOFs, leading to greater innovations and accelerating the development of MOF-based analytical devices for chemical and biochemical sensing applications.
Collapse
Affiliation(s)
- Joseph F Olorunyomi
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia.
| | - Shu Teng Geh
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
- CSIRO Manufacturing, Clayton, Victoria 3168, Australia.
| | - Rachel A Caruso
- Applied Chemistry and Environmental Science, School of Science, RMIT University, Melbourne, Victoria 3000, Australia.
| | | |
Collapse
|
13
|
Yola ML, Atar N. Amperometric galectin-3 immunosensor-based gold nanoparticle-functionalized graphitic carbon nitride nanosheets and core-shell Ti-MOF@COFs composites. NANOSCALE 2020; 12:19824-19832. [PMID: 32966539 DOI: 10.1039/d0nr05614f] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Antigen galectin-3 (GL-3), a member of β-galactoside proteins indicates cardiac fibrosis and is a significant biomarker for monitoring heart failure risk and death risk. In this study, a novel sensitive amperometric method for antigen GL-3 detection is developed based on gold nanoparticle-functionalized graphitic carbon nitride nanosheets (g-C3N4@Au NPs) as the sensor platform and Ti-based metal organic framework (Ti-MOF, NH2-MIL-125)@covalent organic frameworks (COFs) composite for the signal amplification. The Ti-MOF@COF composite not only facilitates the penetration of antibody proteins into pore channels, but also the highly stable antigen-antibody interactions. The prepared sensor platform and signal amplification material are characterized by transmission electron microscopy (TEM), scanning electron microscopy (SEM), X-ray diffraction (XRD) method, X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy, Fourier transform infrared spectroscopy (FTIR), cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS). The amperometric technique is utilized to achieve antigen GL-3 detection in plasma samples. The immunosensor demonstrates a wide linearity range (0.0001-20.0 ng mL-1) and a low detection limit (0.025 pg mL-1). Finally, the prepared immunosensor shows high stability and selectivity under optimum conditions.
Collapse
Affiliation(s)
- Mehmet Lütfi Yola
- Iskenderun Technical University, Faculty of Engineering and Natural Sciences, Department of Biomedical Engineering, Hatay, Turkey.
| | | |
Collapse
|
14
|
Rodriguez-Abetxuko A, Sánchez-deAlcázar D, Muñumer P, Beloqui A. Tunable Polymeric Scaffolds for Enzyme Immobilization. Front Bioeng Biotechnol 2020; 8:830. [PMID: 32850710 PMCID: PMC7406678 DOI: 10.3389/fbioe.2020.00830] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Accepted: 06/29/2020] [Indexed: 12/12/2022] Open
Abstract
The number of methodologies for the immobilization of enzymes using polymeric supports is continuously growing due to the developments in the fields of biotechnology, polymer chemistry, and nanotechnology in the last years. Despite being excellent catalysts, enzymes are very sensitive molecules and can undergo denaturation beyond their natural environment. For overcoming this issue, polymer chemistry offers a wealth of opportunities for the successful combination of enzymes with versatile natural or synthetic polymers. The fabrication of functional, stable, and robust biocatalytic hybrid materials (nanoparticles, capsules, hydrogels, or films) has been proven advantageous for several applications such as biomedicine, organic synthesis, biosensing, and bioremediation. In this review, supported with recent examples of enzyme-protein hybrids, we provide an overview of the methods used to combine both macromolecules, as well as the future directions and the main challenges that are currently being tackled in this field.
Collapse
Affiliation(s)
| | | | - Pablo Muñumer
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
| | - Ana Beloqui
- PolyZymes group, POLYMAT and Department of Applied Chemistry (UPV/EHU), San Sebastián, Spain
- Department of Applied Chemistry, University of the Basque Country, San Sebastián, Spain
- IKERBASQUE, Bilbao, Spain
| |
Collapse
|
15
|
Allendorf MD, Dong R, Feng X, Kaskel S, Matoga D, Stavila V. Electronic Devices Using Open Framework Materials. Chem Rev 2020; 120:8581-8640. [DOI: 10.1021/acs.chemrev.0c00033] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Mark D. Allendorf
- Chemistry, Combustion, and Materials Science Center, Sandia National Laboratories, Livermore, California 94551, United States
| | - Renhao Dong
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Xinliang Feng
- Center for Advancing Electronics Dresden (cfaed) and Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, 01062 Dresden, Germany
| | - Stefan Kaskel
- Department of Inorganic Chemistry, Technische Universität Dresden, Bergstrasse 66, 01062 Dresden, Germany
| | - Dariusz Matoga
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | - Vitalie Stavila
- Chemistry, Combustion, and Materials Science Center, Sandia National Laboratories, Livermore, California 94551, United States
| |
Collapse
|
16
|
|
17
|
Du L, Chen W, Zhu P, Tian Y, Chen Y, Wu C. Applications of Functional Metal-Organic Frameworks in Biosensors. Biotechnol J 2020; 16:e1900424. [PMID: 32271998 DOI: 10.1002/biot.201900424] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/14/2020] [Indexed: 12/12/2022]
Abstract
In recent decades, fast advancements in the fields of metal-organic frameworks (MOFs) are providing unprecedented opportunities for the development of novel functional MOFs for various biosensing applications. Exciting progress is achieved due to the combination of MOFs with various functional components, which introduces novel structures and new features to the MOFs-based biosensing applications, such as higher stability, higher sensitivity, higher flexibility, and higher specificity. This review aims to be a comprehensive summary of the most recent advances in the development of functional MOFs for various biosensing applications, placing special attention on important contributions in recent 3 years. In this review, the most recent developments in design and synthesis of functional MOFs for biosensing applications are summarized. MOFs-based biosensing applications are outlined according to the central roles of MOFs in biosensors, which include carriers of sensitive elements, enzyme-mimic elements, electrochemical signaling, optical signaling, and gas sensing. Finally, the current challenges and future development trends of functional MOFs for biosensing applications are proposed and discussed.
Collapse
Affiliation(s)
- Liping Du
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Wei Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Ping Zhu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yulan Tian
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yating Chen
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| | - Chunsheng Wu
- Institute of Medical Engineering, Department of Biophysics, School of Basic Medical Sciences, Health Science Center, Xi'an Jiaotong University, Xi'an, 710061, China
| |
Collapse
|
18
|
Comparison of Catalytic Activity of Chromium–Benzenedicarboxylate Metal–Organic Framework Based on Various Synthetic Approach. Catalysts 2020. [DOI: 10.3390/catal10030318] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
MIL-101(Cr), as a prototypical mesoporous metal–organic framework (MOF), can be facially prepared by involving different modulators to fit various demands. In this paper, a range of MIL-101(Cr) products were prepared under similar conditions. It was found that one of the additives, phenylphosphonic acid (PPOA), could give a stable hierarchical structure material. Compared to other MIL-101(Cr)s, though hierarchical MIL-101(Cr) showed less porosity, it gave a better catalytic performance in the oxidation of indene and 1-dodecene.
Collapse
|
19
|
Wang Z, Liu T, Jiang L, Asif M, Qiu X, Yu Y, Xiao F, Liu H. Assembling Metal-Organic Frameworks into the Fractal Scale for Sweat Sensing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:32310-32319. [PMID: 31411849 DOI: 10.1021/acsami.9b11726] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Many natural organizations with some special functional properties possess fractal tissues which display nearly the same at every scale. The benefit of mimicking fractal structure in synthetic functional materials warrants further exploration. To tackle this challenge, we assemble metal-organic frameworks (MOFs) into fractal structures by using a bottom-up approach inspired from evaporation-driven crystallization. Such hierarchically branched MOFs exhibit some unexpected performances in electrochemistry, and can be a versatile biosensor for sweat analysis. Our work provides an interesting and efficient example for fabricating fractal MOFs as well as uncovering their new properties. This fractal-guided strategy can be extended to synthesize and explore new characteristics of other materials, holding potential in various applications including sensors, catalysis, and energy storage.
Collapse
Affiliation(s)
- Zhengyun Wang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Ting Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Lipei Jiang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Muhammad Asif
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Xiaoyu Qiu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Yang Yu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Fei Xiao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| | - Hongfang Liu
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering , Huazhong University of Science and Technology , Wuhan 430074 , P. R. China
| |
Collapse
|
20
|
Qin J, Cho M, Lee Y. Ultrasensitive Detection of Amyloid-β Using Cellular Prion Protein on the Highly Conductive Au Nanoparticles–Poly(3,4-ethylene dioxythiophene)–Poly(thiophene-3-acetic acid) Composite Electrode. Anal Chem 2019; 91:11259-11265. [DOI: 10.1021/acs.analchem.9b02266] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Jieling Qin
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Misuk Cho
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| | - Youngkwan Lee
- School of Chemical Engineering, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
21
|
Qin J, Cho M, Lee Y. Ferrocene-Encapsulated Zn Zeolitic Imidazole Framework (ZIF-8) for Optical and Electrochemical Sensing of Amyloid-β Oligomers and for the Early Diagnosis of Alzheimer's Disease. ACS APPLIED MATERIALS & INTERFACES 2019; 11:11743-11748. [PMID: 30843389 DOI: 10.1021/acsami.8b21425] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
In this work, the ferrocene-encapsulated Zn zeolitic imidazole framework (ZIF-8) was prepared by the self-assembly of Zn ions and 2-methylimidazole and used for the dual detection of amyloid-beta oligomers (AβO), which is the main neuropathological hallmark of Alzheimer's disease. Ferrocene is an optically and electrochemically active signal which was successfully encapsulated inside of the ZIF-8 and released by the competitive coordination between Zn ions and AβO after being treated with AβO. The released ferrocene content was monitored by ultraviolet/visible spectrophotometry and cyclic voltammetry. The dual determination of AβO played a synergetic role in the quick qualitative and precise quantitative analyses in a wide detection range of 10-5 to 102 μM and good feasibility in artificial cerebrospinal fluid.
Collapse
Affiliation(s)
- Jieling Qin
- School of Chemical Engineering , Sungkyunkwan University , 16419 Suwon , Korea
| | - Misuk Cho
- School of Chemical Engineering , Sungkyunkwan University , 16419 Suwon , Korea
| | - Youngkwan Lee
- School of Chemical Engineering , Sungkyunkwan University , 16419 Suwon , Korea
| |
Collapse
|
22
|
Zhou N, Ma Y, Hu B, He L, Wang S, Zhang Z, Lu S. Construction of Ce-MOF@COF hybrid nanostructure: Label-free aptasensor for the ultrasensitive detection of oxytetracycline residues in aqueous solution environments. Biosens Bioelectron 2018; 127:92-100. [PMID: 30594079 DOI: 10.1016/j.bios.2018.12.024] [Citation(s) in RCA: 117] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Porous organic framework (COF) nanomaterials have drawn increasing attention and showed promising potential in the applications of various fields. Nevertheless, its applications in biosensing or biomedical fields are still in the early stage. In this work, we designed and synthesized a series of nanohybrids of COF and Ce-based metal organic framework (Ce-MOF) for the first time as label-free bioplatforms for a sensitive electrochemical aptasensor to detect oxytetracycline (OTC). A novel kinds of Ce-MOF@COF hybrids were prepared by adding different dosages of COF, into the preparation system of Ce-MOF, for which COF was synthesized using melamine and cyanutic acidmonomers through polycondensation (represented by MCA). Basic characterizations revealed that Ce-MOF@MCA nanohybrids not only remained their orignal crystal and chemical structure and features, such as different Ce species containing in Ce-MOF (Ce3+ and Ce4+), various functional amino-groups of MCA, and individual frameworks, but also showed a large specific surface area and interpenetrated morphologies. As a result, the Ce-MOF@MCA hybrid with high content of MCA exhibited high bioaffinity toward the OTC-targeted aptamer, further leading to the incremental detection effect for OTC detection. Among different hybrid-based aptasensors, the Ce-MOF@MCA-based one with an MCA dosage of 500 mg exhibited the lowest limit of detection at 17.4 fg mL-1 within a wider linearity of the OTC concentration within 0.1-0.5 ng mL-1. Additionally, the fabricated aptasensor displayed excellent analytical performance with great reproducibility, high selectivity and stability, and acceptable applicability for detecting OTC in various aqueous solutions, including milk, wastewater, and urine samples. This new Ce-MOF@MCA hybrid will become an excellent aptasensors platform for detecting various analytes, such as antibiotics, heavy metal ions, or cancer markers, and it have shown the promissing application potentials in the fields of biomedicine, food safety and environmental monitoring.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou 450052, PR China
| | - Yashen Ma
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, PR China
| | - Bin Hu
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, PR China
| | - Linghao He
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, PR China
| | - Shijun Wang
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe East Road, Zhengzhou 450052, PR China.
| | - Zhihong Zhang
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, No. 136, Science Avenue, Zhengzhou 450001, PR China.
| | - Siyu Lu
- College of Chemistry and Molecular Engineering, Zhengzhou University, Zhengzhou 450000, China.
| |
Collapse
|