1
|
Salazar-Gastélum LJ, Arredondo-Espínola A, Pérez-Sicairos S, Álvarez-Contreras L, Arjona N, Guerra-Balcázar M. Quaternized Polysulfone as a Solid Polymer Electrolyte Membrane with High Ionic Conductivity for All-Solid-State Zn-Air Batteries. MEMBRANES 2025; 15:102. [PMID: 40277972 PMCID: PMC12029050 DOI: 10.3390/membranes15040102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/08/2025] [Accepted: 03/30/2025] [Indexed: 04/26/2025]
Abstract
Solid polymer electrolytes (SPEs) are gaining attention as viable alternatives to traditional aqueous electrolytes in zinc-air batteries (ZABs), owing to their enhanced performance and stability. In this study, anion-exchange solid polymer electrolytes (A-SPEs) were synthesized via electrophilic aromatic substitution and substitution reactions. Thin films were prepared using the solvent casting method and characterized using proton nuclear magnetic resonance (¹H-NMR), Fourier-transform infrared spectroscopy (FT-IR), and thermogravimetric analysis (TGA). The ion-exchange capacity (IEC), KOH uptake, ionic conductivity, and battery performance were also obtained by varying the degree of functionalization of the A-SPEs (30 and 120%, denoted as PSf30/PSf120, respectively). The IEC analysis revealed that PSf120 exhibited a higher quantity of functional groups, enhancing its hydroxide conductivity, which reached a value of 22.19 mS cm-1. In addition, PSf120 demonstrated a higher power density (70 vs. 50 mW cm-2) and rechargeability than benchmarked Fumapem FAA-3-50 A-SPE. Postmortem analysis further confirmed the lower formation of ZnO for PSf120, indicating the improved stability and reduced passivation of the zinc electrode. Therefore, this type of A-SPE could improve the performance and rechargeability of all-solid-state ZABs.
Collapse
Affiliation(s)
- Luis Javier Salazar-Gastélum
- Facultad de Ingeniería, División de Investigación y Posgrado, Universidad Autónoma de Querétaro, Querétaro 76010, Santiago de Querétaro, Mexico;
| | - Alejandro Arredondo-Espínola
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Sanfandila 76703, Pedro Escobedo, Mexico;
| | - Sergio Pérez-Sicairos
- Centro de Graduados e Investigación en Química, Instituto Tecnológico de Tijuana, Tecnológico Nacional de México, Blvd. Alberto Limón Padilla, S/N Col. Otay Tecnológico, Tijuana 22510, Baja California, Mexico;
| | - Lorena Álvarez-Contreras
- Centro de Investigación en Materiales Avanzados S. C., Complejo Industrial Chihuahua, Chihuahua 31136, Chihuahua, Mexico;
| | - Noé Arjona
- Centro de Investigación y Desarrollo Tecnológico en Electroquímica S. C., Sanfandila 76703, Pedro Escobedo, Mexico;
| | - Minerva Guerra-Balcázar
- Facultad de Ingeniería, División de Investigación y Posgrado, Universidad Autónoma de Querétaro, Querétaro 76010, Santiago de Querétaro, Mexico;
| |
Collapse
|
2
|
Lu Z, Qiu P, Kang JX, Chen X, Zhang G, Zhang Y, Chen X. Potassium Decahydrido- closo-Decaborane Urea Complex as a Potential Solid-State Electrolyte for Potassium Metal Batteries. ACS APPLIED MATERIALS & INTERFACES 2024; 16:10070-10077. [PMID: 38380614 DOI: 10.1021/acsami.3c17570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
All-solid-state potassium metal batteries have been considered promising candidates for large-scale energy storage because of abundance and wide availability of K resources, elimination of flammable liquid organic electrolytes, and incorporation of high-capacity K metal anode. However, unideal K-ion conductivities of most reported K-ion solid electrolytes have restricted the development of these batteries. Herein, a novel K2B10H10·CO(NH2)2 complex is reported, forming by incorporating urea into K2B10H10, to achieve an enhanced K-ion conductivity. The crystal structure of K2B10H10·CO(NH2)2 was determined as a monoclinic lattice with the space group of C2/c (No. 15). K2B10H10·CO(NH2)2 delivers an ionic conductivity of 2.7 × 10-8 S cm-1 at 25 °C, and reaching 1.3 × 10-4 S cm-1 at 80 °C, which is about 4 orders of magnitude higher than that of K2B10H10. One possible reason is the anion expansion in size due to the presence of dihydrogen bonds in K2B10H10·CO(NH2)2, resulting in an increase in the K-H bond distance and the electrostatic potential, thereby enhancing the mobility of K+. The K-ion conductivity is also higher than those of most hydridoborate-based K-ion conductors reported. Besides, K2B10H10·CO(NH2)2 reveals a wide electrochemical stability window and remarkable interface compatibility with K metal electrodes, suggesting a promising electrolyte for all-solid-state K metal batteries.
Collapse
Affiliation(s)
- Zhiwei Lu
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Pengtao Qiu
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Jia-Xin Kang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xinwei Chen
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Guoguo Zhang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Yichun Zhang
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| | - Xuenian Chen
- College of Chemistry, Zhengzhou University, Zhengzhou, Henan 450001, China
- Henan Key Laboratory of Boron Chemistry and Advanced Energy Materials, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
3
|
Cao Y, Zhang G, Zou J, Dai H, Wang C. Natural Pyranosyl Materials: Potential Applications in Solid-State Batteries. CHEMSUSCHEM 2023; 16:e202202216. [PMID: 36797983 DOI: 10.1002/cssc.202202216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/16/2023] [Accepted: 02/16/2023] [Indexed: 05/06/2023]
Abstract
Solid-state batteries have become one of the hottest research areas today, due to the use of solid-state electrolytes enabling the high safety and energy density. Because of the interaction with electrolyte salts and the abundant ion transport sites, natural polysaccharide polymers with rich functional groups such as -OH, -OR or -COO- etc. have been applied in solid-state electrolytes and have the merits of possibly high ionic conductivity and sustainability. This review summarizes the recent progress of natural polysaccharides and derivatives for polymer electrolytes, which will stimulate further interest in the application of polysaccharides for solid-state batteries.
Collapse
Affiliation(s)
- Yueyue Cao
- School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Guoqun Zhang
- School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Jincheng Zou
- School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Huichao Dai
- School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Chengliang Wang
- School of Integrated Circuits, School of Optical and Electronic Information, Wuhan National Laboratory for Optoelectronics (WNLO), Optics Valley Laboratory, Huazhong University of Science and Technology, Wuhan, 430074, China
- Wenzhou Advanced Manufacturing Institute, Huazhong University of Science and Technology, Wenzhou, 325035, China
| |
Collapse
|
4
|
Wang M, Xu B, Zou Q, Dong X, Shao R, Qiao J. Graphene oxide prompted double-crosslinked Poly(vinyl alcohol)/Poly(diallyldimethylammonium chloride) Anion-exchange membrane for superior CO2 electrochemical reduction. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
5
|
Song Z, Liu X, Ding J, Liu J, Han X, Deng Y, Zhong C, Hu W. Poly(acrylic acid)-Based Composite Gel Polymer Electrolytes with High Mechanical Strength and Ionic Conductivity toward Flexible Zinc-Air Batteries with Long Cycling Lifetime. ACS APPLIED MATERIALS & INTERFACES 2022; 14:49801-49810. [PMID: 36300883 DOI: 10.1021/acsami.2c14470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The rapid development of portable, flexible, and wearable devices motivates the requirement for flexible zinc-air batteries (FZABs) not only to provide high energy density but also to have sufficient deformability for wearer comfort. The gel polymer electrolyte (GPE) serves as the core part of the FZABs, playing a key function in the battery's practical output performance such as discharge voltage, energy density, and cycling life. Unfortunately, ascribed to its high water absorption, the GPE regularly shows comparatively poor mechanical strength, which is difficult to offer sufficient physical support between electrodes. Herein, we report an optimized poly(acrylic acid) (PAA)-based composite GPE with the aluminum oxide (Al2O3) filler and apply it for FZAB. The mechanical strength, electrolyte absorption capacity, electrolyte retention ability, and ionic conductivity of the PAA-Al2O3 gel polymers and corresponding GPEs were investigated. The results indicate that the above performances of polymers and corresponding GPEs depend to a considerable extent on the content of the addition of Al2O3 particles. When 20 wt.% Al2O3 is added to the PAA polymer, the obtained PAA-20 wt.% Al2O3 gel polymer exhibits improved mechanical strength. The corresponding PAA-20 wt.% Al2O3 GPE shows a high ionic conductivity of 186 mS cm-1 and pleasurable electrolyte retention capability. This optimized GPE enables the assembled FZAB to display a long cycling lifetime of 384 h, a large power density of 77.7 mW cm-2, and excellent discharge performance. Moreover, the integrated FZAB can power various electronic devices, demonstrating its outstanding practicability and extensibility as a flexible power source.
Collapse
Affiliation(s)
- Zhishuang Song
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Xiaorui Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Jia Ding
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Jie Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Xiaopeng Han
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Yida Deng
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou350207, China
| |
Collapse
|
6
|
Bagheri A, Bellani S, Beydaghi H, Eredia M, Najafi L, Bianca G, Zappia MI, Safarpour M, Najafi M, Mantero E, Sofer Z, Hou G, Pellegrini V, Feng X, Bonaccorso F. Functionalized Metallic 2D Transition Metal Dichalcogenide-Based Solid-State Electrolyte for Flexible All-Solid-State Supercapacitors. ACS NANO 2022; 16:16426-16442. [PMID: 36194759 PMCID: PMC9620411 DOI: 10.1021/acsnano.2c05640] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Highly efficient and durable flexible solid-state supercapacitors (FSSSCs) are emerging as low-cost devices for portable and wearable electronics due to the elimination of leakage of toxic/corrosive liquid electrolytes and their capability to withstand elevated mechanical stresses. Nevertheless, the spread of FSSSCs requires the development of durable and highly conductive solid-state electrolytes, whose electrochemical characteristics must be competitive with those of traditional liquid electrolytes. Here, we propose an innovative composite solid-state electrolyte prepared by incorporating metallic two-dimensional group-5 transition metal dichalcogenides, namely, liquid-phase exfoliated functionalized niobium disulfide (f-NbS2) nanoflakes, into a sulfonated poly(ether ether ketone) (SPEEK) polymeric matrix. The terminal sulfonate groups in f-NbS2 nanoflakes interact with the sulfonic acid groups of SPEEK by forming a robust hydrogen bonding network. Consequently, the composite solid-state electrolyte is mechanically/dimensionally stable even at a degree of sulfonation of SPEEK as high as 70.2%. At this degree of sulfonation, the mechanical strength is 38.3 MPa, and thanks to an efficient proton transport through the Grotthuss mechanism, the proton conductivity is as high as 94.4 mS cm-1 at room temperature. To elucidate the importance of the interaction between the electrode materials (including active materials and binders) and the solid-state electrolyte, solid-state supercapacitors were produced using SPEEK and poly(vinylidene fluoride) as proton conducting and nonconducting binders, respectively. The use of our solid-state electrolyte in combination with proton-conducting SPEEK binder and carbonaceous electrode materials (mixture of activated carbon, single/few-layer graphene, and carbon black) results in a solid-state supercapacitor with a specific capacitance of 116 F g-1 at 0.02 A g-1, optimal rate capability (76 F g-1 at 10 A g-1), and electrochemical stability during galvanostatic charge/discharge cycling and folding/bending stresses.
Collapse
Affiliation(s)
- Ahmad Bagheri
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Center
for Advancing Electronics Dresden (CFAED) & Faculty of Chemistry
and Food Chemistry, Technische Universität
Dresden, 01062 Dresden, Germany
| | | | | | - Matilde Eredia
- BeDimensional
SpA, Lungotorrente Secca
30R, 16163 Genoa, Italy
| | - Leyla Najafi
- BeDimensional
SpA, Lungotorrente Secca
30R, 16163 Genoa, Italy
| | - Gabriele Bianca
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- Dipartimento
di Chimica e Chimica Industriale, Università
degli Studi di Genova, via Dodecaneso 31, 16146 Genoa, Italy
| | | | - Milad Safarpour
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento
di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Universita Degli Studi di Genova, Via All’Opera Pia 13, 16145 Genova, Italy
| | - Maedeh Najafi
- Smart
Materials, Istituto Italiano di Tecnologia, Via Morego 30, 16163 Genova, Italy
- Dipartimento
di Informatica Bioingegneria, Robotica e Ingegneria dei Sistemi (DIBRIS), Universita Degli Studi di Genova, Via All’Opera Pia 13, 16145 Genova, Italy
| | - Elisa Mantero
- BeDimensional
SpA, Lungotorrente Secca
30R, 16163 Genoa, Italy
| | - Zdenek Sofer
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Guorong Hou
- Department
of Inorganic Chemistry, University of Chemistry
and Technology Prague, Technicka 5, 166 28 Prague 6, Czech Republic
| | - Vittorio Pellegrini
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- BeDimensional
SpA, Lungotorrente Secca
30R, 16163 Genoa, Italy
| | - Xinliang Feng
- Center
for Advancing Electronics Dresden (CFAED) & Faculty of Chemistry
and Food Chemistry, Technische Universität
Dresden, 01062 Dresden, Germany
- Max
Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle, Germany
| | - Francesco Bonaccorso
- Graphene
Labs, Istituto Italiano di Tecnologia, via Morego 30, 16163 Genoa, Italy
- BeDimensional
SpA, Lungotorrente Secca
30R, 16163 Genoa, Italy
| |
Collapse
|
7
|
Zhang G, Cai X, Li C, Yao J, Tian Z, Zhang F, Liu Y, Liu W, Zhang X. Design of co-continuous structure of cellulose/PAA-based alkaline solid polyelectrolyte for flexible zinc-air battery. Int J Biol Macromol 2022; 221:446-455. [PMID: 36084873 DOI: 10.1016/j.ijbiomac.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/16/2022] [Accepted: 09/02/2022] [Indexed: 11/15/2022]
Abstract
In order to prepare high ionic conductivity and robust mechanical properties of alkaline solid polyelectrolyte (ASPE) for applications in flexible wearable devices, a co-continuous structure membrane was designed using in-situ polymerization to introduce cross-linked polyacrylic acid (N-PAA) into the cellulose network constructed by regenerated degreasing cotton (RDC). The resultant ASPE membrane showed high ionic conductivity (430 mS·cm-1 at 25 °C), strong mechanical properties, and excellent alkaline stabilities, proving the viability of cellulose for use in energy storage systems. Surprisingly, the sandwich-shaped zinc-air battery assembled using RDC/N-PAA/KOH membranes as electrolytes exhibits superior values of cycling stability, discharge time, specific capacity (731.5 mAh·g-1), peak power density (40.25 mW·cm-2), and mechanical flexibility. Even under bending conditions, the zinc-air batteries still possess stable energy supply performance, suggesting this novel solid polyelectrolyte has promising application for wearable technology.
Collapse
Affiliation(s)
- Guotao Zhang
- School of Materials Science & Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xiaoxia Cai
- School of Materials Science & Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Cong Li
- School of Materials Science & Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
| | - Jinshui Yao
- School of Materials Science & Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Zhongjian Tian
- School of Materials Science & Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Fengshan Zhang
- Shandong Huatai Paper Industry Shareholding Co., Ltd., Dongying 257335, China
| | - Yanshao Liu
- Shandong Huatai Paper Industry Shareholding Co., Ltd., Dongying 257335, China
| | - Weiliang Liu
- School of Materials Science & Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Xian Zhang
- School of Materials Science & Engineering, State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| |
Collapse
|
8
|
Peng W, Chen Z, Jin J, Yang S, Zhang J, Li G. Interconnected Hollow Porous Polyacrylonitrile-Based Electrolyte Membrane for a Quasi-Solid-State Flexible Zinc-Air Battery with Ultralong Lifetime. ACS APPLIED MATERIALS & INTERFACES 2022; 14:31792-31802. [PMID: 35786825 DOI: 10.1021/acsami.2c03668] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Quasi-solid-state flexible zinc-air batteries (FZABs) have received enormous attention due to their low cost and high safety. However, the constraints in lifetime resulting from the lack of stable quasi-solid-state electrolyte membranes and efficient bifunctional electrocatalysts toward oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) hinder the large-scale manufacture and commercialization of FZABs to power electric devices. Herein, a polyacrylonitrile (PAN)-based membrane (HPPANP) fabricated via facile coaxial electrospinning, water dissolution, lyophilization, and KOH preimmersion method was utilized as the quasi-solid-state electrolyte membrane. The interconnected hollow porous structure based on PAN nanofibers endows HPPANP with outstanding electrolyte-uptake/retention capabilities for high ionic conductivity and nanolevel wetted electrolyte/anode interface for uniform Zn dissolution/deposition, thus prolonging the lifespan of the FZABs. In addition, the in situ alkaline hydrolysis of KOH solution supplies HPPANP with abundant oxygen-containing groups, which also improves its ionic conductivity. Additionally, we synthesized a Co/N-doped hollow carbon sphere (CoN-CS) electrocatalyst that exhibits superior ORR and OER electrocatalytic activities with a low potential difference (ΔE) of 0.73 V. Such favorable ORR and OER performances can be mainly attributed to the hierarchical hollow micro/nanostructures with abundant active sites, long-term stability, and favorable electron/ion diffusion pathway. As a result, the assembled FZAB equipped with the CoN-CS catalyst and HPPANP displays high power density (123.8 mW cm-2) and preferable long-term cycling performance (more than 50 h at 3 mA cm-2).
Collapse
Affiliation(s)
- Wei Peng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Zunhong Chen
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Junhong Jin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Shenglin Yang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Jingjing Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| | - Guang Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, P. R. China
| |
Collapse
|
9
|
Xu M, Dou H, Zhang Z, Zheng Y, Ren B, Ma Q, Wen G, Luo D, Yu A, Zhang L, Wang X, Chen Z. Hierarchically Nanostructured Solid-State Electrolyte for Flexible Rechargeable Zinc-Air Batteries. Angew Chem Int Ed Engl 2022; 61:e202117703. [PMID: 35233896 DOI: 10.1002/anie.202117703] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Indexed: 11/07/2022]
Abstract
The construction of safe and environmentally-benign solid-state electrolytes (SSEs) with intrinsic hydroxide ion-conduction for flexible zinc-air batteries is highly desirable yet extremely challenging. Herein, hierarchically nanostructured CCNF-PDIL SSEs with reinforced concrete architecture are constructed by nanoconfined polymerization of dual-cation ionic liquid (PDIL, concrete) within a robust three-dimensional porous cationic cellulose nanofiber matrix (CCNF, reinforcing steel), where plenty of penetrating ion-conductive channels are formed and undergo dynamic self-rearrangement under different hydrated levels. The CCNF-PDIL SSEs synchronously exhibit good flexibility, mechanical robustness, superhigh ion conductivity of 286.5 mS cm-1 , and decent water uptake. The resultant flexible solid-state zinc-air batteries deliver a high-power density of 135 mW cm-2 , a specific capacity of 775 mAh g-1 and an ultralong cycling stability with continuous operation of 240 hours for 720 cycles, far outperforming those of the state-of-the-art solid-state batteries. The marriage of biomaterials with the diversity of ionic liquids creates enormous opportunities to construct advanced SSEs for solid-state batteries.
Collapse
Affiliation(s)
- Mi Xu
- South China Academy of Advanced Optoelectronics, School of Information and Optoelectronic Science and Engineering, International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou, 510006, China.,School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Haozhen Dou
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1, Canada
| | - Zhen Zhang
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1, Canada
| | - Yun Zheng
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1, Canada
| | - Bohua Ren
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1, Canada
| | - Qianyi Ma
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1, Canada
| | - Guobin Wen
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1, Canada
| | - Dan Luo
- South China Academy of Advanced Optoelectronics, School of Information and Optoelectronic Science and Engineering, International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou, 510006, China
| | - Aiping Yu
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1, Canada
| | - Luhong Zhang
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, China
| | - Xin Wang
- South China Academy of Advanced Optoelectronics, School of Information and Optoelectronic Science and Engineering, International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou, 510006, China
| | - Zhongwei Chen
- Department of Chemical Engineering, University of Waterloo, 200 University Ave. W, Waterloo, Ontario, N2L 3G1, Canada
| |
Collapse
|
10
|
Dou H, Xu M, Zheng Y, Li Z, Wen G, Zhang Z, Yang L, Ma Q, Yu A, Luo D, Wang X, Chen Z. Bioinspired Tough Solid-State Electrolyte for Flexible Ultralong-Life Zinc-Air Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2110585. [PMID: 35316552 DOI: 10.1002/adma.202110585] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Manufacturing advanced solid-state electrolytes (SSEs) for flexible rechargeable batteries becomes increasingly important but remains grand challenge. The sophisticated structure of robust animal dermis and good water-retention of plant cell in nature grant germane inspirations for designing high-performance SSEs. Herein, tough bioinspired SSEs with intrinsic hydroxide ion (OH- ) conduction are constructed by in situ formation of OH- conductive ionomer network within a hollow-polymeric-microcapsule-decorated hydrogel polymer network. By virtue of the bioinspired design and dynamic dual-penetrating network structure, the bioinspired SSEs simultaneously obtain mechanical robustness with 1800% stretchability, good water uptake of 107 g g-1 and water retention, and superhigh ion conductivity of 215 mS cm-1 . The nanostructure of bioinspired SSE and related ion-conduction mechanism are revealed and visualized by molecular dynamics simulation, where plenty of compact and superfast ion-transport channels are constructed, contributing to superhigh ion conductivity. As a result, the flexible solid-state zinc-air batteries assembled with bioinspired SSEs witness high power density of 148 mW cm-2 , specific capacity of 758 mAh g-1 and ultralong cycling stability of 320 h as well as outstanding flexibility. The bioinspired methodology and deep insight of ion-conduction mechanism will shed light on the design of advanced SSEs for flexible energy conversion and storage systems.
Collapse
Affiliation(s)
- Haozhen Dou
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Mi Xu
- South China Academy of Advanced Optoelectronics & International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou, 510006, China
| | - Yun Zheng
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Zhaoqiang Li
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Guobin Wen
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Zhen Zhang
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Leixin Yang
- South China Academy of Advanced Optoelectronics & International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou, 510006, China
| | - Qianyi Ma
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Aiping Yu
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Dan Luo
- South China Academy of Advanced Optoelectronics & International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou, 510006, China
| | - Xin Wang
- South China Academy of Advanced Optoelectronics & International Academy of Optoelectronics at Zhaoqing, South China Normal University, Guangzhou, 510006, China
| | - Zhongwei Chen
- Department of Chemical Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| |
Collapse
|
11
|
Xu M, Dou H, Zhang Z, Zheng Y, Ren B, Ma Q, Wen G, Luo D, Yu A, Zhang L, Wang X, Chen Z. Hierarchically Nanostructured Solid‐State Electrolyte for Flexible Rechargeable Zinc–Air Batteries. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202117703] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mi Xu
- South China Academy of Advanced Optoelectronics School of Information and Optoelectronic Science and Engineering International Academy of Optoelectronics at Zhaoqing South China Normal University Guangzhou 510006 China
- School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Haozhen Dou
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario, N2L 3G1 Canada
| | - Zhen Zhang
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario, N2L 3G1 Canada
| | - Yun Zheng
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario, N2L 3G1 Canada
| | - Bohua Ren
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario, N2L 3G1 Canada
| | - Qianyi Ma
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario, N2L 3G1 Canada
| | - Guobin Wen
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario, N2L 3G1 Canada
| | - Dan Luo
- South China Academy of Advanced Optoelectronics School of Information and Optoelectronic Science and Engineering International Academy of Optoelectronics at Zhaoqing South China Normal University Guangzhou 510006 China
| | - Aiping Yu
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario, N2L 3G1 Canada
| | - Luhong Zhang
- School of Chemical Engineering and Technology Tianjin University Tianjin 300072 China
| | - Xin Wang
- South China Academy of Advanced Optoelectronics School of Information and Optoelectronic Science and Engineering International Academy of Optoelectronics at Zhaoqing South China Normal University Guangzhou 510006 China
| | - Zhongwei Chen
- Department of Chemical Engineering University of Waterloo 200 University Ave. W Waterloo Ontario, N2L 3G1 Canada
| |
Collapse
|
12
|
Liu X, Fan X, Liu B, Ding J, Deng Y, Han X, Zhong C, Hu W. Mapping the Design of Electrolyte Materials for Electrically Rechargeable Zinc-Air Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006461. [PMID: 34050684 DOI: 10.1002/adma.202006461] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/25/2020] [Indexed: 06/12/2023]
Abstract
Electrically rechargeable zinc-air batteries (ERZABs) have attracted substantial research interest as one of the best candidate power sources for electric vehicles, grid-scale energy storage, and portable electronics owing to their high theoretical capacity, low cost, and environmental benignity. However, the realization of ERZABs with long cycle life and high energy and power densities is still a considerable challenge. The electrolyte, which serves as the ionic conductor, is one of the core components of ERZABs, as it plays a significant role during the discharge-charge process and greatly influences the rechargeability, operating voltage, lifespan, power density, and safety of ERZABs. Herein, the fundamental electrochemistry of electrolyte materials for ERZABs and the associated challenges are presented. Furthermore, recent advances in electrolyte materials for ERZABs, including alkaline aqueous electrolytes, nonalkaline electrolytes, ionic liquids, and semisolid-state electrolytes are discussed. This work aims to provide insights into the future exploration of high-performance electrolytes and thus promote the development of ERZABs.
Collapse
Affiliation(s)
- Xiaorui Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiayue Fan
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Bin Liu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Jia Ding
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yida Deng
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Xiaopeng Han
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Cheng Zhong
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| | - Wenbin Hu
- Key Laboratory of Advanced Ceramics and Machining Technology (Ministry of Education), School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Tianjin Key Laboratory of Composite and Functional Materials, School of Materials Science and Engineering, Tianjin University, Tianjin, 300072, China
- Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, 350207, China
| |
Collapse
|
13
|
Cai X, Zhang Y, Li C, Zhang G, Wang X, Zhang X, Wang Q, Wang F. Composite Polymer Anion Exchange Membranes with Sandwich Structure and Improved Performance for Zn-Air Battery. MEMBRANES 2021; 11:membranes11030224. [PMID: 33810093 PMCID: PMC8004831 DOI: 10.3390/membranes11030224] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/12/2021] [Accepted: 03/16/2021] [Indexed: 12/01/2022]
Abstract
In this study, we fabricated a composite polymer anion exchange membrane (AEM) with a sandwich structure. This prepared AEM demonstrated high ionic conductivity (0.25 Scm−1), excellent alkali resistance (8 M KOH), and good mechanical properties (tensile strength of 0.455 MPa and elongation at break of 82.13%). Here, degrease cotton (DC) treated with LiOH/urea aqueous solution was used and immersed into a coagulation bath to form a film. This film was immersed in acrylic acid (AA) monomers, and in-suit polymerization was carried out in the presence of KOH and an initiator. Finally, a composite polymer membrane with sandwich structure was achieved, in which the upper and bottom layers were mainly composed of polymerized AA (PAA) while the central layer was mainly composed of DC derived film. The central layer acted as a skeleton to improve the mechanical properties and alkali resistance. The top and bottom layers (PAA-rich layers) acted as OH- ion transport carriers, making basic cations migrate along the main chain of PAA. This newly developed composite membrane showed increased tensile strength and an elongation at break of 2.7 and 1.5 times, respectively, when compared to a control PAA/KOH AEM film. Furthermore, an electrochemical stability window of 2.0 V was measured via the cyclic voltammetry curve test, showing a wide electrochemical window and promising application in Zn–Air batteries.
Collapse
Affiliation(s)
- Xiaoxia Cai
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Y.Z.); (G.Z.); (X.W.); (X.Z.); (F.W.)
- Correspondence: (X.C.); (C.L.)
| | - Yuansong Zhang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Y.Z.); (G.Z.); (X.W.); (X.Z.); (F.W.)
| | - Cong Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
- Correspondence: (X.C.); (C.L.)
| | - Guotao Zhang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Y.Z.); (G.Z.); (X.W.); (X.Z.); (F.W.)
| | - Xiaotao Wang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Y.Z.); (G.Z.); (X.W.); (X.Z.); (F.W.)
| | - Xian Zhang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Y.Z.); (G.Z.); (X.W.); (X.Z.); (F.W.)
| | - Qiang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Fuzhong Wang
- School of Materials Science & Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (Y.Z.); (G.Z.); (X.W.); (X.Z.); (F.W.)
| |
Collapse
|
14
|
Lorca S, Santos F, Fernández Romero AJ. A Review of the Use of GPEs in Zinc-Based Batteries. A Step Closer to Wearable Electronic Gadgets and Smart Textiles. Polymers (Basel) 2020; 12:E2812. [PMID: 33260984 PMCID: PMC7761133 DOI: 10.3390/polym12122812] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 11/14/2020] [Accepted: 11/15/2020] [Indexed: 01/08/2023] Open
Abstract
With the flourish of flexible and wearable electronics gadgets, the need for flexible power sources has become essential. The growth of this increasingly diverse range of devices boosted the necessity to develop materials for such flexible power sources such as secondary batteries, fuel cells, supercapacitors, sensors, dye-sensitized solar cells, etc. In that context, comprehensives studies on flexible conversion and energy storage devices have been released for other technologies such Li-ion standing out the importance of the research done lately in GPEs (gel polymer electrolytes) for energy conversion and storage. However, flexible zinc batteries have not received the attention they deserve within the flexible batteries field, which are destined to be one of the high rank players in the wearable devices future market. This review presents an extensive overview of the most notable or prominent gel polymeric materials, including biobased polymers, and zinc chemistries as well as its practical or functional implementation in flexible wearable devices. The ultimate aim is to highlight zinc-based batteries as power sources to fill a segment of the world flexible batteries future market.
Collapse
Affiliation(s)
| | - Florencio Santos
- Grupo de Materiales Avanzados para la Producción y Almacenamiento de Energía (MAPA), Campus de Alfonso XIII, Universidad Politécnica de Cartagena, Cartagena, 30203 Murcia, Spain;
| | - Antonio J. Fernández Romero
- Grupo de Materiales Avanzados para la Producción y Almacenamiento de Energía (MAPA), Campus de Alfonso XIII, Universidad Politécnica de Cartagena, Cartagena, 30203 Murcia, Spain;
| |
Collapse
|
15
|
Wang M, Vecchio D, Wang C, Emre A, Xiao X, Jiang Z, Bogdan P, Huang Y, Kotov NA. Biomorphic structural batteries for robotics. Sci Robot 2020; 5:5/45/eaba1912. [DOI: 10.1126/scirobotics.aba1912] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 07/23/2020] [Indexed: 01/12/2023]
Abstract
Batteries with conformal shape and multiple functionalities could provide new degrees of freedom in the design of robotic devices. For example, the ability to provide both load bearing and energy storage can increase the payload and extend the operational range for robots. However, realizing these kinds of structural power devices requires the development of materials with suitable mechanical and ion transport properties. Here, we report biomimetic aramid nanofibers–based composites with cartilage-like nanoscale morphology that display an unusual combination of mechanical and ion transport properties. Ion-conducting membranes from these aramid nanofiber composites enable pliable zinc-air batteries with cyclic performance exceeding 100 hours that can also serve as protective covers in various robots including soft and flexible miniaturized robots. The unique properties of the aramid ion conductors are attributed to the percolating network architecture of nanofibers with high connectivity and strong nanoscale filaments designed using a graph theory of composite architecture when the continuous aramid filaments are denoted as edges and intersections are denoted as nodes. The total capacity of these body-integrated structural batteries is 72 times greater compared with a stand-alone Li-ion battery with the same volume. These materials and their graph theory description enable a new generation of robotic devices, body prosthetics, and flexible and soft robotics with nature-inspired distributed energy storage.
Collapse
Affiliation(s)
- Mingqiang Wang
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, P. R. China
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Drew Vecchio
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chunyan Wang
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Ahmet Emre
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xiongye Xiao
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Zaixing Jiang
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Paul Bogdan
- Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yudong Huang
- School of Chemistry and Chemical Engineering, MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, P. R. China
| | - Nicholas A. Kotov
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Materials Science and Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Michigan Institute of Transnational Nanotechnology (MITRAN), Ypsilanti, MI, USA
| |
Collapse
|
16
|
Sun N, Lu F, Yu Y, Su L, Gao X, Zheng L. Alkaline Double-Network Hydrogels with High Conductivities, Superior Mechanical Performances, and Antifreezing Properties for Solid-State Zinc-Air Batteries. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11778-11788. [PMID: 32073813 DOI: 10.1021/acsami.0c00325] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
For the development of advanced flexible and wearable electronic devices, functional electrolytes with excellent conductivity, temperature tolerance, and desirable mechanical properties need to be engineered. Herein, an alkaline double-network hydrogel with high conductivity and superior mechanical and antifreezing properties is designed and promisingly utilized as the flexible electrolyte in all-solid-state zinc-air batteries. The conductive hydrogel is comprised of covalently cross-linked polyelectrolyte poly(2-acrylamido-2-methylpropanesulfonic acid potassium salt) (PAMPS-K) and interpenetrating methyl cellulose (MC) in the presence of concentrated alkaline solutions. The covalently cross-linked PAMPS-K skeleton and interpenetrating MC chains endow the hydrogel with good mechanical strength, toughness, an extremely rapid self-recovery capability, and an outstanding antifatigue property. Gratifyingly, the entrapment of a concentrated alkaline solution in the hydrogel matrix yields an extremely high ionic conductivity (105 mS cm-1 at 25 °C) and an excellent antifreezing capacity. The hydrogel retains comparable conductivity and eligible strength to withstand various mechanical deformations at -20 °C. The all-solid-state zinc-air batteries using PAMPS-K/MC hydrogels as flexible alkaline electrolytes exhibit comparable values of specific capacity (764.7 mAh g-1), energy capacity (850.2 mWh g-1), cycling stability, and mechanical flexibility. The batteries still possess competitive electrochemical performances even when the operating temperature drops to -20 °C.
Collapse
Affiliation(s)
- Na Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, 250100 Jinan, P. R. China
| | - Fei Lu
- College of Chemistry, Chemical Engineering and Materials Science, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Institute of Molecular and Nano Science, Shandong Normal University, 250014 Jinan, P. R. China
| | - Yang Yu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, 250100 Jinan, P. R. China
| | - Long Su
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, 250100 Jinan, P. R. China
| | - Xinpei Gao
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, 250100 Jinan, P. R. China
| | - Liqiang Zheng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, Shandong University, 250100 Jinan, P. R. China
| |
Collapse
|
17
|
Abstract
Rechargeable alkali metal–air batteries have enormous potential in energy storage applications due to their high energy densities, low cost, and environmental friendliness. Membrane separators determine the performance and economic viability of these batteries. Usually, porous membrane separators taken from lithium-based batteries are used. Moreover, composite and cation-exchange membranes have been tested. However, crossover of unwanted species (such as zincate ions in zinc–air flow batteries) and/or low hydroxide ions conductivity are major issues to be overcome. On the other hand, state-of-art anion-exchange membranes (AEMs) have been applied to meet the current challenges with regard to rechargeable zinc–air batteries, which have received the most attention among alkali metal–air batteries. The recent advances and remaining challenges of AEMs for these batteries are critically discussed in this review. Correlation between the properties of the AEMs and performance and cyclability of the batteries is discussed. Finally, strategies for overcoming the remaining challenges and future outlooks on the topic are briefly provided. We believe this paper will play a significant role in promoting R&D on developing suitable AEMs with potential applications in alkali metal–air flow batteries.
Collapse
|
18
|
Shi B, Zhang J, Wu W, Wang J, Huang J. Controlling conduction environments of anion exchange membrane by functionalized SiO2 for enhanced hydroxide conductivity. J Memb Sci 2019. [DOI: 10.1016/j.memsci.2018.10.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|